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A General Time-Periodic Driving 
Approach to Realize Topological 
Phases in Cold Atomic Systems
Zhongbo Yan1, Bo Li1, Xiaosen Yang2,3 & Shaolong Wan1

For time-reversal symmetric cold atomic insulating systems, it is found that the usual driving 
approach based on electromagnetic field used in solid state systems loses its power to drive them 
from trivial regimes to topological regimes if the driven systems still hold time-reversal symmetry 
(TRS). For such systems, we point out that simply varying the optical lattice potential periodically 
provides a general and effective way to drive them into topological regimes without breaking their 
symmetries. Based on this approach, we find that the time-reversal symmetric Kane-Mele model can 
be effectively driven from the trivial phase to topological phases named as Floquet Quantum Spin 
Hall insulator. Due to the existence of two gaps in the Floquet system, this novel state of matter can 
stably host one or two pair of gapless helical states on the same boundary, which suggests this state 
is not a simple analog of the Quantum Spin Hall insulator. This new driving approach to a system 
without TRS is also investigated.

In the past few years, the theoretical predictions1–3 and the experimental observations4,5 of topological 
insulator have stimulated strong and continuous interest in predicting new materials and systems with 
topological phases due to their potential application in spintronics and topological quantum computation6.

Topological phases exist in every dimension7,8, however, it is found that the number of real static 
systems with topological properties is quite limited. This limitation triggers new proposals to engineer 
systems with topological properties. One such proposal that time-periodically driven systems can host 
topological characteristics, the so-called Floquet approach9,10, recently has attracted great attention11–36, 
and has been demonstrated by the direct observation of protected edge modes in photonic crystals37,38. 
The great interest arisen are not just because this approach can drive a topologically trivial system to 
be topologically nontrivial, but also because the driven systems can exhibit unique topological proper-
ties without an analog in static systems39,40, such as the Floquet Majorana fermions with quasienergy 
ε =  π/T41.

For solid state systems, currently the general way to drive the system from a trivial phase to a topo-
logical phase is by introducing a time-periodic external electromagnetic field to the original static system, 
like shining light on a conventional insulator. For cold atomic insulating systems, as atoms are neutral, 
an electric field has no effects on the systems, only a magnetic field can effectively couple with the sys-
tems through the spin degrees. However, for an insulator with time-reversal symmetry (TRS), we find 
that a time-periodic uniform magnetic field can not drive the system from trivial phases to topological 
phases if the driven system still holds TRS, in other words, no topological phases with TRS emerge 
through this approach. Fortunately, cold atomic systems are flexible to tune. The most flexible parameter 
of cold atomic systems to tune is the strength of lattice potential. We find that just simply varying this 
parameter periodically provides a general and effective way to drive systems into topological regimes 
without breaking symmetries of the original static systems. As a result, for an original static insulator 
with TRS, the edge states driven up through this approach are always helical, the same as the Quantum 
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Spin Hall (QSH) insulator1–3 (for a TRI superconductor or superfluid, the picture is similar and therefore 
we restrict ourself to insulator in this work). For the sake of accuracy and discussion, here we name 
systems with spin conservation and such driven-up helical edge states as Floquet Quantum Spin Hall 
(FQSH) insulator.

Results
Time-reversal symmetric Model driven by varying the lattice potential periodically.  We con-
sider a cold atomic realization of the time-reversal symmetric Kane-Mele model in a hexagonal optical 
lattice. The Hamiltonian is given by1

∑ ∑ ∑ν σ ξ= + λ + λ .
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The first term denotes the nearest-neighbor hopping process. The second term is the mirror sym-
metric spin-orbit interaction which involves spin-dependent next-nearest-neighbor hopping. vij takes 
value 1 (or − 1) when the path i →  j is contourclockwise (or clockwise). σx,y,z are Pauli matrices acting on 
spin space. Pauli matrices acting on sublattice space are denoted by τx,y,z. The third term is a staggered 
sublattice potential (ξi =  ± ), which are included to control the phase. As [σz, H0] =  0, σz is conserved.

For a hexagonal lattice, the optical lattice potential takes the form42,43
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where θ1 =  π/3, θ2 =  2π/3 and θ3 =  0. kL is the optical wave vector. Here we consider a hexagonal optical 
lattice with isotropic driving, i.e., ω γ ω( ) = + ( ) = ( + ( ))V t V V t V tcos 1 cosi D0 0 , where γ =  VD/V0 is 
a dimensionless quantity. This is like stretching and compressing the lattice along the perpendicular 
direction periodically, which is different from shaking the lattice along the horizontal direction29,30 (the 
mechanism of shaking the lattice along the horizontal direction is to hybrid two close spin-independent 
bands of certain lattice structure to induce a topological phase transition and consequently the resultant 
topological phase is of quantum Hall nature which means that the time-reversal symmetry is broken). 
With such a driving, the hopping amplitudes correspondingly vary with time periodically. When γ is a 
small quantity, we can make an expansion of the hopping amplitudes on γ ω( )tcos  and make the first 
order approximation, then the hopping amplitudes are given by the form: ω( ) = + ( )J t J J tcosD , 

ωλ ( ) = λ + λ ( ),t tcosso so so D , where γ∝J JD  and γλ ∝ λ,so D so  (more details about the expanding 
parameters and the validity of the first order approximation are given in the Methods section). Then the 
time-dependent Hamiltonian can be decomposed as ω( ) = + ( )H t H H tcosD0 . H(t) is time-periodic 
and HD is given by

∑ ∑ ν σ= + λ .
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HD has the same form as H0 except the absence of a corresponding term to λv (the inclusion of such 
a corresponding term does not affect the following conclusion). As TH T H(− , − ) = ( , )−ˆ ˆk t k t1 , with 
T Kσ= i y , the total Hamiltonian still holds the TRS (see the Methods section).

The single-particle Schrödinger equation associated with this time-dependent Hamiltonian is:

  ( , ) − ∂ Ψ( , ) = , ( , + ) = ( , ). ( )t i t t T tk k k k[ ] 0 with 4t

where ( , )tk  is the form of H(t) in momentum space. According to the Bloch-Floquet theory, the wave 
function satisfying Eq. (4) can be expressed as Ψ( , ) = Φ( , )ε−t tk ke i tk  with the Floquet states 
Φ( , + ) = Φ( , )t T tk k  and the Floquet equation  ε( , ) − ∂ Φ( , ) = Φ( , )t i t tk k k[ ]t k . The parameter 
ε, called the quasienergy, is uniquely defined up to integer multiples of ω π= /T2 . Similar to the crystal 
momentum of a system with discrete translation symmetry, the quasienergy can be thought of as a peri-
odic variable defined on a quasienergy Brillouin zone π ε π− / < ≤ /T T .

Although there are many different (but equivalent) ways to compute the topological invariant for a 
time-reversal symmetric static insulator44, to the best of our knowledge, a direct way to calculate the 
topological invariant for a time-reversal symmetric driven model is lacked until recently45. To determine 
the topological property of the time-dependent Hamiltonian, here we use the ‘repeated zone analysis’40. 
The first step is to expand the Floquet states, φΦ( , ) = ∑ ( ) ωtk k em m

im t. The coeffcients φ ( )km  satisfy the 
time-independent eigenvalue equation

∑ φ ε φ( ) ( ) = ( ),
( )′

, ′ ′k k k
5m

m m m mk

where the matrix form Floquet Hamiltonian  ( )′ kmm  is given by
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Write more explicitly,
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The matrix  ( ), ′ km m  has the block tridiagonal form, where each block is a 2 ×  2 matrix.
According to the bulk-edge correspondence, the absence or appearance of edge states traversing 

the gaps reflects that the system is topologically trivial or topologically nontrivial, respectively. To see 
whether the driven system hosts edge states, we consider the system with periodical boundary condition 
in x direction and open boundary condition in y direction (both zigzag geometry and armchair geometry 
are considered).

First, we consider the zigzag geometry. In Fig. 1(a), the static parameters are chosen as J =  1, λ = .0 2so , 
λ = .1 2v  and the next-nearest neighbor distance a is set to 1. As λ > λ3 3v so, the static model describes 
a trivial insulator1, then according to the bulk-edge correspondence, there is no edge state localized at 
the open boundary. With the introduction of periodically driving, we find when the driving frequency 
ω is much larger than other energy scales, there is a large energy gap between Floquet bands and no edge 
states traversing the gap. By decreasing the driving frequency, we find the gap at ε π= /T  will close and 
then reopen, with edge states emerging and traversing the reopened gap as shown in Fig.  1(a), which 
suggests the Floquet band now is topologically nontrivial. The edge states are not chiral since each edge 
has states which propagate in both directions. As the Hamiltonian holds TRS, the edge states are helical 
in the sense that fermionic atoms with opposite spin propagate in opposite direction, therefore, the sys-
tem now is a driven QSH insulator. We name such driven QSH insulators as FQSH insulators. The helical 
edge states traversing the gap at ε π= /T  is a unique property of driven systems. For a static system, the 
helical edge states always appear in the gap at ε =  0 because the spectrum of a static system is bounded40.

For the sake of discussion, we introduce two Z2 topological indices v0 and vπ which both are protected 
by the TRS to characterize the topological properties corresponding to the gap at ε =  0 and ε =  π/T, 
respectively. The topological index taking value 0 or 1 corresponds to the absence or appearance of the 
helical edge states, respectively. With this introduction, the trivial phase in the large driving frequency 
region is characterized by ν ν( , ) = ( , )π 0 00  and the FQSH insulator exhibited in Fig. 1(a) is characterized 
by ν ν( , ) = ( , )π 0 10 .

With a further decrease of the driving frequency, the gap at ε =  0 will also close and then reopen. As 
a consequence, helical edge states traversing both gaps at ε =  π/T and ε =  0, and therefore, there are two 
pairs of helical states propagating on the same boundary. Such “anomalous” edge states are without an 
analog in static system. In static QSH insulator, when there are even pairs of helical edge states, the edge 
states are no longer stable against disorder and one can always add some extra terms to gap all of them, 
as a result, the system is topologically equivalent to a trivial insulator. However, for the FQSH insulator 
characterized by ν ν( , ) = ( , )π 1 10 , the helical edge states traversing the gaps at ε =  π/T and ε =  0 are 
separated by a big energy difference, as a result, their coupling effects can be neglected, and the two pairs 
of helical edge states are still stable against disorder. Figure 1(c,d) show that these helical states are well 
localized at the two open boundaries of the system.

Figure 1.  (a,b) Spectrum of the truncated Floquet Hamiltonian (Eq. (6)) in the zigzag geometry. The 
parameters used in (a) are J =  1 (energy unit), λ = .0 2so , λ = .1 2v , JD =  1, λ = ., 0 1so D , ω =  3. The parameters 
in (b) are the same as (a) except now ω =  2. (c,d) show the density of the edge states traversing the two gaps 
of (b). (c) The density of the edge states traversing the gap at ε =  0. (d) The density of the edge states 
traversing the gap at ε π= /T .
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When the zigzag geometry is changed into the armchair geometry but with all parameters fixed, 
it is found that the edge states appearing in Fig.  1(a,b) also show up, as shown in Fig.  2(a,b). The 
geometry-independence of the emergence of the edge states suggests that the system indeed undergoes 
topological phase transitions.

The effects of a harmonic trap.  As real cold atomic systems are always accompanied with a har-
monic trap, it is worth investigating its effects. When a harmonic trap is added in the y direction (here 
we only consider a y-direction harmonic trap to guarantee the existence of translation symmetry in the 
x direction for the purpose of reducing the difficulty in calculation, however, the following conclusions 
are also satisfied by the general case), a direct consequence is that the accidental particle-hole symmetry 
(due to half-filling, i.e., μ =  0) of the Kane-Mele model is broken, which is reflected by the fact that the 
energy spectra are no longer mirror-symmetric along the ε =  0 line. However, if the harmonic trap is 
sufficiently weak (the potential of the harmonic trap at the edge of the lattice system is not larger than 
the gap), it is found that the in-gap edge states still robustly exist, as shown in Fig. 3(a,b). As here the 
gap at ε =  π/T is larger than the one at ε =  0, it is found that the edge states traversing the gap at ε =  π/T 
is more robust against the harmonic trap than the edge states traversing the gap at ε =  0. When the 
harmonic trap is strong, it is found that the bands will greatly mix with each other and consequently the 
edge states will be destroyed by other lower-energy excitations. This can be easy to understand from the 
local density approximation: the chemical potential µ µ( , ) = − ( , )x y V x y0  (μ0 is the chemical poten-

Figure 2.  (a,b) Spectrum of the truncated Floquet Hamiltonian (Eq. (6)) in the armchair geometry. The 
parameters used in (a,b) are the same as the ones in Fig. 1(a,b), respectively.

Figure 3.  (a,b) correspond to the spectra of the truncated Floquet Hamiltonian (Eq. (6)) in the zigzag 
geometry and armchair geometry, respectively. The parameters used in (a,b) are the same as the ones in 
Figs 1(b) and 2(b), respectively. The potential of the harmonic trap: ( , ) = . ( − )V x y y y0 0001 0

2, where y0 is 
the center of the lattice in the y direction. Ly =  80 for both (a,b).
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tial at the center of the trap, V(x, y) is the potential of the trap). Under this approximation, the energy 
bands can be approximately denoted as µ ε= − ( , ) ± ( )E x y k . For a strong harmonic trap, the variation 
of µ ( , )x y  will be larger than the energy gap between the ε± ( )k  bands. As a result, no matter what 
in-gap reference energy we take, there will exist low-energy bulk excitations, and consequently the edge 
states will be destroyed.

Time-reversal symmetric Model driven by a time-periodic uniform magnetic field.  Without 
loss of generality, we consider a time-periodic uniform magnetic field perpendicular to the plane, whose 
form is given as

σ ω( ) = ( ). ( )V t V tcos 8z0

Although the form of this driving term is the same as the one in ref. 10, the spaces on which the Pauli 
matrix σz acts are different. In ref. 10, σz acts on band space, which is equivalent to τz acting on sublattice 
space here, in other words, the driving term given in ref. 10 is equivalent to a driving term of the form 
τ ωλ ( ), tcosv D z  which we have checked can effectively drive the system from the trivial regime to the two 

topological regimes shown in the previous section. But here σz acts on spin space, as we will show, this 
difference will have important consequence.

If the total Hamiltonian is given as ( ) = + ( )H̃ t H V t0 , in other words, the system is purely driven 
by the time-periodic uniform magnetic field, it is found that no matter how strong the magnetic field is, 
the original time-reversal symmetric static system can not be driven into a FQSH insulator, but it also 
does not affect the original edge states of a static QSH insulator even it appears as a magnetic field, as 
shown in Fig. 4(a). The robustness is due to the fact that even the Hamiltonian at any given time may 
not possess TRS, the Floquet Hamiltonian possess the TRS as long as the condition  
TH T H τ( ) = (− + )−ˆ ˆt t1  holds for some fixed τ10 (here τ π ω= / . A direct proof is given explicitly in 
the Methods section). The persistence of the TRS is the reason why the helical edge states are not gapped 
out.

If ( )V t  is considered as a perturbation to the Hamiltonian ω( ) = + ( )H t H H tcosD0 , it is found that 
with the constraint that ω is the largest energy scale to guarantee the validity of the Bloch-Floquet theory, 
no matter how strong the periodic magnetic field is, it also does not affect the edge states of a FQSH 
insulator, as shown in Fig. 4(b). Note that due to the simultaneous existence of three driving terms in 
this case, the aforementioned criterion for TRS: TH T H τ( ) = (− + )−ˆ ˆt t1  for some fixed τ, can not be 
satisfied. As the system obviously holds TRS, this may suggest that when there exist several driving terms, 
the criterion for the Floquet system to hold TRS needs to be more relaxed.

When the time-periodic uniform magnetic field is not perpendicular to the plane of the optical lat-
tice, but along some other directions, it is found that the same conclusions are obtained: no matter how 
strong the periodic uniform magnetic field is, the original time-reversal symmetric static system can not 
be driven into a FQSH insulator, and all edge states are robust against it.

As general topological insulators with TRS do not need the conservation of spin, to make the study 
complete, it is necessary to address the question whether the time periodic uniform magnetic field can 

Figure 4.  (a,b) Spectrum of the truncated Floquet Hamiltonian (Eq. (6)) in the zigzag geometry. The 
parameters used in (a) are: J =  1, λ = .0 2so , λ = .0 8v , ω = .6 5, =V 10 . As λ < λ3 3v so, the static system is a 
QSH insulator, with helical edge states traversing the gap. The parameters in (b) are: J =  1, λ = .0 2so , 
λ = .1 2v , =J 1D , λ = ., 0 1so D , ω = 2, =V 10 .
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drive systems without spin conservation into topological regimes or not.To reach the goal, we introduce 
a Rashba spin-orbit coupling of the form σ= λ ∑ ( × )< , >

�� ˆ†H i c d cRSO R i j i ij z j into the Hamiltonian (1)2. 
Then the spin is no longer conserved, but the TRS is still preserved. It is found that by varying the value 
of lattice potential can also effectively drive the new model into topological regimes where one pair or 
two pairs of helical edge states stably exists at the boundaries, but the time periodic magnetic field is still 
incompetent to change the topology of the system.

The incompetence of the periodic uniform magnetic field can be explained by the fact that the topol-
ogy of the system is in fact only related to the two degrees of sublattice (the energy gap is opened due 
to the simultaneous appearance of terms with τx and τz), it is irrelevant to the two degrees of spin. 
Therefore, as the uniform magnetic field only couples with the spin degree, its incompetence in changing 
the topology of the system is natural. In fact, as the irrelevance of the spin degree to the close and open 
of the energy gap is a fact for all topological insulators with TRS, we can expect that the time-periodic 
uniform magnetic field is incompetent to drive all trivial insulators with TRS to be topological.

Time-reversal symmetry breaking Model driven by varying the lattice potential periodi-
cally.  To see whether periodically varying the strength of lattice potential can also drive a trivial sys-
tem without TRS to be topological, we consider the familiar two-band tight-banding model realized on 
a square lattice46,

∑
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Here σ σ σ σ= ( , , )
��

x y z  are Pauli matrices operating on spin, J denotes the strength of spin-orbit cou-
pling, B and M denote the difference between the two spin degrees’ hopping amplitude and on-site 
energy. Without loss of generality, we assume B >  0 in this work.

Re-expressing the Hamiltonian under the representation ( )ψ = ,↑, ↓,
† † †c ck k k  in momentum space, we 
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This Hamiltonian is obviously without TRS, consequently, when ( )


d k  does not vanish in the Brillouin 
zone, the topology of this static Hamiltonian is determined by the first Chern number47,

∫π=





∂ ( )
∂

×
∂ ( )
∂






⋅ ( ),

( )

ˆ ˆ
ˆC d

d
k

d
k

dk
k k

k1
4 11x y

1
2

where ( ) = ( )/ ( )
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d̂ d dk k k , and the Chern number of this system is
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By varying the optical lattice periodically, the parameters appearing in Eq. (9) will also vary with time 
periodically. Similar to the former TRI case, in the first order approximation, ω( ) = + ( ), ,J t J J tcosx y x y

D , 
ω( ) = + ( ), ,B t B B tcosx y x y

D  and ω( ) = + ( )M t M M tcosD . If we assume the two bands are close, ,Jx y
D  

can be much larger than ,Bx y
D , MD. Therefore, without loss of generality, we neglect ,Bx y

D , MD for simplicity, 
then the time-dependent Hamiltonian is given as

   ω( , ) = ( ) + ( ) ( ), ( )t k tk k cos 13D0

where  σ σ( ) = ( ) + ( )J k J kk sin sinD x
D

x x y
D

y y. The effect of varying the optical lattice potential is 
equivalent to varying the spin-orbit coupling periodically.
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For the isotropic driving case, Jx
D is equal to Jy

D. To see how the driving affects the topology of the 
system, we also consider the system with periodical boundary condition in x direction and open bound-
ary condition in y direction.

Based on Eq. (12), the parameters in Fig. 5(a) suggest the system in static is a trivial insulator without 
edge states. With the introduction of periodically driving, we find the picture is similar to the time-reversal 
symmetric case that when the driving frequency ω is much larger than other energy scales, there is a 
large energy gap between Floquet bands and no edge states. With decreasing the driving frequency, the 
gap at ε π= /T  firstly closes and then reopens, with edge states emerging and traversing the reopened 
gap as shown in Fig. 5(a). This result is similar to the one obtained by periodically varying the parameter 
M10. As the system is without TRS, here the edge states are chiral in the sense that the fermionic atoms 
with opposite velocity propagate on the opposite boundary.

With a further decrease of the driving frequency, the gap at ε =  0 will also close and then reopen. As 
a consequence, chiral edge states traverse both gaps at ε =  0 and ε π= /T . As the winding number of a 
band is equal to the difference between the number of edge states at the gaps above and below the band, 

ε ε= ( ) − ( ′)εε′C n nedge edge , it is direct to see that the two bands’ winding numbers in Fig. 5(b) are both 
zero. This is another unique property of a periodically driving system that the chiral edge states can exist 
despite the fact that the Chern numbers associated with both bands are zero40. These chiral states are 
localized at the two open boundaries of the system, as shown in Fig. 5(c,d).

If we only drive the system along the y direction, i.e. =,J 0D x , ≠,J 0D y , we find the results are similar 
to the isotropic case’s. Figure 6(a) shows that chiral edge states traverse both gaps, however, compared to 
the isotropic case under the same parameter condition except Jx

D, we find the gaps at ε =  0 and ε π= /T  
are greatly decreased. If we instead only drive the system in the x direction, in other word, ≠,J 0D x , 

Figure 5.  (a) Floquet spectrum with parameters: J =  1, B =  0.2, M =  0.5, = − .,J 0 5x y
D , and ω =  1.5.  

(b) Floquet spectrum with parameters: J =  1, B =  0.3, M =  0.8, = − .,J 0 5x y
D , ω =  1.3. (c,d) show the density of 

the edge states traversing the two gaps of (b). (c) The density of edge states corresponding to the gap at the 
quasienergy ε =  0. (d) The density of edge states corresponding to the gap at the quasienergy ε =  π/T

Figure 6.  Anisotropic driving cases. (a) Driving along the y direction, Floquet spectrum with parameters: 
J =  1, B =  0.2, M =  0.5, =J 0x

D , = − .J 0 5y
D , and ω = .1 3. (b) Driving along the x direction, Floquet spectrum 

with parameters: J =  1, B =  0.3, M =  0.8, = − .J 0 5x
D , =J 0y

D  and ω = .1 3.
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=,J 0D y , the picture is dramatically changed. No matter what parameters are chosen, there is no edge 
state emerging, therefore, the system is always a trivial insulator, as shown in Fig. 6(d). Although driving 
the system along the direction with periodical boundary condition will not induce chiral edge states at 
the open boundary, such a driving has the effect that it enlarges the energy gap.

The effect of an external harmonic trap to this model is similar to the time-reversal symmetric 
Kane-Mele model, and therefore, we neglect the discussion here.

Discussion
As the usual driving approach for solid state systems, which takes the advantage of electromagnetic 
field, is found to be incompetent to drive cold atomic insulating systems with TRS to be topological, we 
point out that simply varying the optical lattice potential periodically provides a general and effective 
way to overcome this. Based on the time-reversal symmetric Kane-Mele model, it is found that this 
simple approach can effectively drive the system from the trivial phase to the topological phase named 
as a FQSH insulator. This novel phase can stably host one or two pair of helical edge states at the same 
boundary. For a static QSH insulator, the simultaneous appearance of two pair of helical edge states is 
unstable and the edge states are easy to be gapped out. This suggests that the FQSH insulator is not a 
simple analog of the QSH insulator.

To realize a FQSH insulators, the most challenge part is no doubt to realize the spin-orbit coupling 
needed48–64. Once it is realized, as we have checked, all other parameters are well within current experi-
mental realization. For a system without TRS, we have shown that periodically varying the optical lattice 
potential can also effectively drive the topologically trivial insulator into the topological regimes where 
chiral edge states emerge, which is similar to the driving approach by using external electromagnetic 
field. This suggests that the driving approach we propose is a very general one for cold atomic systems.

Methods
The first order approximation.  The calculation of hopping amplitudes is similar for different lattice 
structures and its essence can be captured by the one-dimensional case. For a one-dimensional optical 
lattice whose potential is given as ω( ) = ( + ( )) ( )V x V V t k xcos cosD L0

2 , the main property of the 
on-site wave function can be captured by the wave function φ ( )x  which satisfies the Schrödinger equa-
tion: ( )φ φ− ∂ + ( ) ( ) = ( )  



ħ V x x E x
m x2

22
, where ω( ) = ( + ( )) V x V V t k xcosD L0

2 2 and = −x x xi is the 
relative distance with xi one of the minima. When the temperature is sufficiently low and the filling 
number is not bigger than two, the particle will only occupy the lowest energy band and the wave func-
tion is given as ( )φ ( ) = ω

π

/ − ω






ħ
ħ

˜
x em 1 4 m x2

2 , where ω ω ω ω= + ( )
  

tcosD
2

0
2 2  and ω = /


V k m2 L0

2
0

2 , 
ω = /


V k m2D D L
2 2 . Based on the wave function, the field operator can be expanded as ψ φ( ) = ∑ ( − )ˆ ˆx x x ci i i, 

then the nearest-neighbor hopping term is given as

∫

∫

∑

∑

∑

∑

φ φ

φ φ

( − )




− ∂ + ( )





( − )

= ( − ) ( − )

=

= ( ) ,
( )

ω

< , >

< , >

−

< , >

< , >



ħ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ħ

†

†

†

†

dx x x
m

V x x x c c

E dx x x x x c c

E e c c

J t c c

2

14

i j
i x j i j

i j
i j i j

m a

i j
i j

i j
i j

2
2

0

0 4
2

where ( ) = − ω∼
ħJ t E e0

m a2
4 , ω=


ħE0

1
2

, and a is the lattice length. When ω ω�� �D0
2 2 , we can expand ω as a 

series of ω γ ω( ) = ( )ω

ω





t tcos cosD
2

0
2 , and then ( )J t  is given as

ω ω( ) = + ( ) + ( ) + …. ( )J t J J t J tcos cos 150 1 2
2

To the second order, the concrete form of the expanding parameters are given as: ω= ξ−( / )


ħJ e a
0 0

2 2
, 

ξ γ/ = ( − ( / ) ) /J J a1 2 21 0
2 , ξ ξ γ/ = −( + ( / ) − ( / ) ) /J J a a1 2 2 82 0

2 4 2 , where ξ ω= /


ħ m 0 . We have 
checked when the lattice is not very deep, i.e., a is only several times larger than ξ ω= /


ħ m 0 , and 

γ< /1 2, we can safely neglect all terms of ω( )tcosn  with order ≥n 2 and only keep the J 0 term and 
ω( )J tcos1  term (in the main text, J0 and J1 are denoted by J and JD, respectively), in other words, under 

these two constraints, the first order approximation of ω( )tcos  is generally a very good approximation 
(a clearer picture-illustration is given in the Supplementary information). For the spin-orbit coupling 
term, the concrete form of the expanding parameters depend on the origin of the spin-orbit coupling. 
For the Kane-Mele model we consider, if we take the spin-orbit coupling as a pure spin-dependent 
second-nearest-neighbor hopping, then the first order coefficient λ ,so 1 and the second order coefficient 
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λ ,so 2 can be obtained from J1 and J2 by a substitution of a with the distance ( )a3  between two 
second-nearest-neighbor sites, respectively.

We have checked that when / = .J J 0 2D , the Kane-Mele model with other parameters taking values 
the same as the ones in Fig. 1, can already be driven to realize the FQSH insulator with considerable gaps 
(in the main text, we still take =J 1D  for a better illustration), which suggests that this driving approach 
is indeed an effective approach.

Time-reversal symmetry conservation.  The Hamiltonian describing a periodically driven system 
can always be expanded as ( ) = ∑ ω

=−∞
+∞ˆ ˆH t H en n

in t, where n is an integer. When 
TH T H(− , − ) = ( , )−ˆ ˆk t k t1  for any given t, ̂n satisfies TH T H(− ) = ( )−ˆ ˆk kn n

1  for arbitrary n.
The TRS of a Floquet Hamiltonian is defined as: TH T(− ) = ( )−ˆ ˆk H kF F

1 , where  ( )ˆ kF  is the 
Floquet Hamiltonian which is time-independent.  ( )ˆ kF  usually has two definitions. The first one 
corresponds to an effective Hamiltonian with the same matrix size as the static Hamiltonian  ( )ˆ k0 , 
the second one corresponds to an infinite matrix whose concrete form is obtained through Eq. (6). 
The two definitions are in fact equivalent. If the infinite hermite matrix is diagonalized with diagonal 
entities to be a matrix with the same size as  ( )ˆ k0 , then  ( )ˆ kF  with the first definition can be directly 
obtained by choosing the matrix entities corresponding to the first quasienergy Brillouin zone, i.e., 
m =  0 in Eq. (6). Therefore, if  ( )ˆ kF  with the second definition holds TRS,  ( )ˆ kF  with the first defi-
nition also holds TRS. As the concrete form of  ( )ˆ kF  with the first definition is difficult and tedious 
to obtain, in the following, we focus on discussing the TRS of the Floquet Hamiltonian with the second 
definition.

As the Floquet Hamiltonian  ( )ˆ kF  now is an infinite matrix, the matrix form of the time-reversal 
operator also needs to be generalized to be infinite, i.e.,    σ= ⊗ = ⊗˜ i Ky  with  the infinite unit 
matrix. When TH T H(− , − ) = ( , )−ˆ ˆk t k t1 , then

T H T T H T

T H T

TH T

TH T

H H

∑

∑ δ δ

( (− ) ) = (− )

= (− )

= (− )

= (− )

= ( ) = ( ). ( )

−
,

−

,
−

,
−

−
−

− ,

˜ ˆ ˆ ˜ ˆ ˜

ˆ

ˆ

ˆ

ˆ ˆ

k k

k

k

k

k k 16

F mn
ls

ml F ls sn

ls
ml F ls sn

F mn

n m

n m F mn

1 1

1

1

1

Therefore, T H T H(− ) = ( )
−˜ ˆ ˜ ˆk kF F

1
, the Floquet Hamiltonian holds TRS. As the expansion of J(t) in 

Eq. (15) is composed by a series of ω( )tcosn  with n =  0, 1, 2…, therefore even considering higher order 
of the expansion, TH T H(− , − ) = ( , )−ˆ ˆk t k t1  is always hold, which suggests that for the driving 
approach we propeose, the Floquet Hamiltonian always holds TRS.

For the time-periodic uniform magnetic field given by σ ω( )V tcosz0  (see Eq. (8)), although 
TH T H(− , − ) ≠ ( , )−ˆ ˆk t k t1 , the Floquet Hamiltonian still holds TRS. This can be easy to prove by 
redefining the time-reversal operator as   σ= ⊗ = ⊗¯ ̆ ̆s i K sy , where ̆s is an infinite matrix whose 
diagonal entities are given as =,̆s 1n n2 2 , = −+ , +̆s 1n n2 1 2 1 . Then following the steps in Eq. (16),

T H T T H T

T H T

TH T

TH T

∑

∑ δ δ

( (− ) ) = (− )

= (− ) (− )

= (− ) (− )

= (− ) (− ) . ( )

−
,

−

−
,

−

−
,
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−
−

−
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ˆ
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ˆ

k k

k
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1

1

1 17

F mn
ls

ml F ls sn

ls

n m
ml F ls sn

n m
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n m
n m

1 1

1

1

1

As only ̂0 and ±ˆ
1 of the Floquet Hamiltonian are non-zero, and TH T H(− ) = ( )−ˆ ˆk k0

1
0  due to 

the TRS of the static system, TH T T T Hσ(− ) = = − ( )− −ˆ ˆk V kz1
1 1

2 0
1

1 , it is direct to find 
TH T H H(− ) (− ) = ( ) = ( )−

−
−

− ,
ˆ ˆ ˆk k k1 n m

n m n m F mn
1 , therefore, T H T H(− ) = ( )

−¯ ˆ ¯ ˆk kF F
1 , the Floquet 

Hamiltonian holds TRS.
By using the two kinds of definition of the time-reversal operator, it is direct to verify that all kinds 

of driving terms of the form ω( )V n tcosD  or ω( )V n tsinD  with VD exhibiting a unique parity under 
time-reversal operation do not break the TRS of the system. Similar conclusions can also be obtained for 
particle-hole symmetry and chiral symmetry.
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