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Magnetic field-dependent shape 
anisotropy in small patterned 
films studied using rotating 
magnetoresistance
Xiaolong Fan, Hengan Zhou, Jinwei Rao, Xiaobing Zhao, Jing Zhao, Fengzhen Zhang & 
Desheng Xue

Based on the electric rotating magnetoresistance method, the shape anisotropy of a Co microstrip 
has been systematically investigated. We find that the shape anisotropy is dependent not only on the 
shape itself, but also on the magnetization distribution controlled by an applied magnetic field. 
Together with micro-magnetic simulations, we present a visualized picture of how non-uniform 
magnetization affects the values and polarities of the anisotropy constants K1 and K2. From the 
perspective of potential appliantions, our results are useful in designing and understanding the 
performance of micro- and nano-scale patterned ferromagnetic units and the related device 
properties.

Shape anisotropy, which originates from the dipole-dipole interactions that occur in ferromagnets, is a 
fundamental issue in magnetism1. For uniformly magnetized magnetic ellipsoids bodies, the shape ani-
sotropy can be quantificationally described by the demagnetization tensor N which depends only on the 
shape. Thus, it provides a simple mechanism for designing the local effective anisotropy field of micro- 
and nano-scale magnetic units2–4. However, for an arbitrary magnet with a non-ellipsoid shape (such as 
the commonly used square and rectangle), it is difficult to realize uniform magnetization under a finite 
magnetic field5–7. As a consequence of nonuniform magnetization, the values of N that are estimated by 
uniformly magnetized ellipsoid approximation would be inaccurate and not suitable for describing shape 
anisotropy8,9. Moreover, a magnetic field-dependent shape anisotropy is expected. As more and more 
micro- and nano-scale patterned ferromagnetic units are used in spintronics devices, the shape anisot-
ropy plays an increasingly important role in determining both the magnetic properties of local magnets 
and the related device performances10–14. Therefore, it is time to systematically investigate the shape 
anisotropy in micro- and nano-scale magnetic units, which is important in both physics and applications.

Methods
The universal method for describing magnetic anisotropy is to determine the anisotropy constants K i 
(i =  1, 2, …) in the expression of magnetic anisotropy energy Ek. For uniaxial anisotropy, 
Ek =  K1  θcos 2  +  K2  θ + cos 4 , where θ is the angle of the magnetization with respect to a certain 
symmetry axis. Many methods have been explored to measure magnetic anisotropy. Some methods can 
only give the first-order term K1 or the effective anisotropy field H k to estimate the anisotropy, such as 
the intersection method15, the area method16, and the singular point detection (SPD) method17,18 but 
these methods are not sufficiently accurate for our experiments. There are also a few methods that can 
give higher-order terms, such as the torque method19–21 and the magnetic resonance method22,23. It is 
worth noting that the ferromagnetic resonance (FMR) method is one of the best methods for 
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determining magnetic anisotropy with very high sensitivity24,25. There are two kinds of FMR experi-
ments, frequency-swept FMR and magnetic field-swept FMR. To obtain accurate anisotropy values, 
angular resolved measurements are needed, and K i can be obtained by fitting the angle dependent reso-
nance position curves ( θ~H r  for field swept, ω θ~r  for frequency swept). Such method can be realized 
using traditional cavity FMR, transmission line or co-planar waveguide26–32, and DC electrical detection 
of FMR33–44, and has been widely used in various magnetic materials. Note that, the field-swept FMR 
method is accurate only when the anisotropy itself is independent of the applied magnetic field, such as 
the magnetocrystalline anisotropy. If K i is a function of the applied magnetic field (i.e., the shape aniso-
tropy in our case), such a method becomes “inaccurate” because the relation between K i and H r is now 
hidden in θ~H r  and that relation cannot be directly obtained from the fitting. In this work, by taking 
the advantage of frequency-swept FMR and the torque method that determining anisotropy at a certain 
magnetic field, and the advantage of direct electrical detection which is its inherent high sensitivity, we 
used a similar but experimentally simpler DC electrical method to quantify the magnetic field-dependent 
shape anisotropy in a small magnetic unit.

Two samples were used in the experiments. One was a 3 mm ×  3 mm ×  50 nm Co ferromagnetic film, 
and the other was a 3 mm ×  50 μm × 50 nm Co microstrip. Both samples were made of a Co film depos-
ited on glass substrate using magnetron sputtering. The background pressure was lower than × −6 10 5 
Pa and a pressure of 0.2 MPa of argon was used. The patterns were realized using laser exposure and the 
lift-off method. The magnetoresistance was measured by using lock-in techniques: a lock-in amplifier 
(SR830) provided a 2 V voltage with a modulation frequency of 1.31 kHz, and the sample was connected 
with a large resistance (20 kΩ ) in series. At the same time, the lock-in amplifier measured the voltage Vx 
at both ends of the microstrip. Thus, the resistance of the microstrip can be calculated using the expres-
sion = ×

+
R 20V

V2
x

x
 kΩ. The magnetic hysteresis loops were measured using a vibrating sample mag-

netometer (VSM; EV9, MicroSense, Westwood, MA, USA).

Results and Discussions
First, we measured the magnetic hysteresis loops of Co film with in-plane applied magnetic field H  along 
different directions. All of the in-plane hysteresis loops were the same as shown in Fig. 1(a), which indi-
cated that the Co film is in-plane isotropic. The saturation magnetization M s =  16.5 kOe and coercivity 
H c =  27.5 Oe. However, because of the very small volume of the microstrip (approximately . × −7 5 10 9 cm3), 
the maximal signal was approximately × −9 10 6 emu, which is close to the resolution of the VSM. Then 
we used anisotropy magnetoresistance (AMR) curves (magnetoresistance as a function of magnetic field 
H) to identify the in-plane anisotropy of the microstrip, as shown in Fig. 1(b) where θ0 is the angle of 
the applied magnetic field with respect to the long axis of the Co micro-strip.The significant differences 
between the curves show that the Co micro-strip is magnetic anisotropic. Comparing the results of 
Fig.  1(a) with Fig.  1(b), we can conform that the anisotropy of the Co microstrip originated from the 
shape anisotropy, and that the effective anisotropy field is approximately 80 Oe. Then, the problem 
becomes the following: how do we get the accurate value of anisotropy field? As noted in the method 

Figure 1.  The magnetic properties of the Co film and Co strip. (a) The magnetic hysteresis loop of Co 
film. (b) The magnetoresistance curves of a Co micro-strip at different θ0.
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section, the torque method can accurately measure anisotropy constants K1 and K 2 by fitting the torque 
curve. Can the rotating anisotropy magnetorsistance (RAMR) θ~Rx 0 curves give the accurate value of 
the shape anisotropy? Before we introduce the experiment results, comprehension of the features of the 
RAMR curve is necessary.

In the following, we calculate the RAMR curve at different magnetic field amplitudes by using the 
model shown in Fig. 1(b). The expression of AMR is given by11

= + ∆ θ, ( )R R R cos 1x 0
2

where, R0 is ordinary resistance, ∆R is the anisotropy magnetoresistance, and θ is the orientation of 
magnetization M with respect to the current density jx. Our first task is to determine θ from the equi-
librium condition when applying a magnetic field with amplitude H  and direction θ0. Based on the 
coherent rotation model, the total energy is given by

θ θ µ θ θ= + − ( − ). ( )E K K M Hcos 2 cos 4 cos 2total s1 2 0 0

The equilibrium direction of magnetization is determined by the minimum of Etotal with respect to θ, i.e. 
θ∂ /∂ =E 0total  and θ∂ /∂ >E 0total

2 2 ,

θ θ µ θ θ+ + ( − ) = , ( )K K M H2 sin 2 4 sin 4 sin 0 3s1 2 0 0

θ θ µ θ θ− − + ( − ) > . ( )K K M H4 cos 2 16 cos 4 cos 0 4s1 2 0 0

Considering <K 01  (i.e., the easy axis lies along the x axis), the anisotropy field H k and reduced mag-
netic field hi (i =  1, 2, 3



) can be defined as:
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If we ignore K 2 temporarily for a simple case, Eqs. (3) and (4) can be simplified as

θ θ θ− ( − ) = , ( )h1
2

sin 2 sin 0 61 0

θ θ θ+ ( − ) > , ( )hcos 2 cos 0 71 0

Based on Eqs.  (6) and (7), we can calculate the relation of θ θ~ 0 with any selected h1 value. Putting 
θ θ~ 0 into Eq. (1), the angular dependence of the magnetoresistance (i.e., the RAMR curve θ~Rx 0) can 
be obtained. Supposing R0 =  100  Ω, ∆R =  2  Ω, the θ~Rx 0 curves have been calculated at different h1; as 
shown in Fig. 2. Those curves can be divided into three groups with quite different features. Group 1: 

< .h 0 51 , as shown in Fig. 2(a,b), both the θ θ~ 0 curves and θ~Rx 0 curves are continuous, and have a 
period of 360 , which indicates that the magnetization process is reversible under small applied magnetic 
fields. Group 2: . ≤ ≤h0 5 11 ; as shown in Fig. 2(c,d), the curves are obtained at relatively high applied 
fields. It is found that the periods of these curves are 180  rather than 360 , and that two “jumps” appear, 
which makes the curves discontinuous. The “jumps” results from an irreversible rotation of magnetiza-
tion from current state to a more steady equilibrium state at critical values of θ0

45. Group 3: >h 11 ; as 
plotted in Fig. 2(e,f), although the period is 180 , the curves become continuous again, which indicates 
that the magnetization is approaching the saturation state.

Immediately thereafter, we measured the RAMR curves of the Co micro-strip at different H, and the 
raw data (symbols) are shown in Fig. 3(a). The RAMR curve measured at H =  34.3 Oe has features similar 
to the second group’s theoretical curves shown in Fig. 2(d), wherein two obvious “jumps” can be observed. 
The curves measured at H =  126.0 Oe and 303.0 Oe look similar to those of the third group shown in 
Fig. 2(f). Therefore, our experimental results are basically consistent with the theory. We also measured 
the θ~Rx 0 curve at H =  22 Oe, which should be corresponding to the case of the first group. However, 
as the applied magnetic field is relative small, the magnetization switching mechanism is domain wall 
motion rather than coherent rotation as shown in supplementary material. Thus, the cases < .h 0 5 are 
not suitable for determining the anisotropy constants, we did not add the cases < .h 0 5 in this letter.

An accurate anisotropy field can be obtained by fitting the normalized torque curves θ θ θ( − ) ~sin 0 , 
as shown in Fig.  3(b). The angle θ was calculated from the RAMR curves by using Eq.  (1) with 

= . ΩR 127 940  and ∆ = . ΩR 2 05 , as determined previously. The fitting function is a transformation of 
Eq. (3), given by
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θ θ θ θ( − ) = + . ( )
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2
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k k

0

1 2

As shown in Fig. 3(b), the experimental results can be well fitted with that equation, which gives birth 
to the values of ( )Hk

1  and ( )Hk
2 . Moreover, the anisotropy constants K1 and K 2 can be calculated using 

Eq. (5), as shown in Table 1. However, the values of K1 (K 2) shown in the table differ from one another. 
To verify whether those values are correct, we took the values of K1, K 2 and H  in the table back to 
Eq. (3) and (4), and then calculated the θ~Rx 0 curves, i.e. the red curves shown in Fig. 3(a). The well 
matching between the experimental data and calculated curves indicates that all of the values shown in 
the table are correct. In the supplement, there is a discussion about the importance of higher-order terms 
in the fitting results, which is the circumstantial evidence of the accuracy of this method.

The difference between K1 and K 2 determined under different H  unveils a fundamental issue in mag-
netism: the shape anisotropy not only is determined by the shape itself, but also depends on the applied 
magnetic field. It has been written in every textbook of magnetism that the shape anisotropy of any 
non-ellipsoid magnet is a complicated issue because of the non-uniform magnetization. Therefore, it is 
not surprising that the shape anisotropy is field dependent. However, because the non-uniform magnet-
ization cannot be quantified simply, theoretical calculations of shape anisotropy in non-ellipsoid magnets 
are quite complicated. Because accurate anisotropy constants can now be experimentally determined, we 

Figure 2.  The calculated θ θ~ 0 curves and RAMR curves. (a,c,e) The calculated θ θ~ 0 curves at different 
h. (b,d,f) The magnetoresistance (Rx) as a function of θ0 at different h.
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systematically measured the shape anisotropy constants at different H  as shown in Fig. 4(a). It is found 
that when <H  200 Oe, both the amplitudes of K1 and K 2 vary obviously with H ; when H > 200 Oe, K1 
and K 2 are saturated. Those experimental results can be further supported by the simulated H  depend-
ent K1 and K 2, as in the insert shown in Fig. 4(a). We calculated the angular dependent demagnetization 
energy curves and fitted them with θ θ= +E K Kcos 2 cos 4k 1 2  to determine the values of K1 and K 2. 
The OOMMF46 was used to simulate the demagnetization energy of a Co strip. In the simulations, the 
Co strip had a length =a 30 μm, and width µ= .b 0 5 m, which has the same aspect ratio as our sample; 
the strip thickness was =d 5 nm, and the unit cell size was 5 × 5 × 5  nm3. Material parameters used were 
typical for Co, namely, saturation magnetization = . ×M 1 4 10s

6 Am−1, and exchange stiffness constant 
= × −A 3 10 11 Jm−1 47. As shown in Fig.  4(a), the simulative curves (inset) have the same tendency as 

the experimental curves, which indicates that the measured results of H-dependent K1 and K 2 are 
reasonable.

To present a visualized picture of how the non-uniform magnetization affects the values and polarities 
of K1 and K 2, the distributions of M in a squareness ratio a/b =  60:1 Co strip were simulated with 
applied magnetic field H  =  50 Oe, 400 Oe and 1600 Oe, as shown in Fig. 4(c). The arrows represent the 
direction of M, and the color stands for the amplitude of the magnetic moment along the strip. Obviously, 
the non-uniformed magnetization emerges at the edge of the strip. With an increasing magnetic field, 
the magnetization distribution becomes uniform, which can be directly linked to the H-dependent K1 
and K 2. Therefore, for non-uniformly magnetized magnets, the shape anisotropy depends not only on 

Figure 3.  The RAMR curves and normalized torque curves obtained in different magnetic fields. (a) 
Symbols represent experimental θ~Rx 0 curves measured at H =  34.3 Oe, 126.0 Oe, and 303.0 Oe 
respectively; red lines are calculated curves used for corresponding fitted anisotropy constants. (b) The data 
of normalized torque curves θ θ( − )sin 0  as a function of θ; symbols are experimental data and the solid 
curves are fitting curves based on Eq. (8).

H Hk
1 Hk

2 K1 K 2

(Oe) (Oe) (Oe) (kerg/cm3) (kerg/cm3)

34.3 68.8 7.3 − 22.58 − 0.60

126.0 92.0 − 13.6 − 30.20 1.12

303.0 99.0 − 20.8 − 32.50 1.71

Table 1.   The magnetic anisotropy parameters measured at different H.
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the shape, but also on the magnetization distribution controlled by the applied magnetic field. In the 
following, we want to discuss the polarity of the anisotropy constants. Both the experimental and simu-
lation results show that K1 and K 2 have opposite polarity ( <K 01  and >K 02 ) in the saturation status. 
The polarity actually represents the direction of the easy axis. To illustrate this argument, we simulated 
the values of K1 and K 2 as functions of the squareness ratio with a sufficiently large applied magnetic 
field H  =  1600 Oe as shown in Fig. 4(b). When the squareness ratio is 1:1, K1 =  0, >K 02 , the anisotropy 
energy can be written as θ=E K cos4K 2 , and the minimum of Ek appears at θ =   π( + ) /n2 1 4 i.e. the easy 
axis is along the cater-corner, which is consistent with the previously reported results47. When the 
squareness ratio / >a b 1, K 2 decreases slightly and K1 appears with negative values. The amplitude of 
K1 increases rapidly and becomes dominant, which means that the easy axis is along the strip.

We studied the influences of effective exchange stiffness constant A, saturation magnetization M s, and 
film thickness d on the values of the shape anisotropy obtained at saturation magnetized condition using 
simulation. We changed one parameter for the simulation while the other parameters remained the same 
as the previous ones. As show in Fig. 5(a), the anisotropy constants did not vary significantly while A 
changed from × −3 10 11 Jm−1 to × −2 10 11 Jm−1. As show in Fig.  5(b), while the M s changed from 
12.6 kOe ( . ×1 4 106 Am−1) to 17.6 kOe ( ×1 106 Am−1), the amplitude of K1 and K 2 increased almost 
linearly with M s, which is the nature of demagnetization energy. Moreover, the simulations with the cases 
where d =  3 nm (cell sizes =   × ×3 3 3 nm3), 4 nm (cell sizes =   × ×4 4 4 nm3), 5 nm, 10 nm, 15 nm, and 

Figure 4.  The magnetic field-and aspect ratio-dependent anisotropy constants. (a) The relationship 
between anisotropy constants and magnetic field; the insert is the simulative result. (b) The simulative K1 
and K2 as a function of the rate of a:b. (c) The distribution of magnetic moments at different magnetic fields 
obtained by the micro-magnetic simulation.
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20 nm (cell sizes =   × ×5 5 5 nm3) were performed, as shown in Fig. 5(c,d). Additionally, the green points 
represented the simulated results of d =  5 nm using smaller cell size . × . × .2 5 2 5 2 5 nm3, which is consist-
ent with previous case. Therefore, the influence of the unit cell size on the simulation results can be 
ignored. It should be noted that the simulated values for K1 (K 2) in Fig.  4(a) are different from the 
experimental ones, the main reason comes from the thickness we used for the simulations. The size of 
the experimental sample was 3 mm × 50 µm ×  50 nm; to meet the proportion, the size of the simulated 
strip should be 30 µm ×  0.5 µm ×  0.5 nm. However, if we use cell sizes =   . × . × .0 5 0 5 0 5 nm3, the simu-
lation would be far beyond our calculation ability. According to the tendency shown in Fig. 5(c,d), the 
value of K1 (K 2) may reach − 35 kerg/cm3 (2.2 kerg/cm3) when d =  0.5 nm, which is close to the experi-
mental values.

In fact, the shape anisotropy, which originates from the dipolar-dipolar interaction, is an old but 
fundamental problem in magnetism. The difficulty in calculating of shape anisotropy in non-ellipsoid 
magnets comes from the fact that non-uniform magnetization cannot be simply quantified. Because we 
can now quantify accurately the shape anisotropy which is closely related to the non-uniform magneti-
zation, the magnetic field-dependent K1 and K 2 determined by our method may be semi-quantificational 

Figure 5.  The simulated anisotropy constants change with the exchange stiffness constant, saturation 
magnetization and thickness. (a) The relationship between anisotropy constants and the amplitude of the 
exchange stiffness constant. (b) The simulated K1 and K2 as a function of the saturation magnetization. 
(c) The thickness dependent anisotropy constant K1. (d) The thickness dependent anisotropy constant K2.
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parameters for describing non-uniform magnetization. From the application perspective, both shape 
anisotropy and non-uniform magnetization are important in designing and understanding the perfor-
mance of micro- and nano-scale patterned ferromagnetic units as well as the related device properties.

Conclusions
In conclusion, based on the RAMR method, the shape anisotropy of a Co micro-strip was systematically 
studied. It was found that using only demagnetization factor is not sufficient to describe the shape ani-
sotropy of non-ellipsoid magnets, and that non-uniform magnetization would result in an H-dependent 
anisotropy. These results have also been demonstrated through micromagnetic simulations.
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