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A novel approach combining  
self-organizing map and parallel 
factor analysis for monitoring 
water quality of watersheds under  
non-point source pollution
Yixiang Zhang1, Xinqiang Liang1,2, Zhibo Wang1 & Lixian Xu1

High content of organic matter in the downstream of watersheds underscored the severity of 
non-point source (NPS) pollution. The major objectives of this study were to characterize and 
quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-
organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as 
proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from 
upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations 
and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. 
The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated 
that several raw fluorescence measurements at target excitation-emission wavelength region 
could provide similar DOM information to massive EEM measurements combined with PARAFAC. 
Regression analysis between DOC concentration and raw EEM measurements suggested that some 
regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be 
used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC 
components analyzed with SOM suggested that PARAFAC component 2 might be the major part of 
bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration.

Agricultural and rural non-point source (NPS) pollution is mainly caused by the release of fertilizers, 
pesticides and other additives applied in agricultural lands1. Rainfall and irrigation are the major drivers 
of the loads of agricultural NPS pollution, and runoff is the carrier to transport contaminants and decides 
the composition and quantity of the pollution2. A diversity of land use, a wide range of inputs, a variety of 
release mechanisms and pathways and other complex factors, contribute to the uncertainty, randomness, 
complexity, intermittence and variability of agricultural NPS pollution3. The sources of NPS pollution 
include natural origin (e.g. soils, crops and microorganisms) and anthropogenic origin (fertilizers and 
pesticides). The agricultural and rural NPS pollution mainly includes: (1) nutrient elements such as 
nitrogen and phosphorus caused by high rates of fertilization, which lead to eutrophication in ambient 
waters4; (2) organic matters derived from soils, fertilizers and/or pesticides, which lead to uncomfortable 
concerns like color, taste and odor, bring about rise of organic pollution indicators (e.g. chemical oxy-
gen demand (COD)), create toxicity in aquatic ecosystems (e.g. pesticides), introduce emerging organic 
contaminants (e.g. pharmaceutical and personal care products (PPCPs) such as hormones and antibiotic 
resistance genes derived from manure fertilization)5, and increase the risk of disinfection byproducts 
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(DBPs) formation (dissolved organic matter (DOM) is the precursors of DBPs)6; (3) pathogens derived 
from manure fertilization7.

DOM is a kind of mixture which is so far still poorly defined. DOM can be classified into two catego-
ries according to origin: (1) allochthonous DOM which is terrestrially derived and dominated by humic 
substances; (2) autochthonous DOM which is microbially derived and dominated by non-humic organic 
matter6. Allochthonous sources include soil organic matter, plants and dissolved atmospheric dust, which 
is characteristic by high aromacity, high molecular weight and low nitrogen content. Autochthonous 
sources include microorganisms, algae and macrophytes, which is characteristic by low aromacity, low 
molecular weight and high nitrogen content. DOM can also be fractionated into several categories 
according to physical and/or chemical characteristics, for example, XAD resin adsorption, ultrafiltration 
(UF) and size exclusion chromatography (SEC)8. The application of fluorescence excitation-emission 
matrix (EEM) provides a new approach to achieve knowledge about DOM composition. Several meth-
ods have been developed to analyze information and extract fluorophores from EEM spectroscopy: (1) 
peak-picking techniques which extract several basic and significant model fluorescence peak9,10; (2) fluo-
rescence regional integration (FRI) technique which integrate fluorescence intensity values in five divided 
excitation-emission regions11; (3) principal component analysis (PCA) which extract principal compo-
sitions from EEM12; (4) parallel factor analysis (PARAFAC) which is a supervised algorithm to decom-
pose DOM fluorescence into components with an optimal number13; (5) self-organizing map (SOM) 
which is an unsupervised algorithm for fluorescence data decomposition and pattern recognition14; (6) 
approaches combining methods above (e.g. combination of PARAFAC and SOM)15,16.

EEM has been considered as a competitive analytical tool applied to examine water quality in natural 
and engineering aquatic systems. In water supply systems, EEM was used as an assessment approach for 
water quality from groundwater systems13, surface water systems17, and recycled water systems18–20. In 
wastewater treatment systems, EEM was used as a technique to evaluate removal efficiency of organic 
matter from a typical wastewater treatment plant21, reverse osmosis systems22, swimming pools23. In 
natural water systems, EEM was used a monitoring tool for river pollution from sewerage24, soils and 
plant material25, and urban pollution26,27.

The objectives of this study were to (1) characterize and quantify DOM in a watershed affected by 
NPS pollution, (2) assess fluorescence properties with SOM analysis as proxy indicators of NPS pollution, 
and (3) assess the accuracy and reliability of capturing DOM components by monitoring raw fluores-
cence at a small number of target wavelengths rather than massive EEM measurements.

Results and Discussion
Fluorescence characterization of DOM. PARAFAC is considered as a robust analytical tool to dis-
criminate DOM compositions from massive data of EEMs20,21. A five-component model was developed 
to explain the majority of fluorescence information from EEMs. Figure  1 shows the modeled compo-
nent spectra of the five components. Component 1 had a peak at λex/λem =  250/440 nm and a shoulder 
at λex/λem =  330/440 nm. Fluorescence in this region is referred to as peak A (humic-like) based on 
Coble9,10 or as Region III (fulvic acid-like) based on FRI technique by Chen, et al.11. Fulvic-like DOM is 
ubiquitous in natural water. Component 2 had a peak at λex/λem =  230/300 nm, whose shape was different 
from component 1. It overlaps with the region of peak B (tyrosine-like) based on Coble9,10 and Region I 
(aromatic protein) based on FRI technique by Chen, et al.11 (2003). This type of DOM composition has 
been observed in biological processes during bloom periods10. Component 3 had a similar fluorescence 
shape to component 1 with a peak at λex/λem =  290/490 nm. Fluorescence of component 3 had a similar 
location to peak C (humic-like) based on Coble9,10 and fell into Region V (humic acid-like) based on FRI 
by Chen, et al.11. Component 4 had a similar spectral characteristics to that of peak T1 (tryptophan-like) 
with the peak at λex/λem =  280/330 nm and a shoulder at λex/λem =  235/330 nm. The majority of com-
ponent 4 located in Region IV is considered as soluble microbial product (SMP)-like by Chen, et al.11, 
which is frequently observed in waterways impacted by wastewater treatment plant (WWTP) effluents28. 
Component 5 had a peak at λex/λem =  265/480 nm. Fluorescence in this region is referred to as peak A 
(humic-like) based on Coble9,10 and as Region V (humic acid-like) based on FRI technique by Chen,  
et al.11. A summary table (Table S1) lists the characteristic peaks, type classified by methods by Coble9,10 
and Chen, et al.11, and the possible sources.

According to the methods for DOM fractionation developed by Coble9,10 and Chen, et al.11, DOM 
pool could be divided into two categories: humic-like substances and protein-like substances. Humic-like 
substances comprise peak A, C9,10, or Region III, V11. Humic-like substances are ubiquitous in almost all 
natural waters9,10,29,30 and are thought to originate from terrestrial organic matter from soils31. Humic-like 
fluorescence might be intensified by substantial surface runoff/lateral seepage input into ambient water-
ways caused by rainfall25. Protein-like substances comprise peak B, T1 and T2 9,10, or Region I, II and IV11. 
Protein-like fluorescence is associated with microbially-derived organic matter32; hence, the presence 
of protein-like fluorescence could be attributed to microbially-derived organic matter originating from 
agricultural and rural activities involving biological processes. Protein-like substances are also found in 
freshwaters affected by wastewater and in productive oceanic environments10,30,33. Moreover, Henderson, 
et al.34 reported that additional peaks in protein-like region might originate from optical brightening 
agents used in paper brightening and household detergents which could be found in sewage-polluted 
waters35.
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Fluorescence as an indicator for NPS pollution. An approach introduced in 1980s for data min-
ing, called SOM36 which is a powerful computational tool classified as artificial neural networks, was 
employed to explore the considerable dataset for the fluorescence properties of DOM. SOM analysis 
was used to assist the PARAFAC results which is an alternative to peak-picking method to discriminate 
between fluorescence compositions from a massive dataset.

Sample distribution on SOM map is illustrated in Fig. 2. The SOM map is divided into two clusters 
according to fluorescence properties of DOM, with distinct fluorescence feature in each cluster. It is clear 
that the SOM map can be divided into two parts respectively in the vertical and horizontal direction. 
Horizontally, the SOM map can be divided into two types of water quality: the samples polluted by NPS 
in the bottom of the map, and the samples unpolluted in the top of the map. Compared with the samples 
located in the upper side of the map, the samples located in the bottom of the map consist higher content 
of DOM and fluorescence intensity. Vertically, the SOM map can be divided into two time periods: the 
samples collected in fall in the left side of the map, and the samples collected in spring and summer 
in the right side of the map. In spring and summer, fertilization contributed high amount of organic 
matter release from agricultural lands via runoff  6,25, and the rainfall intensified the organic matter input 
into the surrounding waterways37,38. In fall, leaching of deposited straw and litter material contributed 

Figure 1. The spectral characteristics of the five fluorescence components identified by the PARAFAC 
model. The figures were created using MATLAB 7.0.
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considerable organic matter to ambient waterways39–42. From the U-matrix of Fig. 2, we can see the color 
is a little darker on right hand side than left hand side. Thus, we concluded the right side of the SOM 
map exhibits a higher DOM content and fluorescence intensity compared with the left side of the SOM 
map because organic matter released more in spring and summer.

To combine the sample distribution (Fig. 2), the hit histograms were applied to illustrate how many 
times each neuron was the winning neuron for the dataset of water samples. Each neuron (map unit) 
of the hit histogram (Fig.  3) is corresponding to the neuron of the SOM map for sample distribution 
(Fig. 2). The difference between SOM map for sample distribution and hit histogram is that, each neuron 
in SOM map for sample distribution give the sample name of the most frequent best matching sample, 
standing for the several samples falling into this winning neuron with similar fluorescence properties, 
while each neuron in hit histogram gives the number of samples falling into the winning neuron. The 
neurons with higher number of hits represent more water samples with similar fluorescence properties. 
Accordingly, neurons with higher number in hit histogram reveal more typical fluorescence feature of 
DOM observed during the research. It can be demonstrated from Fig.  3a that the most typical map 
neurons (most typical fluorescence features) are located at the edges of the map. Furthermore, different 
colors in hit histogram reveal the difference between polluted and unpolluted water samples’ organic 
matter fluorescence properties. Figure  3b shows a great distinction between polluted and unpolluted 
water sample properties that may be indicative of a NPS pollution.

Previous studies on monitoring pollution in surface waters and drinking water supply concluded that 
protein-like fluorescence peaks (e.g. peak B and T) are the best indicators for pollution34 and peak C 
could be used as a supplementary pollution indicator18,19. Herein, a comparison between SOM analysis 
and peak-picking method is carried out to explore a better indicator for NPS pollution. We applied 
cluster analysis based on the values of peak B, T1, T2 and C to examine whether peak-picking could be 
considered as a better indication for NPS pollution than SOM analysis. Supplementary Fig. S1 showed 
that each type of water (polluted or unpolluted) could not be consistently clustered into one category, for 
instance, A-Pol-1 and A-Pol-3 are clustered into a class with 9 unpolluted samples in the first stage. It can 
be inferred that there is no consistent picked peak fluorescence character within the 15 polluted DOM 
or within the 21 unpolluted DOM, in terms of peak B, T and C fluorescence. Accordingly, peak-picking 
method could not provide a better indication for NPS pollution than SOM analysis could.

Reliability evaluation of several Raw EEM measurements surrogate for massive EEMs under 
PARAFAC. To validate fluorescence components from PARAFAC as a proxy indicator for NPS 
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Figure 2. U-matrix (on left) and sample distribution map (on right) of SOM analysis. In sample 
distribution, “A”, “B”, “C”, “D” represent different sampling events in chronological order; “a” and “b” 
represent “unpolluted” and “polluted” respectively; the arabic numerals represent different sampling sites. 
The figures were created using MATLAB 7.0.
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pollution, the relationship between PARAFAC scores and EEM measurements was explored. Correlation 
between fluorescence intensities of PARAFAC component peaks and raw EEM measurements was ana-
lyzed to examine the effectiveness of fluorescence results as indicators for NPS pollution. Figure 4 shows 
the contour graphs of determination coefficients and regression coefficients from the regression analy-
sis between PARAFAC intensities (Fmax) for component 1–5 and fluorescence intensities of each ex-em 
pair from original EEMs. The left panels of Fig.  4 exhibits the determination coefficients (fit of linear 
regression, R2), with the highest values (red region) indicating strongest correlations near PARAFAC 
component peaks (white crosses), and the relative low values (blue region) indicating poor correlations 
far away from PARAFAC component peaks. The right panels of Fig. 4 exhibits the regression coefficients 
(linear slope), with the value approaching 1.0 indicating Fmax from PARAFAC is equivalent (the intercept 
is zero) to fluorescence intensity from original EEM measurements.

In Fig. 4, the region where the determination coefficient (R2) and the regression coefficient (m) are 
both closer to 1.0 (the intercept is zero) means more accurate and reliable prediction of fluorescence phe-
nomenon in original EEM measurements using PARAFAC scores as proxy indicators. Additionally, the 
phenomenon that the reddest region is closer to the white cross in the left panels of Fig. 4 means more 
accurate and reliable prediction of fluorescence phenomenon in EEM measurements using PARAFAC 
components as proxy indicators. Accordingly, the phenomenon that R2 and m equivalent to 1.0 are both 
located at the same point, viz, the white cross, is the best and ideal scenario for the prediction using 
PARAFAC model. For component 1 in Fig.  4, the R2 and m at the peak point (λex/λem =  250/440 nm) 
and shoulder point (λex/λem =  330/440 nm) are both close to 1.0, indicating the position of component 
1 peak is a good indicator for fluorescence DOM composition. For component 1 in the right panel, the 
region around the point that m is equivalent to 1.0 is a gentle slope, with a larger distance between two 
contour lines, meaning that little deviation in the fluorescence position during measurements would not 
significantly diminish the accuracy and reliability of prediction using PARAFAC scores as proxy indica-
tors. However, for component 2 in the right panel, the region around the point that m is equivalent to 
1.0 is a steep slope, with a small distance between two contour lines, meaning that the prediction using 
PARAFAC scores as proxy indicators is sensitive to the wavelength positions of EEM measurements. For 
component 3, the R2 and m near the peak point (λex/λem =  290/490 nm) are both close to 1.0, and the 
region encompassing the peak has a gentle slope. Accordingly, it is a good scenario to predict PARAFAC 
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Figure 3. Hit histograms of SOM analysis. (a) the number in the neurons represents the sample number of 
the neuron; (b) red represents unpolluted samples and green represents polluted samples. The figures were 
created using MATLAB 7.0.
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Figure 4. Contour plots of determination coefficients and regression coefficients for regression analysis 
between PARAFAC Fmax and raw EEMs. White crosses in the left panels are the locations of peaks of the 
PARAFAC components. The figures were created using MATLAB 7.0.
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component 3 using raw EEM. For component 4, the R2 and m at the peak point (λex/λem =  280/330 nm) 
and shoulder point (λex/λem =  235/330 nm) are both close to 1.0. However, the regions around the peak 
and shoulder are steep slopes, meaning that the prediction is sensitive to the wavelength regions of 
EEMs. For component 5, the R2 and m near the peak (λex/λem =  265/480 nm) are also both close to 1.0, 
and the slope around the peak is relatively gentle. Accordingly, it is a relatively reliable for the prediction 
of PARAFAC component 5. From the results above, we can infer that conducting a small number of 
fluorescence measurements at the target excitation-emission wavelength pairs without PARAFAC analy-
sis could still provide relatively accurate and reliable fluorescence DOM information similar to massive 
measurement combined with PARAFAC.

Identification of raw EEM as proxy indicator for dissolved organic carbon (DOC) concentra-
tion. To verify the hypothesis that several raw EEMs could be used as surrogates for labor-intensive 
water quality indicators, relationship between bulk DOC concentration and raw EEM was explored. 
Linear correlation between DOC concentration and raw EEM measurements was analyzed to inspect the 
effectiveness of effortless EEM measurement as surrogate indicators to predict routine and labor-intensive 
water quality indicators such as DOC concentration (Fig. 5).

In Fig. 5 there exists a strong linear correlation (R2 >  0.8) between DOC concentration and a region 
of fluorescence ex-em pairs (Fig. 5). The most reliable prediction namely highest R2 value (R2 >  0.8) was 
located within excitation 230 to 285 nm and emission 305 to 455 nm of EEM region. This region includes 
peak B, which was associated with tyrosine-like, and PARAFAC component 2. In the last section discuss-
ing reliability evaluation of Raw EEM measurements surrogate for PARAFAC EEMs, there is a strong 
correlation between raw EEMs and scores of PARAFAC component 2 in the region encompassing the 
peak of component 2. Accordingly, we can infer that there might be a significant correlation between 
DOC concentrations and scores of PARAFAC component 2.

Using optical properties as surrogates for labor-intensive routine water quality indicators has been 
studied for many years10,25. Absorption coefficients from absorption spectrum (e.g. ultraviolet absorbance 
at 254 nm (UVA254)) and fluorescence values from EEM spectrum (e.g. FDOM370/460) have been shown 
to be reliable predictors of DOC concentration43–45. However, the determination coefficient between 
UVA254 and DOC in this study (Fig. S2) did not show a better fit than the correlation between EEM and 
DOC (Fig. 5). Here, R2 value is 0.70 for correlation between UVA254 and DOC, lower than that between 
DOC and a region within raw EEM (excitation 230 to 285 nm and emission 305 to 455 nm) (Fig.  5, 
Fig. S2), and that between DOC and PARAFAC component 2 or 5 (Table 1). Moreover, the correlation 
between UVA254 and DOC concentrations was carbon source dependent so that different carbon source 
will show a different slope of linear regression. Distinct linear regressions between UVA254 and DOC 
concentrations imply that different carbon sources have different chemical characteristics. The slope 

Figure 5. Contour plot of determination coefficients and regression coefficients for regression analysis 
between DOC concentrations and raw EEMs. The figures were created using MATLAB 7.0.

C 1 C 2 C 3 C 4 C 5 C 1–5

DOC R2 0.19 0.87 0.53 0.60 0.72 0.905

m 4.824 10.154 14.859 11.530 12.501 /

P value 0.009 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 1.  Regression analysis between DOC concentration and PARAFAC components. R2 means 
determination coefficient, namely fit of linear regression, and m means regression coefficient, namely linear 
slope.
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of the linear regressions between UVA254 and DOC concentrations is considered as specific ultraviolet 
absorbance at 254 nm (SUVA254). SUVA254, in general, is proportional to the aromaticity of DOC (the 
amount of chromophore or aromatic carbon per unit of DOC) and has also been widely considered 
as a surrogate for indicating DBP precursors8,46. From the view of mechanism, a low SUVA254 value 
for DOC indicates that few conjugated double bonds and aromatic carbon existed per unit DOC. In 
addition, using one fixed fluorescence peak value (e.g. FDOM370/460) will bring bias to the prediction of 
DOC concentration, because the best wavelength location for fluorescence peak value to predict DOC 
will vary with different conditions (e.g. DOM source). In this dataset, the best DOC prediction location 
falls on λex/λem =  265/310 nm, both of which emission and excitation wavelengths were shifted towards 
shorter wavelengths away from FDOM location. Therefore, fluorescence peaks used to predict DOC 
concentration or other water quality indicators are DOM source dependent and should not be fixed to 
several single EEM locations.

Relationship between DOC concentration and PARAFAC components. As mentioned above, 5 
fluorescence components were obtained from PARAFAC. We further inspected the relationship between 
DOC concentration and PARAFAC components with SOM approach.

The component planes for each variable of the SOM output are illustrated in Fig. 6. The component 
planes of the same clusters have a certain similarity, that is, if corresponding neurons’ color trends are 
similar, there is a certain correlation between them. Results suggested that high DOC concentrations 
(> 6.01 mg L−1) are a response of high PARAFAC component 1 scores (> 0.474 Raman unit (RU)), high 
PARAFAC component 2 scores (> 0.523 RU), high PARAFAC component 3 scores (> 0.282 RU), high 
PARAFAC component 4 scores (> 0.380 RU), and high PARAFAC component 5 scores (> 0.380 RU), 
collectively (Fig.  6). Regression analysis indicated there were significant linear correlations between 
DOC concentration and the five PARAFAC components, and component 2 gives the best prediction 
(R2 =  0.87). Incorporation of all the five components into the model resulted in a better fit (R2 =  0.91) 
(Table 1), suggesting that each of the five components contributed a part of the DOM to the bulk DOC, 
despite a weak correlation (R2 =  0.19) between component 1 and DOC concentration.

The strongest relationship between DOC concentration and PARAFAC component 2 indicated that 
aromatic protein associated with peak B (tyrosine-like) contributed the greatest part to the bulk DOC. 
Since aromatic protein is autochthonous (microbially derived) DOM, it can be inferred that anthropo-
genic practice such as agricultural and rural NPS pollution contributed high content of autochthonous 
DOM. NPS pollution from agricultural lands via runoff or seepage contained soluble microbial products 
formed in the biochemical processes in agricultural fields (e.g. paddy fields), which could be a source of 
aromatic protein in DOM in samples. The aromatic protein is also known as a kind of DBP precursors47.

Methods
Site Description. Sampling sites were located in a small watershed (119°71′ E, 30°46′ N) in 
Quanchengwu Village Luniao Town Yuhang District, Hangzhou, Zhejiang. The annual average 

Figure 6. Abstract visualization of the relationships between DOC concentration (mg L−1) and 
fluorescence values (Raman unit) of 5 PARAFAC components. The figures were created using MATLAB 
7.0.
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temperature was 17.5 °C, with a summer average temperature of 16.2 °C and a winter average temperature 
of 3.8 °C. The annual rainfall is 1454 mm and annual average relative humidity is 70.3%. This watershed 
is the origin of East Tiaoxi River. The water of the watershed originated from the hills within it, with a 
good closure, thus the watershed was a proper site to study the effect of NPS pollution.

Sampling and Analyses. To assess the effects of NPS pollution on water quality, samples were col-
lected from six sites in the upstream of river and from four sites in the downstream of river over the 
whole year of 2014 (Fig.  7). The sampling dates were Apr 22, Jun 17, Sep 5 and Nov 2 respectively. 
Samples were collected over a 1-d period according to a synoptic sampling approach. A combination of 
depth integrating sampling and grab sampling was employed to collect river samples. As to unsafe sites, 
grab sampling was chosen. The river was well mixed due to high gradient and lack of point sources, so 
grab sampling was acceptable. Whole water samples were collected in polyethylene terephthalate (PET) 
bottles. Samples were 50 mL triplicates extracted in the laboratory from a 3 L sample. Samples were kept 
on ice and in the dark. Dissolved analytes were analyzed from samples filtered through precombusted 
60-mm, 0.45-μ m nominal pore size GF/F filters. Laboratory experiments indicated no fluorescent lea-
chates from the PET bottles during this period.

DOC concentration was determined with a MultiN/C2100TOC/TN analyzer of analytikjenaAG with 
a detection limit of 0.05 mg L−1. Fluorescence EEMs were measured on filtered samples with an F-4500 
fluorescence spectrophotometer (Hitachi, Shanghai) with a 5-nm band pass and 0.050-s integration time. 
Fluorescence intensity was measured at excitation wavelengths of 230 to 450 nm at 5-nm intervals and 
emission wavelengths of 300 to 600 at 5-nm intervals on room temperature samples (25 °C) in a 1-cm 
quartz cell. Inner filter corrections were applied to EEMs with ultraviolet absorbance at 254 nm (UVA254) 
greater than 0.03 (1-cm cuvette) as described by Gu and Kenny48.

Data Analysis. SOM approach. To visualize the cluster of sample distribution and the relationships 
between DOM bulk indicators and PARAFAC components, the SOM approach was performed with 
MATLAB (Version 7.00) software. The SOM is a competitive artificial neural networks based on unsu-
pervised learning49, which requires merely SOM toolbox and some basic functions to achieve its function 
in MATLAB. The principle of SOM analysis can be found in many studies50,51. In this study, we developed 
two datasets to serve two objectives. Firstly, a dataset with a 36 ×  1748 matrix was established, compris-
ing 36 data samples and 1748 ex-em pairs as variables, in order to visualize the distribution and cluster of 
samples based on fluorescence properties. Secondly, a dataset with a 36 ×  6 matrix was established, com-
prising 36 data samples and 6 variables including DOC concentration and five PARAFAC components’ 

Figure 7. Location of sampling sites for the watershed in Quanchengwu Village, Luniao Town, Yuhang 
District, Hangzhou, Zhejiang. The maps were created using ArcGIS 10.1.
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scores. For the first purpose, three-dimensional EEM of 36 samples were unfolded to two-dimensional 
vectors, where each row represents data sample and each column represents unfolded ex-em pairs. The 
sample distribution of SOM map and hit histograms were obtained for clustering of samples. For the sec-
ond purpose, a series of component planes was obtained for visualization of correlation analysis. In the 
training section of SOM running, each neuron of input layer of SOM is associated with all input samples 
and has reference vector with SOM weights. The neuron weights were processed with linear initialization 
along the two greatest eigenvectors of the input matrix36. The ultimate size (10 ×  3) of output SOM map 
was determined by the ratio of the two greatest eigenvalues of the input matrix. The output U-matrix 
visualized the distances between two map neurons, where the reddest U-matrix map units represent the 
border of clusters. The output component planes visualized the property distribution of samples, where 
similar component patterns indicate positive correlations.

PARAFAC analysis. To decompose the fluorescence signal into underlying individual fluorescence com-
position information, the PARAFAC analysis was performed with MATLAB (Version 7.00) software. 
PARAFAC analysis is a competitive technique for modeling and visualizing complicated multi-variate 
data52, which requires merely certain toolboxes and some basic functions to achieve its function in 
MATLAB. The basic principle of PARAFAC analysis is an alternating least-squares algorithm which 
decomposes the data into a set of trilinear terms and a residual array, and it can be found in many 
studies20,52.

PARAFAC model was derived for all samples using DOMFluor Toolbox for MATLAB with 
non-negativity constraints applied on all modes. The majority of Raman scatter was removed by subtract-
ing the pure water spectrum from the sample spectrum. The first and second order scatter peaks were cut 
from EEM spectra and replaced with zeros. Two different split half analyses were run to inspect whether 
the model was validated. Tucker congruence coefficients53 were used for comparing components between 
different PARAFAC models. Finally, a validated and fitted model was obtained, and a dataset comprising 
the fluorescence intensities of each component in each sample and the emission and excitation loadings 
of each component was exported.

To evaluate the potential for estimating DOC concentrations and PARAFAC scores from raw EEMs, 
the original measured EEM data were regressed against the DOC concentrations the maximum fluores-
cence (Fmax) of each component obtained via PARAFAC. To each ex-em wavelength pair, we can get a 
36 ×  1 vector of raw EEM fluorescence intensities. This 36 ×  1 vector was regressed against the 36 ×  1 
vector of DOC concentrations and 36 ×  1 vector of PARAFAC scores of each component. Thus, regres-
sion coefficients (m) and determination coefficients (R2) were obtained as a function of wavelength, 
which can be plotted as contour graphs.
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