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A new mutually reinforcing 
network node and link ranking 
algorithm
Zhenghua Wang1, Leonardo Dueñas-Osorio2 & Jamie E. Padgett3

This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has 
the advantage of ranking nodes and links of a network simultaneously. This algorithm combines 
the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight 
normalization feature of PageRank. Relative weights are assigned to links based on the degree of 
the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to 
every link as assumed in PageRank. Numerical experiment results show that NWRank performs 
consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from 
the perspective of network connectivity and approximate network flow, which is also supported 
by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. 
Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists 
in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has 
practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and 
distributed networks, as well as to support decision making in the design of networks, where node 
and link importance depend on a balance of local and global integrity.

Ranking individual elements within networks, including both nodes and links, allows for the identifica-
tion of important subsets of elements for resource prioritization, such as finding the most authoritative 
webpages related to a search topic in the internet, discovering the most influential people in a social net-
work, evaluating the most cited scientific papers in a citation network, or identifying the most vulnerable 
components in infrastructure systems (e.g., transportation networks, power grids, and water systems). 
Quantification of the criticality of network components helps decision makers inform their management 
strategies. For example, infrastructure designers can set mandatory safety targets or reliability levels for 
components (e.g., highways and bridges) in a transportation network, despite resources being typically 
limited. Therefore, computationally efficient measures that can identify or screen out the importance of 
network nodes and links are required, as standard methods are too computationally demanding.

The ranking of network nodes or links addresses the question “Can important nodes or links in a 
network be meaningfully identified while keeping input data and computational resources low?” To 
answer this question, several closed-form ranking measures have been proposed to capture the particular 
features of networks, mainly based on their topology1–5. For example, one of the simplest node impor-
tance measures in a network is the degree of a node ki, denoting the number of links connected to it. 
Traditionally, the adjacency matrix A is used to describe the connectivity patterns of nodes and links of 
a network. The adjacency matrix has also been used as input for advanced eigenvalue and eigenvector 
analyses, which continue to gain adoption in practice6. Spectral network component rankings are sophis-
ticated extensions of fundamental ranking methodologies, such as node degree centrality ki

7,8. One of 
the most successful developments in spectral ranking of network components has been the PageRank 
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algorithm3, which forms the basis of Google webpage rankings, where websites are nodes and hyper-
links are the connections among them. PageRank considers the hyperlink weight normalization and web 
surfing principles based on random walk models9. Another popular ranking algorithm is the Hypertext 
Induced Topic Selection (HITS) algorithm developed by Kleinberg4. The HITS algorithm defines two 
types of nodes in a network, hubs and authorities, and computes the ranking score of them in a mutually 
reinforcing way. However, both PageRank and HITS are limited to ranking nodes of a network and they 
do not account for the importance of links. Very few efficient algorithms for the ranking of links exist 
in the literature.

Ranking studies for webpage networks and citation networks have mainly focused on the ranking 
of nodes because link ranking in such networks is not of practical interest. This is in sharp contrast 
to certain types of networks, such as transportation networks, whose links are at least as important as 
nodes, as well as supply chain networks, whose links are important to find the movement of a prod-
uct or service to the end customer. However, relatively limited research has been performed so far to 
investigate the ranking of the links of a network. Betweenness centrality of an edge has been used as an 
approximate indicator of the link’s critical role in the passage of network flow10,11. Several other studies 
rank the links of networks based on algorithms whose premise is that the most vital links in a network 
are those whose one-by-one removal result in the greatest change of a system-level performance metric, 
such as decrease of the efficiency, connectivity loss, or increase of the travel time12,13. The N-1 criterion 
in power systems is a practical example of this approach14. Even though the measure of performance 
of the network may vary, the basic idea for prioritizing the components of the network based on the 
removal of its components is essentially the same across available studies15,16. However, these link-based 
measures usually depend on the calculation of network performance (e.g., connectivity reliability and 
network flow) after the removal of the links, which is time-consuming and depends on the choice of the 
performance measures. For example, for the whole transportation network of the United States, there are 
tens of thousands of nodes. Hence, the traditional removal strategy (e.g., based on N-1 criteria) is too 
time-consuming for practical applications.

Therefore, new computationally efficient tools, particularly based on the spectral analysis of networks 
for joint node-link ranking are needed. This link-aware ranking strategy must remain computationally 
feasible even for large systems, which is a persistent challenge in infrastructure engineering today16. This 
paper develops new ranking indices by building upon the promising spectral properties of networks. 
First, this study explores the formulation of a ranking index called Wide Rank (WRank) that can rank 
the nodes and links of a network simultaneously. Building upon this WRank formalism, a Normalized 
WRank algorithm (NWRank) is proposed in this manuscript. This NWRank index combines the idea 
of mutual reinforcement and weight normalization into a unified framework. Then, the WRank and 
NWRank approaches are applied to a broad set of synthesized network models and compared with the 
PageRank, HITS, eigenvector centrality, and edge betweenness algorithms, as well as the benchmark 
N-1 criterion based on a network efficiency metric, which is widely used in the network science and 
engineering fields to study the performance of various kinds of networks.

Results
WRank algorithm as a building block. Let G (N, M) represent a network consisting of a node set N 
with n nodes and a link set M with m links. In addition, it is assumed that no node is directly connected 
to itself and that multiple links do not exist between nodes. In the WRank algorithm proposed here, 
instead of focusing solely on the ranking of nodes as emphasized in previous studies, each node i ∈  N 
receives a ranking score xi and each link a ∈  M also receives a ranking score ya. The premise is that an 
important node should be pointed to by many critical links (this defines the L operation below), and a 
critical link should point to important nodes (this defines the Q operation below). The mutually reinforc-
ing relationship of nodes and links through the noted operators can be represented in general as follows,

= ( ), = ( ). ( )x y y xL Q 1

where vectors x =  (x1, x2, …, xn)T and y =  (y1, y2, …, ym)T contain the ranking score of each node and link, 
respectively. The mutual reinforcement operations L and Q can be expressed through the following 
matrix representations:

= , = . ( )x Wy y Zx 2

where W is a n ×  m matrix and Z is a m ×  n matrix whose generic entries are given by
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w if link a points to node i
otherwise
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z if node j is one of the end nodes of link b
otherwise
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where i, j, k, … ∈  N are nodes and a, b, c, … ∈  M are links. It should be noted that W is the transposed 
matrix of Z, and vice versa. Therefore, once one of them is obtained, the other one can be easily obtained. 
The final ranking scores of each node and link can be obtained through an iterative updating process 
indexed by t. Similar to the HITS algorithm4, the ranking vectors x and y need to be normalized so 
that their sum is equal to 1 before moving to the next iteration t +  1. If x(t) and y(t) are used to denote 
ranking scores at the tth iteration, the iterative processes to reach the final solutions are:

( + ) = ( ) = ( ) ( )x Wy WZxt t t1 5

( + ) = ( + ) = ( ) ( )y Zx ZWyt t t1 1 6

The final solutions x, y converge to the principal eigenvectors of WZ and ZW or to the linear combina-
tion of the principal eigenvectors if more than one principal eigenvector exists, similar to HITS-inspired 
algorithms. It should be noted that although WZ is similar to the adjacency matrix, the diagonal entries 
are different. The diagonal entries of the adjacency matrix are zeros but the diagonal entries of WZ 
are non-zeros. The diagonal entries of the WZ matrix are the in-degrees of the corresponding nodes, 
which makes the WRank algorithm suitable for directed networks automatically. Hence, WZ provides 
node-to-node connectivity as well as in-degree in the diagonal, while ZW provides link-to-link connec-
tivity as well as link multiplicity in the diagonal.

Proposed NWRank algorithm. Although the WRank algorithms can work well for most types of 
networks, two problems could arise for certain networks with prestigious nodes or where network flow 
(or its approximation) is considered in the ranking of nodes and links. First, if a node with a high ranking 
score is pointed to by many links, then all of those links also obtain high ranking scores. However, this is 
not necessarily appropriate. The score received by each link from a prestigious node should be diluted by 
being shared with others. To solve similar problems, PageRank weights each of the out-going hyperlinks 
from a webpage, pi, by 1/ki, where ki is the degree of node pi; thus, every link has the same total out-going 
weight equal to 1/ki. Even though the PageRank algorithm is used successfully in Google, it does not 
work in the WRank algorithms. It turns out that every link ends up with exactly the same ranking score 
if each link has the same out-going weight 1/ki. In fact, both the PageRank and HITS algorithms treat all 
links equally when distributing ranking scores. However, in practice some links are more important than 
others. A second challenge is that none of the closed-form network measures, except for Betweenness 
Centrality approximately, capture the role of network flow in the ranking of nodes or links. Consider 
the situation depicted in Fig. 1 where node 1 lies on a path between two communities. Although node 1 
has a low degree, it may have considerable impact on the flow between other nodes within the network. 
In addition, links b and c also have significant influence on the network flow. However, both PageRank 
and HITS algorithms do not consider the network flow in the ranking of nodes and only nodes that are 
well-connected with others obtain a high ranking score. Therefore, node 1 has a very low ranking value 
if PageRank or HITS algorithms are used to rank the nodes.

To address the two problems stated above, this study expands the WRank formulation into a 
weight-normalized algorithm referred to as NWRank. Instead of dividing the ranking score of the nodes 
evenly among each incident link, each link obtains a weight proportional to its neighboring nodes' degree 
and the Betweenness Centrality (BC) of the link. The link will obtain more weight if the adjacent neigh-
bor nodes have a high degree, the BC of the link is high, or both. In the new method, the Z matrix is 
replaced by the following H matrix:

α α
=









∑
+ ( − )

∑
( )
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k

k
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BC
otherwise

1

0 7
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where hbj is the score distribution from node j ∈  N to link b ∈  M, q is the number of links that connect 
to node j; kb and ka represent the degree of the end nodes opposite to j of links b and a =  1, …, q, respec-
tively. Also, BCb and BCa are the Betweenness Centrality levels of links b and a =  1, …, q, respectively. The 

Figure 1. A low degree node that is important for network flow or its approximations, but missed in 
PageRank and HITS rankings. 
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variable α is the weight coefficient. In the case study, equal weights (i.e. α =  0.5) are chosen between the 
degree and BC as a starting point (unbiased point), acknowledging that connectivity and network flow 
contribute equally; in practice, methods based on utility theory or other user-based elicitation strategies 
can be adopted to establish weights17. For now, sensitivity studies are conducted to analyze the influence 
of the weighting coefficients on the ranking results (presented in the following section). It should be 
noted that the W matrix can also be modified to include the node betweenness and node degree similar 
to the H matrix. However, the final ranking score of nodes and links did not change much based on the 
case study networks introduced below. Therefore, in this study the W matrix is kept unaltered. In sum, 
for the NWRank algorithm, the iterative processes to reach the final solutions is:

( + ) = ( ) = ( ) ( )x Wy WHxt t t1 8

( + ) = ( + ) = ( ). ( )y Hx HWyt t t1 1 9

Note that the NWRank algorithm combines the most important mutual reinforcement feature of 
HITS and the most important hyperlink weight normalization feature of PageRank as well as the con-
sideration of approximate network flow into a unified framework to provide an efficient joint node-link 
ranking. The mutual reinforcement here refers to the node-link relationship instead of the node-node 
relationship in HITS algorithms, which is one of the novelties of the NWRank algorithm. In addition, 
the weight normalization approach proposed here assigns more weight to important links based on 
both the topology of the network and an approximate form of the network flow through it, making the 
method applicable to different network problems where both nodes and links are critical for system 
performance, and where a trade-off between local and global integrity is at work, owing to connectivity 
and flow considerations, respectively.

Application to diverse networks. To evaluate the WRank algorithm and, in particular, the NWRank 
algorithm, they are used along with PageRank, HITS, eigenvector centrality, and edge betweenness to 
study several diverse idealized networks. In order to further evaluate the NWRank algorithm, all the 
above algorithms are also compared with traditional N-1 removal-based strategies. Different metrics 
can be used to quantify the network performance in the removal strategy depending on the types of 
networks. For example, travel time may be used in transportation networks and cost may be used in 
supply chain networks. As conceived, NWRank is a general ranking algorithm that can be used to rank 
the nodes or links of generic networks. Therefore, a general metric (i.e. network efficiency E18 as shown 
in Equation  10) is used for assessment and comparisons here, where N is the number of nodes in the 
network, and dij is the shortest distance between pairs of nodes in a network. Network Efficiency E18 has 
been used to describe the performance of various kinds of networks19–24, as well as the performance of 
general complex networks25–28. Therefore, network efficiency is a popular metric to describe the network 
performance in the network science and engineering applications.

∑=
( − ) ( )

≠E
N N d

1
1

1
10

i j
ij

Real world complex networks are usually the result of integrating several idealized yet topologically 
diverse networks of different sizes and configurations. For example, the transportation network of the 
United States consists of states’ transportation networks. The states’ transportation networks are made 
up by the cities’ transportation networks, and so on. The rule also applies to other networks, such as 
the internet, social networks, telecommunication networks, water systems and power grids. Therefore, 
investigating the configuration of the building blocks (i.e. typical small networks with some homogene-
ous features) found in large networks is informative29. Yazdani et al.30 divided a subset of typical small 
diverse networks into two main categories that capture different network configurations: (1) hierarchical 
network models, where the networks are organized (and possibly operated) in a hierarchical fashion with 
some of the nodes easily identifiable as the master or upstream nodes while most other nodes are flow 
distribution junctions and downstream nodes; and (2) distributed network models, where the networks 
have a relatively uniform topology and only a few hubs or single failure-points are present. This study 
uses these small yet topologically diverse ensembles of networks, along with a few other ideal topologies 
(e.g., grids, and scale-free networks), to test the performance of the WRank and NWRank algorithms.

Computational experiments with hierarchical networks. The configuration of the hierarchical 
networks is likely seen within many spatially organized technological and urban infrastructure systems 
composed of transmission (global) and distribution (local) subsystems. Four hierarchical networks are 
selected as case studies and their idealized topologies are shown in Fig. 2. The basic information about 
these four networks is listed in Table 1.

Tables  2 and 3 list the node and link ranking results of the four hierarchical networks. Nodes and 
links that have the same score are not separated by horizontal lines. For simple hierarchical networks 
(e.g., T8 and B8), the node ranking of the NWRank algorithm is consistent with the WRank, HITS, and 



www.nature.com/scientificreports/

5Scientific RepoRts | 5:15141 | DOi: 10.1038/srep15141

eigenvector centrality algorithms. Therefore, the weight normalization of the link has minor influence 
on the ranking of the nodes for simple hierarchical networks. Also, it can be seen that the node ranking 
for WRank and NWRank relative to the HITS algorithm across the other hierarchical networks (e.g., 
C13 and HT15) is almost the same due to their common mutual reinforcement feature, although some 
differences are observed as these networks start benefiting from a joint node and link ranking perspec-
tive. For instance, in C13 which has clear clusters, it is more beneficial to maintain the node linking such 
clusters (node 1), whereas in HT15 with no such clusters, it is more beneficial to have some nodes ena-
bling network subsets to remain connected (nodes 2 and 3)—as captured by NWRank and not by HITS. 
The NWRank also performs better than the naïve WRank, HITS, and eigenvector centrality algorithms 
based on the results from an N-1 removal strategy as well as a perspective of network integrity where 
local and global connectivity trade-offs are at work. For example, Tables 2 and 3 show that for node rank-
ing, NWRank obtains the same ranking results with the N-1 removal strategy for the four hierarchical 
networks. This is in contrast with other node rankings. For example, while the node ranking of B8 for 
the PageRank algorithm is the same as the other three algorithms, for most other networks it produces 
different node ranking results which do not reflect the role of network flow in the ranking of nodes and 
links. Specifically, the PageRank algorithm ranks node 1 as the least important node of C13, which is at 
odds from the perspective of network connectivity and network flow. This is because for the PageRank 

Figure 2. Topology of select hierarchical networks: (a) 8-node simple transportation network (T8); (b) 
8-node “bat” network (B8) (c) 13-node three-cluster network (C13) which is symmetric under each link 
emanating from node 1, and (d) symmetric 15-node tree network (HT15). 

Name n m Reference

Transportation network (T8) 8 7 31

Bat network (B8) 8 13 32

Three-cluster network (C13) 13 21 30

Hierarchical tree network (HT15) 15 14 30

Table 1.  Basic information about selected hierarchical networks.
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algorithm, the ranking of nodes is highly correlated with the ranking by the in-degree of nodes33–35. Node 
1 has relatively small in-degree in C13, and it appears at the bottom of the ranking list.

RK

T8 B8

node link node link

W* NW H P E R W NW B R W NW H P E R W NW B R

1 3 3 3 3 3 3 5 5 5 5 2 2 2 2 2 2 2 2 1 1

2 6 6 6 6 6 6 3 3 3 3 3 3 3 3 3 3 3 3 2 2

3 4 4 4 4 4 4 1 1 1 1 4 4 4 4 4 4 4 4 3 3

4 1 1 1 5 1 1 2 2 2 2 5 5 5 5 5 5 8 8 4 4

5 2 2 2 7 2 2 6 6 4 6 6 6 6 6 6 6 9 9 8 8

6 7 7 7 8 7 7 7 7 6 7 7 7 7 7 7 7 10 10 9 9

7 8 8 8 1 8 8 4 4 7 4 8 8 8 8 8 8 1 1 10 10

8 5 5 5 2 5 5 1 1 1 1 1 1 5 5 5 5

9 6 6 6 6

10 7 7 7 7

11 11 11 11 11

12 12 12 12 12

13 13 13 13 13

Table 2.  Node and link ranking results for the T8 and B8 hierarchical networks. *W =  WRank; 
NW =  NWRank; P =  PageRank; H =  HITS; E =  eigenvector centrality; B =  edge betweenness; R =  N-1 
removal strategy.

RK

C13 HT15

Node link node link

W NW H P E R W NW B R W NW H P E R W NW B R

1 2 1 2 2 2 1 1 1 1 1 2 2 1 4 2 2 1 1 1 1

2 6 2 6 6 6 2 8 8 8 8 3 3 2 5 3 3 2 2 2 2

3 10 6 10 10 10 6 15 15 15 15 1 1 3 6 1 1 3 3 3 3

4 1 10 1 3 1 10 2 2 2 2 4 4 4 7 4 4 4 4 4 4

5 3 3 3 4 3 3 4 4 4 4 5 5 5 2 5 5 5 5 5 5

6 4 4 4 5 4 4 5 5 5 5 6 6 6 3 6 6 6 6 6 6

7 5 5 5 7 5 5 9 9 9 9 7 7 7 1 7 7 7 7 7 7

8 7 7 7 8 7 7 13 13 13 13 8 8 8 8 8 8 8 8 8 8

9 8 8 8 9 8 8 14 14 14 14 9 9 9 9 9 9 9 9 9 9

10 9 9 9 11 9 9 16 16 16 16 10 10 10 10 10 10 10 10 10 10

11 11 11 11 12 11 11 17 17 17 17 11 11 11 11 11 11 11 11 11 11

12 12 12 12 13 12 12 19 19 19 19 12 12 12 12 12 12 12 12 12 12

13 13 13 13 1 13 13 3 3 3 3 13 13 13 13 13 13 13 13 13 13

14 6 6 6 6 14 14 14 14 14 14 14 14 14 14

15 7 7 7 7 15 15 15 15 15 15

16 10 10 10 10

17 11 11 11 11

18 12 12 12 12

19 18 18 18 18

20 20 20 20 20

21 21 21 21 21

Table 3.  Node and link ranking results for the C13 and HT15 hierarchical networks.
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Regarding the ranking of links, NWRank is the only algorithm that obtains the same ranking results 
with the N-1 removal strategy for most of the hierarchical networks (i.e. T8, C13, and HT15), with a dif-
ference in B8 where NWRank favors edges to maintain clusters (edges 2–4 and 8–10) to keep most of the 
network integrated at the expense of leaving some nodes connected with lower-ranked links (depending 
on edge 1 in this case, which is favored by the N-1 and betweenness strategies). In addition, except for 
HT15, WRank and NWRank provide the same link ranking results, where the difference stems from the 
trade-off mechanism of NWRank to handle local and global connectivity perspectives, where topology 
dominates the local aspect and flow the global one. Also, the NWRank algorithm obtains the same link 
ranking results with edge betweenness algorithms for C13 and HT15. Across the four networks, it can 
be seen that the NWRank algorithm aligns either with the WRank algorithm or the edge betweeness 
algorithm because it combines the features of both of them, while revealing expected edge rankings 
each time (i.e., favoring integrity within clusters over entire network connectivity when network leafs of 
weakly connected subsets are present). This is captured in the importance of links 1, 8, and 15 and node 
1 of C13, or links 1 and 2 and nodes 2 and 3 of HT15. The superiority of the NWRank algorithm for the 
ranking of nodes and links is further confirmed below with other complex networks, such as distributed 
networks, which tend not to have obvious prestigious nodes.

Computational experiments with distributed networks. While it is relatively easy to identify the 
master nodes or links for the hierarchical networks, it is usually more difficult to identify the authorita-
tive components for distributed networks, such as sensor networks and certain types of transportation 
and commodity distribution networks. Different from the hierarchical networks, distributed operation 
is usually self-organized, which allows for a greater allocation of redundancy and operation of alterna-
tive supply paths30. Four distributed networks are chosen in this study and their topologies are shown 
in Fig. 3. The basic information of these networks is listed in Table 4. To facilitate ranking comparisons 
across strategies, the ranking agreement between all the ranking algorithms with the N-1 removal strat-
egy is quantified by cosine similarity37 for distributed networks.

While Tables 5 and 6 list the node and link ranking results of the four distributed networks, Table 7 
and Table  8 synthesize comparisons between all the ranking algorithms and the N-1 removal-based 
approach. It can be seen that for node ranking, NWRank is the only ranking algorithm that obtains high 

Figure 3. Topology of select distributed networks: (a) 25-node grid network (Grid 25); (b) 10-node 
Delaunay Triangulation (DT10); (c) 20-node Scale-Free distributed network (SF20); (d) 16-node uniform 
distributed network (UD16). 
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cosine similarities with the traditional N-1 removal strategy for all the four distributed networks. The 
cosine similarity values are at least 0.856, indicating good agreement. While other ranking algorithms 
can obtain similar ranking results with the removal strategy for certain distributed networks, they are not 
consistent across all networks, especially for the UD16 network as explained later. As with the hierarchi-
cal networks, for certain distributed networks the node ranking of WRank and HITS algorithms is very 
similar (e.g. identical for Grid25, and similar for DT10, SF10, and UD16). In addition, the eigenvector 
centrality and HITS obtain the same node ranking results for the four distributed networks. Also, based 
on Table 7, PageRank still does not perform well for distributed networks. Because NWRank combines 
the mutual reinforcement feature of HITS and WRank as well as the weight normalization feature of 
PageRank, the node ranking produced by NWRank is in between the rankings produced by WRank, 
HITS, eigenvector centrality, and PageRank as shown by the SF20 and UD16 networks.

For the link ranking, the NWRank algorithm is in between the WRank and edge betweenness algo-
rithms because it combines the features of both of them. Based on Table  8, the NWRank algorithm 
still performs better than the WRank algorithm and the edge betweenness algorithms for most of the 
distributed networks, especially for UD16 network. UD16 is a good example that illustrates the potential 
problems of the naïve WRank and HITS algorithms. It is easy to identify that three communities exist 
in the UD16 network. For the link ranking of UD16, the top 11 links produced by the WRank algo-
rithm all belong to the same community while the top 11 links produced by the NWRank algorithm 
distribute among all the three communities, especially the links that connect the communities, which 
reflects the importance of approximate network flow. The same is true for the ranking of nodes. The 
WRank and HITS algorithms lead to very similar rankings and all the top ranking nodes belong to the 
same communities. However, NWRank (and PageRank) finds the top ranking nodes from all of the 
three communities. This problem for the ranking of nodes in HITS-inspired algorithms, including the 
naïve WRank approach, was originally called the Tightly Knit Community (TKC) effect by Lempel and 
Moran38. A tightly knit community is a small but highly interconnected set of nodes and the TKC effect 
occurs when such community scores high in link-analyzing algorithms38. This effect hampers the ability 
of the mutual reinforcement approach to identify meaningful authorities35. NWRank is less vulnerable to 
the TKC effect, and can find meaningful authorities where the mutual reinforcement approach (WRank 
and HITS algorithms) fails to do so.

The difference between rankings produced by different algorithms reflects the different features of 
each ranking algorithm. The most important feature of HITS and WRank algorithms is the mutual rein-
forcement of nodes or nodes and links, while the salient feature of PageRank is the weight normalization 
of the link. Edge betweenness approximately considers the role of network flow in the ranking. However, 
the NWRank algorithm combines the features of both mutual reinforcement from HITS and weight 
normalization from PageRank. In addition, NWRank also approximately considers the network flow 
in the simultaneous ranking of nodes and links, which is desirable in certain networks like infrastruc-
ture systems, where links carry commodities. Such link-centric information has not been traditionally 
featured by other ranking approaches. In addition, NWRank can obtain similar ranking results relative 
to the expensive N-1 removal based strategy, which is used as a benchmark for ranking comparison 
herein. However, NWRank is much more efficient than the traditional removal strategy and produces 
satisfactory results that emphasize integrity balancing local and global perspectives. NWRank tends to 
favor network integrity in a practical sense (favoring a large percentage of the network to be connected 
even if a small percentage is disconnected, which agrees with engineering design principles; whereas 
other rankings tend to favor elements that keep the entire network connected not admitting a subopti-
mal state). For instance, the link rankings for DT10 and SF20 show NWRank favoring edges that keep 
network integrity in a large percentage, whereas other rankings, including the N-1 approach based on 
efficiency favors links connecting to terminal nodes. Similar but more subtle trends are measured for the 
Grid25 and UG16 link rankings. NWRank prefers large partitions over large networks, which is desirable 
because NWRank considers network connectivity and network flow in the ranking of nodes and links.

To highlight the computational efficiency of NWRank, a relatively large transportation network of 
South Carolina with 1,486 nodes and 2,321 links is selected to test the computational requirements of 
NWRank. It takes 1,551 seconds to calculate the ranking results if a common N-1 removal strategy is 

Name n m Reference

Grid network (Grid25) 25 40 *

Delaunay Triangulation network 
(DT10) 10 20 36

Scale-free distributed network 
(SF20) 20 26 *

Uniform distributed network 
(UD16) 16 32 29

Table 4.  Basic information of the selected distributed networks. *developed by the author and his 
collaborators.
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used, while it only takes 9.1 seconds if the NWrank algorithm is used. For very large networks, such as 
the whole transportation network of the United States and the internet a traditional removal strategy 
(e.g., N-1 criterion) may become too time consuming for practical implementations. In addition to an 
absolute time perspective of computational efficiency, the algorithm for N-1 ranking mainly depends 
on shortest path finding algorithms and the calculation of efficiency for every element removed one at 
a time, making the overall worst case time complexity proportional to O(N4)39. In contrast, NWRank’s 
main operation is a matrix multiplication of arrays on the order of N requiring O(N2.4) to O(N3) time 
(depending on the implementation), and the evaluation of betweenness, which scales as O(N3)40 for an 
overall computational complexity of O(N3).

In addition, although not shown here, NWRank has been used in other real networks by the authors. 
The authors have used NWRank algorithm to rank the nodes and links of the transportation network 
of Charleston, South Carolina31 with 185 nodes and 279 links. Results show that NWRank can give 
reasonable link ranking results of the transportation network and the cosine similarity values relative to 
the N-1 criterion are 0.87 and 0.85 for the node and link ranking, respectively. Further details on the 
ranking of the transportation networks can be found in Wang 201431. In addition, the authors have used 
NWRank algorithm to rank the nodes and links of a power grid network with 88 nodes and 98 links, 
and compared it with the N-1 criteria. Results show that the cosine similarity values are 0.98 and 0.95 
for the node and link ranking, respectively. Beyond the hierarchical and distributed networks presented 
here, the outcomes of the case study real transportation network and power grid network suggest that 
NWRank can be used to efficiently and effectively rank the nodes and links of typical large networks, 
such as large infrastructure systems.

Sensitivity of the weight coefficients on the ranking results. In order to evaluate the influence 
of the weight coefficients in Equation (7) on the ranking of nodes and links, another four α and 1-α pairs 
[i.e. (1, 0); (0.75, 0.25); (0.25, 0.75); (0, 1)] in addition to (0.5, 0.5) are used in the NWRank algorithm 

RK

Grid25 DT10

node link node link

W NW H P E R W NW B R W NW H P E R W NW B R

1 13 13 13 7 13 13 16 16 16 2 1 1 1 1 1 1 4 16 20 10

2 8 8 8 9 8 8 20 20 20 3 4 10 4 10 4 4 16 15 18 18

3 12 12 12 17 12 12 21 21 21 11 10 4 10 4 10 10 6 2 15 20

4 14 14 14 19 14 14 25 25 25 12 8 7 8 7 8 3 15 20 10 1

5 18 18 18 8 18 18 11 11 11 14 7 3 3 3 3 7 2 6 2 2

6 7 7 7 12 7 7 12 12 12 15 3 8 7 8 7 8 1 4 6 13

7 9 9 9 14 9 9 15 15 15 16 2 6 2 6 2 2 13 13 16 3

8 17 17 17 18 17 17 17 17 17 17 6 2 6 5 6 6 20 1 13 4

9 19 19 19 13 19 19 24 24 24 18 5 5 5 2 5 5 7 10 1 5

10 3 3 3 2 3 3 26 26 26 20 9 9 9 9 9 9 17 18 12 6

11 11 11 11 4 11 11 29 29 29 21 3 17 14 11

12 15 15 15 6 15 15 30 30 30 23 5 7 19 12

13 23 23 23 10 23 23 7 7 7 24 10 12 4 14

14 2 2 2 16 2 2 19 19 19 25 8 14 11 15

15 4 4 4 20 4 4 22 22 22 26 18 11 17 16

16 6 6 6 22 6 6 34 34 34 27 14 5 7 19

17 10 10 10 24 10 10 6 6 6 29 12 3 3 7

18 16 16 16 3 16 16 8 8 8 30 9 19 5 8

19 20 20 20 11 20 20 10 10 10 38 11 8 8 9

20 22 22 22 15 22 22 13 13 13 39 19 9 9 17

21 24 24 24 23 24 24 28 28 28 1

22 1 1 1 1 1 1 31 31 31 4

23 5 5 5 5 5 5 33 33 33 5

24 21 21 21 21 21 21 35 35 35 6

25 25 25 25 25 25 25 2 2 2 7

Table 5.  Node and link ranking results of the Grid25 and DT10 distributed networks.
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RK

SF20 UD16

node link node link

W NW H P E R W NW B R W NW H P E R W NW B R

1 7 7 7 8 7 8 11 11 13 8 12 12 14 6 14 12 32 9 9 9

2 8 8 8 7 8 7 7 10 10 5 13 6 12 12 12 6 23 21 21 21

3 4 13 13 17 13 14 14 14 11 6 14 3 13 14 13 3 22 23 24 19

4 13 14 4 13 4 10 4 13 3 24 15 14 15 3 15 1 21 24 23 23

5 14 4 17 10 17 4 10 15 14 18 16 1 16 2 16 14 29 19 19 18

6 6 17 14 12 14 13 15 16 9 13 6 10 1 5 1 10 30 18 1 24

7 18 6 12 14 12 6 13 7 17 10 10 9 10 8 10 11 31 1 5 22

8 17 12 18 6 18 17 8 5 7 3 9 2 6 9 6 2 19 5 18 32

9 9 18 6 4 6 12 16 6 15 9 1 5 9 10 9 5 25 22 2 1

10 19 9 9 9 9 9 5 4 23 16 8 11 8 1 8 8 26 32 8 5

11 5 10 16 16 16 18 6 24 24 11 11 16 11 16 11 9 28 2 27 10

12 20 2 19 18 19 16 23 23 18 15 3 8 2 13 2 13 24 8 22 3

13 12 16 5 3 5 2 22 20 4 17 2 13 5 15 5 15 27 17 32 2

14 2 5 10 1 10 1 20 22 5 19 5 15 3 4 3 16 16 16 10 8

15 16 20 20 2 20 19 3 3 6 14 7 7 7 7 7 4 17 27 11 27

16 10 1 2 11 2 5 26 21 8 4 4 4 4 11 4 7 18 13 13 11

17 1 15 15 15 15 20 24 16 16 7 14 10 17 13

18 15 3 1 5 1 3 21 19 20 12 13 14 3 16

19 3 19 3 20 3 15 12 9 19 25 9 11 16 17

20 11 11 11 19 11 11 9 17 12 23 15 3 14 4

21 25 25 25 26 10 20 26 6

22 17 8 2 2 20 26 28 7

23 19 12 26 20 11 28 20 12

24 2 18 21 1 1 29 4 14

25 18 2 22 22 5 30 7 15

Table 6.  Node and link ranking results of the SF20 and UD16 distributed networks.

Network Grid25 DT10 SF20 UD16

NWRank 1.0 0.867 0.891 0.856

WRank 1.0 0.833 0.742 0.717

PageRank 0.839 0.831 0.868 0.753

HITS 1.0 0.946 0.901 0.717

Eigen vector 1.0 0.946 0.901 0.717

Table 7.  Comparison of the node ranking between the ranking algorithms and N-1 removal strategy 
based on cosine similarity with the boldface used to demonstrate the most similar ranking.

Network Grid25 DT10 SF20 UD16

NWRank 0.953 0.957 0.932 0.903

WRank 0.953 0.934 0.800 0.667

Edge betweenness 0.953 0.951 0.945 0.814

Table 8.  Comparison of the link ranking between the ranking algorithms and N-1 removal strategy 
based on cosine similarity with the boldface used to demonstrate the most similar ranking.
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to rank the network nodes and links. Results show that if α is large, network connectivity plays a great 
role which means that nodes with high degree and associated links rank high. If 1-α is large, approx-
imate network flow has more effect on the ranking which means that the nodes and links with high 
betweenness values rank high. In addition, the difference between the ranking score of links decreases 
with the increase in the weight of α versus 1-α. Given the results of the sensitivity study, the selection 
of the weight coefficients should be conducted according to the decision makers’ preference. If network 
connectivity is more important, relatively larger α values [e.g., (0.75, 0.25)] can be used. If network flow 
is more important, relatively smaller α values [e.g., (0.25, 0.75)] can be used. Otherwise, equal weight 
(i.e. α =  0.5) can be chosen as an unbiased point.

Discussion
This study proposes a new mutually reinforcing network ranking algorithm (NWRank) which combines 
the mutual reinforcement feature of HITS and the weight normalization feature of PageRank and also 
considers the role of network flow approximately. This new algorithm is different in that it can rank the 
nodes and links of a network simultaneously, which is important for certain types of networks, particu-
larly engineering infrastructure systems whose links are as critical as nodes. Numerical experiment results 
show that NWRank can obtain similar node ranking results relative to the HITS and WRank algorithms 
for networks without the TKC effect or prestigious nodes. For networks with TKC effects or prestigious 
nodes, NWRank can avoid the problem that exists in the HITS and WRank algorithms. For the node 
ranking, NWRank is somewhere in-between the rankings produced by HITS, WRank, eigenvector cen-
trality, and PageRank, and performs better than the four algorithms because it combines the advantages 
of both HITS and PageRank algorithms while avoiding the TKC effect. For the link ranking, NWRank 
is better than WRank and edge betweenness based on the comparison with an N-1 expensive removal 
strategy, and it can capture features of both network connectivity and approximate network flow as 
shown with the networks in this study. NWRank enhances upon the current practical or state-of-the-art 
topological methods on network component ranking in terms of scope, computational complexity, and 
applicability. NWRank provides a new way to rank nodes and links of a network efficiently, which has 
practical applications in many types of networks and queries. For instance, to find cost-effective paths in 
supply chain networks, or to prioritize resource allocation for upgrade of infrastructure systems, such as 
transportation networks, water systems, and power grids among others, all with the aim to support deci-
sion making and design, particularly when balancing local connectivity and global flow. Also, if detailed 
information of the networks is available (e.g., link and node capacities, node supply and demand levels, 
and physics-based governing flow models), future work can compare approximate topological ranking 
strategies, as NWRank, with N-1 removal strategies measuring performance as capacitated networks that 
cannot violate physical constraints.

References
1. Katz, L. A new status index derived from sociometric analysis. Psychometrika. 18, 39–43 (1953).
2. Bonacich, P. Power and centrality: A family of measures. Am. J. Sociol. 92, 1170–1182 (1987).
3. Brin, S. & Page, L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems. 30, 

107–117 (1998).
4. Kleinberg J. M. Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999).
5. Lempel, R. & Moran, S. SALSA: the stochastic approach for link-structure analysis. ACM Trans. Inf. Syst. 19, 131–160 (2001).
6. Van Mieghem, P. Graph spectra for complex networks. Cambridge University Press. (2011).
7. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).
8. Albert, R., Jeong, H. & Barabási, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).
9. Langville, Amy N. & Carl D. Meyer. Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University 

Press (2011).
10. Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry. 40, 35–41 (1977).
11. Barthelemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B 38, 163–168 (2004).
12. Jenelius, E., Petersen, T. et al. Importance and exposure in road network vulnerability analysis. Transportation Research Part A: 

Policy and Practice. 40, 537–560 (2006).
13. Nagurney, A. & Qiang, Q. A network efficiency measure with application to critical infrastructure networks. J. Global Optim. 40, 

261–275 (2008).
14. Ren, H., Dobson, I. & Carreras, B. A. Long-term effect of the n-1 criterion on cascading line outages in an evolving power 

transmission grid. IEEE Trans. Power Syst. 23, 1217–1225 (2008).
15. Sohn, J., Kim, T. J., Hewings, G. J., Lee, J. S. & Jang, S. G. Retrofit priority of transport network links under an earthquake. J. 

Urban Plan D. 129, 195–210 (2003).
16. Kang, W.-H., Song, J. & Gardoni, P. Matrix-based system reliability method and applications to bridge networks. Reliab. Eng. Syst. 

Safe. 93, 1584–1593 (2008).
17. Fishburn, P. C. Utility Theory for Decision Making. John Wiley & Sons, New York (1970).
18. Latora, V. & Marchiori, M. Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 87, 198701 (2001).
19. Cardillo, A., Scellato, S. & Latora, V. A topological analysis of scientific coauthorship networks. Physica A. 372, 333–339 (2006).
20. Chen, G., Dong, Z. Y., Hill, D. J. & Zhang, G. H. An improved model for structural vulnerability analysis of power networks. 

Physica A. 388, 4259–4266 (2009).
21. Kyriakopoulos, F., Thurner, S., Puhr, C. & Schmitz, S. W. Network and eigenvalue analysis of financial transaction networks. Eur. 

Phys. J. B. 71, 523–531 (2009).
22. Deng, W., Long, G., Wei, L. & Xu, C. Worldwide marine transportation network: Efficiency and container throughput. Chin. 

Phys. Lett. 26, 118901 (2009).
23. Rokneddin, K., Ghosh, J., Dueñas-Osorio, L. & Padgett, J. E. Bridge retrofit prioritisation for ageing transportation networks 

subject to seismic hazards. Struct Infrastruct E. 9, 1050–1066 (2013).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 5:15141 | DOi: 10.1038/srep15141

24. Jiang, H., Gao, J., Gao, Z. & Li, G. “Safety analysis of process industry system based on complex networks theory”. In International 
Conference on Mechatronics and Automation, ICMA. pp. 480–484. IEEE (2007, August).

25. Nagurney, A. & Qiang, Q. A network efficiency measure for congested networks. EPL. 79, 38005 (2007).
26. Wu, J. J., Gao, Z. Y. & Sun, H. J. Cascade and breakdown in scale-free networks with community structure. Phys. Rev. E. 74, 

066111(2006).
27. Gong, B., Liu, J., Huang, L., Yang, K. & Yang, L. Geographical constraints to range-based attacks on links in complex networks. 

New J Phys. 10, 013030 (2008).
28. Pu, C. L., Cui, W. & Yang, J. Tunable path centrality: Quantifying the importance of paths in networks. Physica A 405, 267–277 

(2014).
29. Bornholdt, S. Less is more in modeling large genetic networks. Science 310, 449 (2005).
30. Yazdani, A., Dueñas-Osorio, L. & Li, Q. A scoring mechanism for the rank aggregation of network robustness. Nonlinear Science 

and Numerical Simulation. 18, 2722–2732 (2013).
31. Wang, Z. Risk-based design of bridges and associated transportation networks under natural hazards. Doctoral dissertation, Rice 

University (2014).
32. Boccaletti, S. et al. Multiscale vulnerability of complex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science. 17, 

043110 (2007).
33. Ding, C., He, X., Husbands, P., Zha, H. & Simon, H. D. “PageRank, HITS and a unified framework for link analysis”. In 

Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 
Tampere, Finland. pp. 353-354. ACM (2002, August 11-15).

34. Van Kerrebroeck, V. & Marinari, E. Ranking vertices or edges of a network by loops: a new approach. Phys. Rev. Lett. 101, 098701 
(2008).

35. Ghoshal, G. & Barabási, A. L. Ranking stability and super-stable nodes in complex networks. Nat. Commun. 2, 394 (2011).
36. Lee, D. T. & Schachter, B. J. Two algorithms for constructing a Delaunay triangulation. International Journal of Computer & 

Information Sciences. 9, 219–242 (1980).
37. Nguyen, H. V. & Bai, L. Cosine similarity metric learning for face verification. Computer Vision–ACCV 2010. Springer Berlin 

Heidelberg. 709–720 (2011).
38. Lempel, R. & Moran, S. The stochastic approach for link-structure analysis (SALSA) and the TKC effect. Computer Networks. 33, 

387–401 (2000).
39. Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. Network flows: theory, algorithms, and applications. Prentice Hall (1993).
40. Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

Acknowledgements
The authors gratefully acknowledge the support of this research by the National Science Foundation and 
the U.S. Department of Defense through Grants CMMI-1234690 and W911NF-13-1-0340, respectively.

Author Contributions
Z.W., L.D. and J.P. designed and performed the research. Z.W. wrote the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wang, Z. et al. A new mutually reinforcing network node and link ranking 
algorithm. Sci. Rep. 5, 15141; doi: 10.1038/srep15141 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	A new mutually reinforcing network node and link ranking algorithm
	Introduction
	Results
	WRank algorithm as a building block
	Proposed NWRank algorithm
	Application to diverse networks
	Computational experiments with hierarchical networks
	Computational experiments with distributed networks
	Sensitivity of the weight coefficients on the ranking results

	Discussion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                A new mutually reinforcing network node and link ranking algorithm
            
         
          
             
                srep ,  (2015). doi:10.1038/srep15141
            
         
          
             
                Zhenghua Wang
                Leonardo Dueñas-Osorio
                Jamie E. Padgett
            
         
          doi:10.1038/srep15141
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep15141
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep15141
            
         
      
       
          
          
          
             
                doi:10.1038/srep15141
            
         
          
             
                srep ,  (2015). doi:10.1038/srep15141
            
         
          
          
      
       
       
          True
      
   




