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Large-Scale Molecular Simulations 
on the Mechanical Response and 
Failure Behavior of a defective 
Graphene: Cases of 5–8–5 Defects
Shuaiwei Wang1, Baocheng Yang1, Jinyun Yuan1, Yubing Si1 & Houyang Chen2

Understanding the effect of defects on mechanical responses and failure behaviors of a graphene 
membrane is important for its applications. As examples, in this paper, a family of graphene with 
various 5–8–5 defects are designed and their mechanical responses are investigated by employing 
molecular dynamics simulations. The dependence of fracture strength and strain as well as Young’s 
moduli on the nearest neighbor distance and defect types is examined. By introducing the 5–8–5 
defects into graphene, the fracture strength and strain become smaller. However, the Young’s moduli 
of DL (Linear arrangement of repeat unit 5–8–5 defect along zigzag-direction of graphene), DS (a 
Slope angle between repeat unit 5–8–5 defect and zigzag direction of graphene) and DZ (Zigzag-like 
5–8–5 defects) defects in the zigzag direction become larger than those in the pristine graphene in 
the same direction. A maximum increase of 11.8% of Young’s modulus is obtained. Furthermore, 
the brittle cracking mechanism is proposed for the graphene with 5–8–5 defects. The present work 
may provide insights in controlling the mechanical properties by preparing defects in the graphene, 
and give a full picture for the applications of graphene with defects in flexible electronics and 
nanodevices.

Graphene, a two-dimensional (2D) material with a single atomic carbon layer array in honeycomb lat-
tice, has attracted widespread interest due to its novel electronic properties1 , thermal2,3 and mechanical 
properties4 as well as its tremendous potential applications5–11. Introducing defects and/or vacancies in 
graphene may alter its properties. Hence, understanding the effect of defects on the fundamental physical 
properties is necessary and important for applications of graphene in the devices.

An important class of graphene defect, 5–8–5 defect, has been studied both experimentally and 
theoretically. Through electron bean method, graphene sheets with 5–8–5, 5–8–4–8–5 defects were 
prepared by Robertson et al.12. Later, by employing aberration corrected transmission electron micros-
copy (ACTEM), they investigated the different structural permutations of the tetravacancy defect13, 
and found that the structures depends on the specifics of vacancy creation. By employing scanning 
transmission electron microscope, Kotakoski et al.14 identified a significant structural transformation. 
Chen et al.15 proposed a method for controlling growth of regular line defect in graphene by means of 
the electron irradiation. Both the first principles calculations16,17 and MD simulations18–20 are effective 
means to study the formation and evolution of monovacancy, divacancy, and grain boundaries. Kudin 
et al.21 investigated the Raman spectra of graphene sheets with Stone-Wales and 5–8–5 defects using 
ab initio calculations. By employing nonequilibrium molecular dynamics simulations, divacancy was 
reconstructed by Liang et al.22, and the main manner for forming that structure is found, i.e. the 
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Stone-Wales transformation. Warner et al.23 analyzed the bond elongation and the charge density var-
iations in graphene defects using DFT. By using MD simulations, the topology and atomic structure 
of the defect structures (e.g. 5–8–5 defect) in graphene were examined by Kotakoski et al.24 Leyssale 

Figure 1. The designed 5–8–5 defects in a graphene membrane. (a) DL: Linear arrangement of repeat unit 
5–8–5 defect along zigzag-direction of graphene; (b) DS: a Slope angle between repeat unit 5–8–5 defect 
and zigzag direction of graphene; (c) DZ: Zigzag-like 5–8–5 defects; (d) DY: A repeat unit of Y-like 5–8–5 
defects; (e) DT: A repeat unit of Triangular 5–8–5 defects; (f) DQ: a repeat unit of Quadrangular 5–8–5 
defects; (g) DH: a repeat unit of Hexagonal 5–8–5 defects. The nearest neighbor distance s refers to the 
distance between the two centers of mass of two nearest neighbor repeat units.

Figure 2. Bond length and bond angle. (a) The average bond length L and (b) bond angle θ after relaxation 
as functions of the nearest neighbor distance s in a graphene with DL defect. d1, d2, d3, d4, and d5 refer to 
five different types of bonds.
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et al.25 studied the dynamical behavior of divacancy defect in graphene at high temperatures. Ori  
et al.26 prepared 5–8–5 defects using isomeric modifications of graphene mesh. In the previous stud-
ies, little is known about the mechanical properties and failure behavior for graphene sheet with 
5–8–5 defects.

In this paper, a family of the graphene with 5–8–5 defects are designed and prepared. Then, systemat-
ically detailed studies on the mechanical responses of graphene with various 5–8–5 defects are examined. 
The dependence of ultimate strength, ultimate strain and Young’s modulus of graphene with defects on 
the nearest neighbor distance between defects and defect types is determined. A possible brittle cracking 
mechanism was proposed: i.e. the failure of graphene with 5–8–5 defects can initiate from either the 
bond shared by the 5–8 rings or the bond shared by 6–8 rings, depending on the defect arrangement as 
well as the loading orientation.

Model and Methodology
Graphene with six different kinds of 5–8–5 defects are prepared and presented in Fig. 1. They are: DL 
(Linear arrangement of repeat unit 5–8–5 defect along zigzag-direction of graphene), DS (a Slope angle 
between repeat unit 5–8–5 defect and zigzag direction of graphene), DZ (Zigzag-like 5–8–5 defects), DY 
(A repeat unit of Y-like 5–8–5 defects), DT (A repeat unit of Triangular 5–8–5 defects), DQ (a repeat 
unit of Quadrangular 5–8–5 defects) and DH (a repeat unit of Hexagonal 5–8–5 defects). The size of 
the graphene is approximately 20 ×  20 (nm)2. The adaptive intermolecular reactive bond order potential 
(AIREBO)27, which was confirmed to reproduce the mechanical properties of graphene sheet28,29 and the 
bond breaking and forming30 very well, was used for the interaction between carbon atoms. Following 
Wei’s work31, the C-C bond cutoff distance of 1.92 Å, which can avoid high bond forces and nonphysical 
results before fracture occurs, is employed.

Simulations were performed by employing Larger-scale Atomic/Molecular Massively Parallel Simulator 
(LAMMPS)32. Periodic boundary conditions (PBCs) are employed in all the three dimensions. The initial 
configuration is relaxed to the equilibrium state with a time step of 1.0 fs. The equilibrium is realized 
by a conjugate-gradient algorithm, and then a simulation with isothermal-isobaric (NPT) ensemble is 
carried out for 10 ns to eliminate the inner stress of graphene with defects, followed by the simulation 
with microcanonical ensemble (NVE) for another 10 ns. After the system approaches to equilibrium, the 

Figure 3. Stress-strain curves. The stress-strain curves of pristine graphene and graphene with various 
defects (the shortest s for each structure) under loading in the zigzag (a) and armchair (b) directions.
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tension load is applied to the graphene sheet in the armchair or zigzag direction with a strain rate of 
0.0004 ps−1 and the increment every 1 ps.

The stress on each carbon atom is calculated via the following virial stress equation33,34:
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In equation (1), the α and β are the indices of stress tensors along the Cartesian coordinate axis, i and 
j are the atomic positions, Ω α, vα and mα are the atomic volume, velocity and mass, respectively. rj and 
f i are the distance and force. In addition, the thickness 3.4 Å is employed to compute the atomic stress 
in graphene sheet35. The stress is averaged over all the atoms in the entire graphene sheet every 0.01 ns. 
The calculation of the Young’s modulus, the fracture strain, the fracture strength, tensile strength, and 
ultimate strain are following references30,36,37.

Results and Discussion
Figure 2 shows the average bonds lengths and bond angles as functions of the nearest neighbor distance 
s (refers to the distance between the two centers of mass of two nearest neighbor repeat units, see Fig. 1) 
for the DL defect. Five different types of bonds in 5–8–5 defects (see Fig. 2a) are taken into account. For a 
selected s, d3 >  d2 >  d4 >  d5 >  d1 (Fig. 2a). For example, when selected s =  8.4 Å, the average bond lengths, 

Figure 4. The mechanical properties of graphene with various defects. (a,b) The fracture strength (σc) 
versus the nearest neighbour distance (s); (c,d) The fracture strain (εf) versus s. (e,f) The Young’s modulus 
(E) versus s. The solid (left) and open (right) symbols represent the loading direction in zigzag and armchair, 
respectively. The dash lines indicate the corresponding data of pristine graphene.
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d3 =  1.479 Å >  d2 =  1.457 Å >  d4 =  1.417 Å >  d5 =  1.414 Å >  d1 =  1.410 Å. Additional, with s increases, the 
bond lengths d3 and d4 increase significantly and d1 decreases, while d2 and d5 are not sensitive to s. For 
instance, the d3 (1.57 Å) at s =  54.6 Å is 6% higher than that when s =  8.4 Å. The d1 (1.384 Å) at s =  54.6 Å 
is 2% lower than that when s =  8.4 Å. Our results of the average bond lengths are in excellent agreement 
with the experiment data and DFT results for the two 5–8–5 defects23. From the experiment, the d1, 
d2, d3, d4 and d5 are 1.33–1.45 Å, 1.30–1.49 Å, 1.53–1.67 Å, 1.43–1.46 Å, and 1.31–1.53 Å, respectively. 
Figure 2b shows the average angle θ as a function of the nearest neighbor distance (s) for the graphene 
with DL defect. The average angle θ changes monotonically with the increase of s. θ and s can be fitted 
by a linear function, that is, θ =  ks + b. Using the least-squares technique, the fitting parameters are 
obtained, that is, θ =  0.04115 * s + 107.7 (see Fig. 2b).

The stress-strain curves of pristine graphene and graphene with various 5–8–5 defects (the shortest 
s for each structure) are presented in Fig. 3. With increasing strain, the stress of graphene with defects 
increases nonlinearly and then instantaneous decreases. The instantaneous decreases occurs because of 
bond(s) failure. The behavior of the stress-strain curves for graphene with defects is similar as that from 
the pristine graphene. The fracture strength and fracture strain for these defects are lower than those 
from pristine graphene. For example, the fracture strength for DL defect is 52 GPa in the zigzag direc-
tion, which is lower than that (113 GPa) for pristine graphene in the same direction. The fracture strain 
0.063 for DH defect in the armchair directions is approximately 64% lower than that (0.177) for pristine 
graphene in the same direction.

Based on Fig.  3, one can calculate that the Young’s modulus of pristine graphene are 772.19 and 
962.79 GPa for zigzag and armchair directions, respectively. The results agree with the data for zigzag 
from previous MD simulations38. This behavior indicates that the methodology adopted can provide a 
reasonable description on the mechanical response.

Figure 4 displays the fracture strength, fracture strain and Young’s modulus versus the nearest neigh-
bour distance (s) of graphene with various defects. As s increases, the fracture strength and strain in the 
zigzag direction first increase and then tend to constants. The fracture strength and strain of DH in the 

Figure 5. Conformations after the fracture occurs. (a–g) Tension loading in the zigzag direction. (h–n) 
tension loading in the armchair direction. The red solid lines represent the bond connection states before 
cracking. The pentagons and octagons are colored in light grey.
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armchair direction first increase and then tend to constants as s increases while those of DL, DS, DZ, 
DT, and DY are not sensitive to the nearest neighbor distance s. For a selected graphene or graphene 
with defects, the fracture strength and fracture strain of zigzag oriented are larger than those of arm-
chair oriented, while the Young’s moduli in the armchair direction are much higher than those in zigzag 
direction.

From Fig.  4, one can found that, by introducing 5–8–5 defects in graphene, the fracture strength 
and fracture strain become smaller (comparing to the pristine graphene, see Fig. 4a–d). Similar results 
have been reported in one grain boundary (one-GB)27 and Stone-Thrower-Wales (STW) defects29,30 
cases by using MD simulations. Comparing with pristine graphene, the Young’s moduli of graphene 
with defects in the armchair direction become smaller (see Fig. 4f). However, the Young’s moduli of 
DL, DS, and DZ defects in the zigzag direction become larger than those from pristine graphene, while 
Young’s modulus of DH become smaller. The Young’s moduli in the zigzag of DT and DY increase 
as s increases. Comparing with Young’s modulus of pristine graphene, the Young’s moduli of defects 
DT and DY in the zigzag direction become smaller with small s, and become larger with large s (see 
Fig. 4e). For instance, the Young’s moduli of all the defects in the zigzag direction except DH trend to 
be stabilized with s >  40 Å. The average Young’s moduli is approximately 846 GPa, which is 9.6% higher 
than that of pristine graphene (772 GPa). The maximum Young’s modulus of 863 GPa is obtained, 
which is 11.8% higher than that of pristine graphene. The average Young’s moduli are larger than those 

Figure 6. Deformation processes and stress field distribution of a graphene with DS, DY and DH defects 
when the nearest neighbor distance s = 46.2 Å. The loading direction is in the zigzag direction (x axis in 
this work). (a) after relaxation (b) bonds break (c) more bonds break (d) nanowires were generated. The 
original pentagons and octagons are colored in light grey, and the new formed pentagons and heptagons are 
colored in pink. Strain values displayed in the top right corner or the bottom corner.
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of graphene containing one-GB27 (771–810 GPa) and with STW36,38 defects (768–784 GPa) in previous 
MD simulations.

To identify the failure mechanisms of graphene with defects, conformations of graphene with defects 
after the fracture occurs are shown in Fig. 5. For each case, the first breaking bond is either shared by 
5–8 rings or by 6–8 rings. After that, a hole is generated from the origin of the crack for the further 
stretching.

In order to present the fracture process of graphene sheet with defects, the atomic stress distri-
butions for DS, DY and DH defects with the nearest neighbor distance s =  46.2 Å are illustrated in 
Fig. 6. The loading direction is in the zigzag direction. After relaxing, the graphene sheet with DS, DY 
or DH defect changes from its original flat configuration to a wavy configuration. As the simulation 
time increases, the C-C bonds which shared by 5–8 rings crack at strain 20.71%, 5.6% and 4.2% for 
DS, DY and DH defects, respectively (see Fig. 6b). This is due to the atoms shared by 5–8 rings bear 
much higher stress than other atoms. After the bond cracks, a crack blunting behavior for DY and DH 
defects occurs. Later, more bonds shared by 5–8 rings break with the further stretching (see Fig. 6c). 
Cracks are rapidly generated around the breaking bonds. More short nanowires can be observed in 
the Fig. 6d. These cracks are along the defect line and normal to the loading direction. Similar results 
are also found in graphene with grain boundaries, but the fracture process started from the bonds 
shared by 7–6 rings at the grain boundary39,40. From Fig. 6, one can see that the bonds break directly 
and no Stone-Wales transformation occurs. This is because that the system could not overcome the 
Stone-Wales transformation barriers at low temperature cases. Hence, the brittle fracture will domi-
nate the fracture process in this mode. This finding is consistent with the previous MD simulations 
on carbon nanotubes41–43 and graphene GBs40,44. The ductile fracture might be occurred by raising 
temperatures.

Figure 7. Stress field distribution and deformation processes of a graphene with DL defect with the 
nearest neighbor distance s = 8.4 Å when tension loads in the armchair direction (y axis in this work). 
(a) the initial equilibrated stage (b) at 12.2% strain (c) bonds break at 12.4% strain (d) completely broken 
stage. The pentagons and octagons are colored in light grey. The red dashed lines indicates the rifts along the 
zigzag direction.
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It should be mentioned that most of previous papers are regarding the loading direction perpen-
dicular to the defect line, but less consider the tensile in the parallel to the defect line. The deforma-
tion process of DL defect pulled in the armchair direction are illustrated in Fig. 7. After relaxing, the 
graphene sheet transforms from its original smooth flat state to a wrinkle along the z axis (Fig. 7a). 
This is due to the existence of 5–8–5 defects. As the simulation time increases, the atoms/rings wrin-
kled move upward along the defect line and the bonds shared by 6–8 rings bear much higher stress 
than other atoms (see Fig. 7b). After that, a crack is rapidly generated around those bonds (Fig. 7c) 
along the zigzag direction, i.e. the crack propagates normal to the loading direction. In this simu-
lation, the fracture pattern is also brittle fracture. Similar results were observed on graphene sheet 
with cracks via experiments45,46 and graphene sheet via MD simulations47,48. From Figs  5–7, one 
can conclude that the failure of graphene with 5–8–5 defects was dominated by the brittle cracking 
mechanism.

Conclusion
A family of graphene with 5–8–5 defects were prepared and their mechanical properties were examined 
by using molecular dynamics simulations. Dependence of fracture strength and strain as well as Young’s 
moduli (in both zigzag and armcharm directions) on the nearest neighbor distance and defect types 
was investigated. The fracture strength and strain in the zigzag direction first increase and then tend to 
constants with the nearest neighbor distance increases. For a selected graphene or graphene with defects, 
the fracture strength and fracture strain of zigzag oriented are larger than those of armchair oriented. 
The Young’s moduli in the armchair direction are much higher than those in zigzag direction. The frac-
ture strength and fracture strain become smaller by introducing 5–8–5 defects in graphene. Comparing 
with pristine graphene, the Young’s moduli of graphene with defects in the armchair direction become 
smaller, whereas the Young’s moduli of DL, DS, and DZ defects in the zigzag direction become larger. 
The brittle cracking mechanism is proposed for the graphene with 5–8–5 defects, and the first breaking 
bond is either shared by 5–8 rings or by 6–8 rings.
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