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Simulating photoacoustic waves 
produced by individual biological 
particles with spheroidal wave 
functions
Yong Li1,2, Hui Fang3, Changjun Min3 & Xiaocong Yuan3

Under the usual approximation of treating a biological particle as a spheroidal droplet, we consider 
the analysis of its size and shape with the high frequency photoacoustics and develop a numerical 
method which can simulate its characteristic photoacoustic waves. This numerical method is based 
on the calculation of spheroidal wave functions, and when comparing to the finite element model 
(FEM) calculation, can reveal more physical information and can provide results independently at 
each spatial points. As the demonstration, red blood cells (RBCs) and MCF7 cell nuclei are studied, 
and their photoacoustic responses including field distribution, spectral amplitude, and pulse 
forming are calculated. We expect that integrating this numerical method with the high frequency 
photoacoustic measurement will form a new modality being extra to the light scattering method, for 
fast assessing the morphology of a biological particle.

Quantitative evaluation of the morphology of biological particles such as cells and organelles provides 
useful and sometimes critical information for understanding their biological functions and also malfunc-
tions associated with diseases. For examples, the presence of spherical-shaped red blood cells (RBCs) 
found on the peripheral blood smear indicates an inherited disorder called hereditary spherocytosis1, and 
the enlargement of cell nuclei is often observed for cancer2. Ideally, it requires a label-free optical imaging 
method with high resolution to directly acquire the shape and size of biological particles in their natural 
state. Photoacoustic imaging represents such a method which exploits the intrinsic light absorption prop-
erty of biological particles and has been quickly expanding its horizon in imaging at the minimus-scale 
end: from individual RBCs, epithelia cell nuclei to intracellular melanosomes3–8.

The photoacoustic flow-cytometry based techniques, which can detect individual biological particles 
in sequence, have also been developed recently9–11 to address the practical requirement that it is usually 
a large number of biological particles needed to be examined. In order to rapidly assess the morphology 
of a biological particle under such circumstance, the better choice is not to image but to model biolog-
ical particles as the particles with a specified shape to facilitate the size analysis. This strategy has been 
recognized and applied recently in a recent serial of investigations with high-frequency photoacoustic 
microscopy (PAM), where the resolution in particle sizing does not come from the imaging resolution 
(there the approach of acoustical-resolution PAM instead of optical-resolution PAM3–5 has been applied) 
but rather depends on the measure and analysis of power spectra or the angle dependent power spectra 
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of the photoacoustic waves12–16. The analysis is based either on the spherical model17,18 or on the FEM 
(finite element model)19.

Although the both models take their own characteristics—the spherical model results in a simple 
mathematical expression while the FEM can take account of any particle shapes, their respective limi-
tations are also apparent. The experiments have shown that the spherical model for RBCs is only suit-
able for the photoacoustic frequency up to 100 MHz13–15. On the other hand, the calculation based on 
FEM requires a large computer memory and is usually time consuming, making the simulation on the 
sequence of biological particles difficult. Moreover, the FEM performs the spatial and temporal discre-
tization process directly on the original photoacoustic wave equation thus is insufficient in providing 
physical insight about the impact of each parameter.

This situation can be circumvented to some extent by employing the spheroidal model we recently 
developed20. As illustrated in Fig. 1, when considering the photoacoustic wave production of individual 
RBCs or cell nuclei due to the laser illumination at a typical wavelength locating inside the absorption 
band of the biological particles (green laser for RBCs6 and ultraviolet laser for cell nuclei8), we can 
approximate a normal biconcave-disc shaped RBC as an oblate spheroidal droplet and a cell nucleus as a 
prolate spheroidal droplet, and then put them respectively into the corresponding spheroidal coordinate 
systems to solve the photoacoustic Helmholtz equation [Eq. (1) in Method]. Compared to the spherical 
model, working with a spheroid can take account the angular dependence of the generated photoacoustic 
wave. Compared to the FEM, the spheroidal model not only yields an analytic solution expressed with 
spheroidal wave functions (SWFs)21 which conveys a wealth of physical information, but also affords a 
straightforward numerical calculation route based on numerically calculating SWFs.

In this paper, we describe such a numerical calculation method and demonstrate various results for 
characterizing the photoacoustic wave produced by RBCs and MFC7 cell nuclei. To the best of our 
knowledge, although the numerical calculation of SWFs was used in more difficult problems of the 
sound scattering and also the light scattering of a spheroidal particle a long time ago22,23, introducing 
it into the simulation of the spheroidal particle photoacoustic wave generation has not been reported. 
The merit of this new application is that only scalar solutions need to be considered and the solutions 
are not expanded on the mode number related to the azimuthal angle. We envisage that similar to the 

Figure 1. Illustration of photoacoustic wave production of RBCs and MFC7 cell nuclei, the 
corresponding oblate spheroidal coordinates system for a RBC and prolate spheroidal coordinates 
system for a cell nucleus. The photoacoustic waves (shown as the red waves) of individual biological 
particles are produced due to the laser uniform illumination on each RBCs (as the green flashing) and on 
each cell nuclei (as the ultraviolet flashing) at the respective absorption wavelength (green for RBCs and 
ultraviolet for cell nuclei).
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role played by the T-matrix calculation in solving the light scattering problems of spheroidal biological 
particles24,25, the SWFs based numerical calculation will become important for photoacoustic study of 
biological particles under the spheroid approximation.

Results
RBCs suspended in blood plasma. After fully establishing the numerical calculation method 
through the validation study (see Numerical Verification subsection in Method), we first carried out the 
detail numerical study on RBCs. We approximate a RBC as an oblate spheroid droplet with the physical 
properties as listed in Table 1 (explained in Method), and simulate the situation of RBCs suspended in 
blood plasma. The mass density and the acoustic speed of blood plasma have been set respectively as 
ρf =  1000 kg/m3, vf =  1520 m/s by following reference13.

Figure 2 shows various results including the photoacoustic wave field distributions (defined here as 
the spatial distribution of photoacoustic wave amplitude) at three different frequencies [Fig.  2(a–c)], 
the photoacoustic wave amplitude versus frequency curves for the near field as well as the far field 
at three typical angular directions [Fig.  2(d,e)], and the photoacoustic pulses formed at the far field 
[Fig. 2(f)] corresponding to the spectral amplitudes shown in Fig. 2(e). A specified normalization proce-
dure (described in Numerical Calculation subsection in Method) has been exerted for all of these results.

As for the field distributions shown at the left column in Fig.  2(a–c), we have specified their fre-
quencies at ω/(2π) =  33.4 MHz, 334.0 MHz, 668.0 MHz, which correspond respectively to the cf values 
of 0.50, 5.0, 10.0. The field distributions are calculated in an area of ~30 μ m ×  30 μ m with the RBC 
sitting at the center where the boundary of the RBC is delineated as the green contour. When frequency 
goes higher, as shown, the field distribution deviates from the near-isotropic pattern and displays more 
branches whose shadow edges actually carve out the hyperbolas correlated with spheroidal coordinate 
η (compare to Fig. 1).

This type of frequency-depended behavior is mainly determined by the angle dependent character of 
angular SWFs. To comprehend it more clearly, in the center column of Fig. 2(a–c), we plotted the polar 
distributions of the photoacoustic wave amplitude along the ξ1 =  2.8 ellipse which is delineated as the 
dashed cyan contour in the field distribution patterns. As can be derived from Eq. (3), the polar distri-
bution is expressed as ξ η∑ 

 (− , )  (− , ), ==
∞ ( )p p R ic i S ic n k2n n n n0 0 0

f
0

3
f 1 0 f . By observing the p n0

f  ampli-
tude versus mode number n curves plotted in the right column of Fig. 2(a–c) and comparing side by side 
the polar distributions with the various S0n(− icf, η) patterns plotted in Fig. S1 (in Supplement), we can 
see that all of the p n0

f  amplitude curves drop very rapidly after a few lowest modes and the S0n(− icf, η) 
of these lowest modes determine the polar distributions: for cf =  0.5, only the n =  0 mode is important; 
for cf =  5.0, the major contribution comes from the n =  0, 2 modes; for cf =  10.0, the contribution from 
each of the n =  0, 2, 4, 6 modes can be discerned.

The results of Fig. 2(a–c) already imply the fact that the photoacoustic power spectra will vary greatly 
when measured at different polar angles. In Fig.  2(d), by considering the three points on the ξ1 =  2.8 
ellipse with the corresponding polar angles of γ =  0°, 45°, 90°, we plotted their pf amplitude versus fre-
quency ω/(2π) curves (the square of these curves are just their power spectra). Obviously, the values at 
33.4 MHz, 334.0 MHz, 668.0 MHz of these curves can also be found in the polar distributions shown in 
Fig. 2(a–c). As can be seen, these curves overlay with each other at the region below 100 MHz, and then 
branch out beyond: the red curve for γ =  90° is on the top and has a flat shape with a minimum at around 
750 MHz, and the green curve for γ =  45° and the blue curve for γ =  0° lower their magnitude in order 
but show more and more periods of undulations. We have compared the corresponding power spectra 
at γ =  0°, 90° with those calculated by FEM reported in reference13 (refer to the fourth figure therein) 
and found they are respectively identical after a scaling constant being taken out.

It is interesting to note that these distinguishing structural features shown in Fig. 2(d) are still pre-
sented in the far-field spectral amplitude curves, as shown in Fig.  2(e). Here, the pf amplitude versus 
frequency ω/(2π) curves are plotted for the three points also at γ =  0°, 45°, 90° but now on the ξ2 =  40 
ellipse (corresponding to a radial distance ~0.15 mm). For comparison, the result for the equivolume 
spherical RBC is also plotted, as the black curve.

As a step further from the results of Fig. 2(e), we then calculated the photoacoustic pulses by using 
the inverse Fourier transform and shown them in Fig. 2(f). For the calculation, we have considered the 
band-limited frequency response of the ultrasound transducer and have applied a bandpass filtering with 
− 12 dB bandwidth from 200–550 MHz centered at 375 MHz14. We found that the results for γ =  0°, 90° 
agree well with the experiment outcomes reported in reference14 (the fourth figure there).

a b d ξ0 ρs (37 °C) vs (37 °C)

RBC 3.91 μ m 1.47 μ m 7.24 μ m 0.40 1110 kg/m3 1650 m/s

MFC7 cell nucleus 6.03 μ m 4.22 μ m 8.61 μ m 1.40 1430 kg/m3 1582 m/s

Table 1.  Parameter setting for the RBC and the MFC7 cell nucleus.
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MCF7 cell nuclei surrounded by cell plasma. Cell nuclei are usually close to prolate spheroids in 
shape thus stand as another type of representative beside RBCs. Here we deal with MCF7 cell nuclei as 
the example and simulate the situation that they are suspended in cell plasma. We have set the physical 
parameters of the nucleus as listed also in Table  1 (explained in Method). The cell plasma has been 
treated as the pure water which has the mass density and acoustic speed under 37 °C respectively as 
ρf =  1000 kg/m3, vf =  1527 m/s. We presented various results in Fig.  3 exactly following the way to plot 
Fig. 2 such that the field distribution, the polar distribution, and the p n0

f  amplitude versus n curves are 
respectively plotted at the left column, the center column, and the right column of Fig. 3(a–c), while the 
near field and the far field pf amplitude versus ω/(2π) at γ =  0°, 45°, 90° are respectively plotted in 
Fig. 3(d,e), and the corresponding photoacoustic pulses of the far field are plotted in Fig. 3(f).

In order to keep the calculation still at cf =  0.5, 5.0, 10.0 in Fig.  3(a–c), the frequencies have been 
changed to ω/(2π) =  27.9 MHz, 278.6 MHz, 557.2 MHz. What also changed are the ellipses used for cal-
culating the near field results and the far field results, where now the former has been changed to one 

Figure 2. Numerical results of simulating RBCs suspended in blood plasma. (a–c) Field distribution, 
polar distribution, and amplitude of the expansion coefficient p n0

f  at three different frequencies 
corresponding to cf value of 0.5, 5.0, 10.0. (d) Photoacoustic wave amplitude versus frequency at three points 
located in near field on the cyan dashed ellipse delineated in (a–c) with polar angles γ =  0°, 45°, 90°. (e) 
Photoacoustic wave amplitude versus frequency at three points located at the far field on the ellipse with 
ξ2 =  40 also with γ =  0°, 45°, 90°. For comparison, the black curve plots the results at the radial distance of 
0.145 mm from the equalvolume spherical RBCs with radius of r =  2.82 μ m. (f) The photoacoustic pulses 
corresponding to the photoacoustic spectral responses shown in (e) where the strength for the γ =  90° pulse 
has been reduced by 4 times. To get the results, the bandpass filter with − 12 dB bandwidth shown in (e) has 
been applied.
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with ξ1 =  4.6 and the latter the other with ξ2 =  35.0. With the latter setting, the radial distance corre-
sponding to the far field of Fig. 3(e,f) is still ~0.15 mm.

Comparing Fig. 3(a–c) to Fig. 2(a–c), as can be seen, except for cf =  0.5 where the field distribution 
and the polar distribution are still nearly isotropic, the field distributions and the polar distributions for 
cf =  5.0, 10.0 both respectively show significant changes. These changes come from the alteration of the 
angular SWFs as shown Fig. S2 (in Supplement). We can observe that the modes affording dominate 
contribution for cf =  0.5, 5.0, 10.0 are still respectively n =  0, n =  0, 2, n =  0, 2, 4, 6.

Comparing Fig. 3(d,e) to Fig. 2(d,e), we can see more periodic undulations presenting in the spectral 
amplitude curves for each of the polar angles. The comparison between Figs 3(f) and 2(f) shows that the 
strength of the photoacoustic pulses at γ =  0°, 45°, 90° are close to each other for the MCF7 cell nuclei, 
which is significantly different from those of RBCs where the γ =  90° photoacoustic pulse strength are 
about 4 times stronger than the other two.

Figure 3. Numerical results of simulating MFC7 cell nuclei suspended in cell plasma. (a–c) Field 
distribution, polar distribution, and amplitude of the expansion coefficient p n0

f  at three different frequencies 
corresponding to cf value of 0.5, 5.0, 10.0. For the field distributions of cf =  5.0, 10.0, in order to visualize the 
parts outside the MFC7 cell nuclei, all of the amplitudes larger than the respective half-maximums of the 
whole field have been set to those respective half-maximums. (d) Photoacoustic wave amplitude versus 
frequency at three points located in near field on the cyan dashed ellipse delineated in (a–c) with polar 
angles γ =  0°, 45°, 90°. (e) Photoacoustic wave amplitude versus frequency at three points located at the far 
field on the ellipse with ξ2 =  35.0 also with γ =  0°, 45°, 90°. For comparison, the black curve plots the results 
at the radial distance of 0.15 mm from the equalvolume cell-nuclei with radius of r =  4.76 μ m. (f) The 
photoacoustic pulses corresponding to the photoacoustic spectral responses shown in (e). To get the results, 
the bandpass filter with − 12 dB bandwidth shown in (e) has also been applied.
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Discussion
Before carrying out the detail calculation for the RBCs and the MFC7 cell nuclei, we have first verified 
the numerical method through studying the two special cases. The verification with a spherical droplet 
is trivial since it just tests that the radial and angular SWFs will asymptotically reduce to Bessel and 
Legendre functions respectively. However, the verification with a spheroidal droplet having identical 
mass density and acoustic speed as those of the surrounding medium is substantial because the spheroid 
boundary still separates the light absorption region from the surrounding medium thus the SWFs are 
fully functioning.

The numerical method has been further confirmed by comparing the RBCs power spectra to that 
calculated previously by FEM. Actually, there are other evidences embedded in Figs 2 and 3. The first is 
that in the field distributions the pressure amplitudes appears continuous at the spheroid boundary. And 
the other is that the p n0

f  amplitudes decrease very rapidly with mode number n which proves the numer-
ical calculation convergence under the truncation mode number setting of Eq. (15).

The results of Figs  2(a–c) and 3(a–c) revealed that the field distribution can be decomposed into 
different modes, while the results of Figs 2(d,e) and 3(d,e) demonstrated that the undulation structure 
of power spectra depends on the relative size of the spheroid respect to the wavelength, i.e. = π

λ
c d

f
f
. In 

contrast, the FEM calculation is difficult to unveil these kinds of physical information. Another advan-
tage of the numerical calculation based on SWFs comparing to the FEM calculation is the great flexibility 
such that the photoacoustic response at any spatial point can be calculated independently, as shown in 
Figs 2(d–f) and 3(d–f). In the FEM calculation of the photoacoustic response, all of the points inside the 
whole calculation volume interwind with each other. The above advantages also stand comparing with 
the k-space numerical method26 which requires fewer number of spatial grids and time steps than the 
FEM calculation.

From the results of Figs 2 and 3, we can infer two methods for distinguishing the morphology of a 
spheroidal biological particle. One method, inferred from the characteristic field distribution at high 
frequency, is to map the entire photoacoustic field surrounding the particle under the continue wave 
laser excitation at a high modulation frequency. The other method, inferred from the angular dependent 
power spectra, is to capture simultaneously the photoacoustic pulse responses at several polar angles 
under the short pulse laser excitation and then extract the power spectra through the Fourier transform, 
where the measurement can be performed either in the near field or in the far field. We think the second 
method can be conveniently incorporated with the flow cytometry to form a new modality for fast sphe-
roidal biological particle sizing. For the case that the rotational axis of each particle is randomized, the 
above measurement should be taken at more angles distributed in three-dimensions in order to extract 
first the particle orientation from the symmetry of the measuring results. We note that the spheroidal 
model calculation provides a good approximation, but the more complex model such as FEM is still 
necessary to take account the detail particle shape such as the bi-concave shape of RBCs when higher 
accuracy is required.

As shown in Figs  2(d,e) and 3(d,e), our current calculation is in the range of 0–1200 MHz, corre-
sponding to the maximum of cf =  18.0 for the RBCs case and cf =  21.5 for MCF7 cell nuclei case. For 
the latter case, the range can actually be further extended well to cf =  36.0. Such limitation ranges of cf 
are due to the numerical capability of the computer package we used27,28, and can be relaxed by using 
other advanced program running in multiple-precision algorithm29–31. Nevertheless, this frequency range 
already matches with the cutting-edge high frequency photoacoustic technology14,15 and is sufficient for 
the study of biological particles in micrometer scale. We have not considered the sound dispersion in 
this frequency range since the acoustic speed variation due to the effect is usually only a few percent19.

In summary, we have developed a numerical method based on SWFs which can characterize the 
photoacoustic waves produced by a spheroidal biological particle. This method will be very useful for 
studying morphology of biological particles which are in spheroidal shape in common. It will be very 
interesting to rigidly test the numerical calculation by directly comparing to the experiment performed 
with the artificially created spheroidal droplet. The measurement is not necessarily for a micrometer 
droplet in the high frequency range since it is the ratio between the droplet size and the wavelength that 
really matters.

Methods
Analytic Theory. Our numerical calculation is rooted on the analytical theory we recently developed 
for the photoacoustic wave generation from a spheroidal droplet20. Here we summarize the key steps.

The analytic theory focuses on solving the following photoacoustic Helmholtz equation where the 
uniform-heating laser source term has been excluded:

∇ −
∂

∂
= ,

( )
p

v t
p1 0 1

2
2

2

2

where p represents the acoustic pressure produced from the photoacoustic effect, and v represents the 
acoustic speed either inside or for outside the spheroidal droplet.
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Equation (1) can be solved in spheroidal coordinates (ξ, η, ϕ)21, and after applying the symmetry 
restriction conditions, the following reduced expressions in the frequency domain are resulted:
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where ps and pf refer respectively to the photoacoustic waves inside the spheroidal droplet and in its 
surrounding fluid. The added term p0 in Eq. (2), coming from the special solution with the laser source 
term included in Eq. (1), is

ε μ β

ω
=

( )
p i

I v
C 4

s
0

th a 0
2

p

where I0 and ω represents respectively the amplitude and the frequency of the modulated laser intensity, 
while μa represents the light absorption coefficient, εth the percentage of the absorbed light energy being 
converted to heat, Cp the specific heat capacity, β the thermal expansion coefficient, and vs the sound 
speed, all for the spheroidal droplet.

In Eqs (2) and (3), S0n are the angular SWFs while ( )R n0
1  and ( )R n0

3  are respectively the first and third 
radial SWFs, all taking the mode number m (related to the azimuthal angle) as zero. The branch symbols 
for these SWFs are applied to differentiate the variable dependences where the up ones correlate to the 
prolate spheroidal coordinates system and the bottom ones correlate to the oblate spheroidal coordinates 
system. The dimensionless variables cs and cf of these SWFs are defined as

ω ω
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with d the interfocal distance of the spheroid droplet and vf the acoustic speed of the surrounding fluid.
The expansion coefficients p n0

s  and p n0
f  in Eqs (2) and (3) are solved by applying the boundary condi-

tions which require the continuity both in pressure and normal acceleration at the boundary determined 
by ξ =  ξ0 ξ( =

/
a

d0 2
 for a prolate spheroid droplet while ξ =

/
b

d0 2
 for an oblate spheroidal droplet where 

a and b take the conventional notation as the lengths of semi-major and semi-minor axes of a spheroid). 
The boundary conditions lead to the linear algebra equations as follows
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both of Ds and Df are square-matrixes formatted as
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j
2 2
0 2 2  represent the spheroidal coefficients21.

Once the frequency domain solution of Eqs (2) and (3) is achieved, its inverse Fourier transform 
provides the time domain solution.

Numerical Calculation. As expressed in Eqs (2) and (3), for a prolate or an oblate spheroidal droplet 
with specified size (i.e. a and b, thus also d), the photoacoustic response in any spatial point depends on 
not only the values of S0n and ( )R n0

1  or ( )R n0
3  at the specific η and ξ corresponding to that point, but also 

the expansion coefficients p n0
s  and p n0

f  which in turn depends on the value of spheroidal coefficients 
−
( − )d i

j
2 2
0 2 2  and also the value of ( )R n0

1 , ( )R n0
3 , ′ ( )R n0

1 , ′ ( )R n0
3  though at this time at ξ0 corresponding to the bound-

ary [Eqs (6)–(10)]. Therefore, the prerequisite for carrying out the numerical calculation is the computer 
program which can calculate all of the SWFs (also the spheroidal coefficients).

Up to date, there are already several well-established computer packages for calculating SWFs27–29,32–34,  
and some continuous progress in algorithm to improve the accuracy and to expand the range of the 
c parameter is still ongoing30,31,35. In this paper, we choose the computer package running in Matlab28 
which is translated from the conventional Fortran program27. We have not used the more sophisticated 
computer packages written in Mathematica29,33 since we only deal with the SWFs of integer modes (actu-
ally m =  0 and n =  2k) and the real c parameter (since the effect of sound absorption is neglected).

There leaves another issue which is how to numerically solve p n0
s  and p n0

f , i.e. Ps and Pf, from Eq. (6). 
We combine the two matrix equations in Eq. (6) into a single one which is
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where O represents a null column vector with the dimension same as A. Now the problem is reduced 
to calculate P from Eq. (11).

Before the numerical calculation can be initiated, however, there is still a requirement to determine 
the truncation number of the expansion in Eqs (2) and (3). This is equivalent to the request of presetting 
the dimensions of Ps and Pf thus the dimensions of P, F, Ao. . We set the truncation number by referring 
to the criteria used in reference36, as

= ( , ) × /( / ) + . ( )N c c a dinteger[max 2 4] 15s f

To numerically solve P from the dimension-truncated Eq. (11), for the case when the matrix F is 
ill-conditioned, the advanced “refined iteration method”36 has to be excised. However, in our current 
study, we found that directly calculating the inverse of F by the Gaussian elimination method is sufficient 
for obtaining the accurate results. We also performed the empirical test on the condition of Eq. (15) and 
found this setting is sufficient for achieving the convergence.

There is a final note about the normalization we applied for obtaining the results shown in Figs 2–4. 
First of all, since the concrete values of the constants I0, εth, μa, β, Cp are not the concern in the current 
study, we set all of these parameters equal to 1. Then, for each spheroidal droplet, we first calculated the 
result at the apex point on the major-axe of the spheroid (refer to Fig. 1), and then took its reciprocal as 
the normalization factor throughout.

Biological Particle Parameter Settings. We perform the numerical calculation on two represent-
ative types of biological particles, namely red blood cells (RBCs) and MCF7 cell nuclei, which can be 
modeled respectively as oblate spheroidal droplets and prolate spheroidal droplets.

Table  1 lists the size, mass density, and acoustic speed of the RBCs and MCF7 cell nuclei we used 
in the numerical calculation. As for the RBCs settings, we have referred to references13,14. As for the 
MCF7 cell nuclei settings, we have referred to reference25 for the size, referred to reference37 for the mass 
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density, and referred to reference38 for the acoustic speed. Since in reference38 only the average acoustic 
speed across the whole cell is provided, we assumed the acoustic speed of cell plasma as vf =  1527 m/s 
(at 37 °C) and took a simple calculation to extract the acoustic speed of cell nucleus (simply by equaling 
the time across the whole cell with the summed time sequentially across the cell plasma, cell nuclei, and 
the cell plasma again).

Numerical verification. To validate the numerical calculation method, we calculated the spectral 
response for two special cases. The first is simply when the droplet is a sphere such that the numerical 
results can be directly compared to those obtained from the standard spherical model17. The second is 
when the droplet is a special spheroid under the condition that its mass density and acoustic speed are 
respectively identical to those of the surrounding medium, for which the results on the rotational axis 
can be compared with those obtained from the geometrical calculation method we recently developed39.

For the first special case, as shown as the black curves in Figs 2(e) and 3(e), we calculated the pres-
sure amplitude versus frequency of two spherical droplets which have their volume respectively equal to 
RBCs and MCF7 cell nuclei. We found that these results completely overlay with the outcomes directly 
calculated from the standard spherical model expression.

For the second special case, we calculated the results of RBCs and MCF7 cell nuclei and plotted 
them as the black curves in Fig. 4 which including the pressure amplitude versus frequency as well as 
the pressure phase lag versus frequency. These results are found to be identical with the outcomes of the 
geometrical calculation method. In the geometrical calculation method, it is the time domain solution of 
the photoacoustic pulse that can be explicitly expressed, and the frequency domain response is further 
determined through the Fourier transform.

In Fig. 4, we also plot two other results shown as the green curves and the red curves which come 
from by gradually breaking the mass density and acoustic speed matching condition to gradually decrease 
the mass density and the acoustic speed of the surrounding media. As can be seen, the deviation of the 
red curves from the black curves is larger than the deviation of the green curves from the black curves. 
These extra comparisons strengthen the verification in a visible way.

Figure 4. Calculated curves of pressure amplitude versus frequency for RBCs and MFC7 cell nuclei 
at an outside point on the rotation axis (with z = 10.0 μm for RBCs and z = 20.0 μm for MFC7 
cell nuclei) under various settings of the mass density ρf and acoustic speed vf of the surrounding 
medium. (a,b) Results for RBCs. The black curve presents the result when ρf and vf are the same as those 
of RBCs (in Table 1). The green curve presents the result when ρf and vf are slightly smaller which are 
ρf =  1077 kg/m3, vf =  1602 m/s. The red curves presents the result of simulating the RBCs suspended in 
blood plasma where ρf =  1000 kg/m3, vf =  1520 m/s. (c,d) Results for MFC7 cell nuclei. The black curve 
presents the result when ρf and vf are the same as those of MFC7 cell nuclei (in Table 1). The green 
curve presents the result when ρf and vf are slightly smaller which are ρf =  1177 kg/m3, vf =  1536 m/s. 
The red curves presents the result of simulating the MFC7 cell nuclei surrounded by cell plasma where 
ρf =  1000 kg/m3, vf =  1527 m/s.
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