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Expansion dynamics in a 
one-dimensional hard-core 
boson model with three-body 
interactions
Jie Ren1, Yin-Zhong Wu1,2 & Xue-Fen Xu3

Using the adaptive time-dependent density matrix renormalization group method, we numerically 
investigate the expansion dynamics of bosons in a one-dimensional hard-core boson model with 
three-body interactions. It is found that the bosons expand ballistically with weak interaction, which 
are obtained by local density and the radius Rn. It is shown that the expansion velocity V, obtained 
from Rn = Vt, is dependent on the number of bosons. As a prominent result, the expansion velocity 
decreases with the enhancement of three-body interaction. We further study the dynamics of the 
system, which quenches from the ground state with two-thirds filling, the results indicate the 
expansion is also ballistic in the gapless phase regime. It could help us detect the phase transition in 
the system.

Recently, the understanding of nonequilibrium dynamics of strongly correlated many-body systems 
poses one of the most challenging problems for both theoretical and experimental physics1. Researches 
in the nonequilibrium properties of strongly correlated many-body systems have emerged into a dynamic 
and active field, driven by the possibility to address questions such as thermalization2–4 and particle 
transportation5–13 in clean, well-controlled, and isolated systems. In the particle transport cases, there are 
two prototypical transport mechanisms in classical physics: ballistic and diffusive transports. The ballistic 
and diffusive transports are characterized by non-decaying currents and decaying currents respectively. 
In the ballistic systems there is absence of friction. However, in the diffusive systems, there have frequent 
diffractive collisions, which drive a local thermalization. Many studies focus on qualitative questions 
such as whether transport is ballistic or rather diffusive in microscopic models of strongly interacting 
systems14–19. In experiment, the measurements of local occupancy dynamics can be realized even the 
densities of initial states are than one20. The dynamics exhibit clear signatures of quantum distillation 
and confinement of vacancies in the doublon sea, which are significantly interesting. Other typical exam-
ples investigated numerically are the expansion of initially localized ultra-cold bosons in homogeneous 
one- and two-dimensional optical lattices. It is found that both dimensionality and interaction strength 
crucially influence these nonequilibrium dynamics, which have also been confirmed in experiments21.

Previous results for nonequilibrium dynamics strongly correlated many-body systems are almost with 
the dominant two-body interactions, because relatively small multi-body interactions can only provide 
tiny corrections. Recently, the cold atom in optical lattice gives us a great platform to realize three-body 
interactions22–24. It is shown that the three-body interactions can be dominated, and the two-body inter-
actions can be independently controlled and even switched off by driving microwave fields22. The system 
with multi-body interactions can induce many exotic phenomena. It would be interesting to investigate 
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nonequilibrium dynamics in the system with multi-body interactions, such as sudden expansion of Mott 
insulators (MI) in a one-dimensional hard-core boson model with three-body interactions.

The paper is organized in the following ways. We define the model Hamiltonian, and the observable 
is also provided. The evidence of the difference between ballistic and diffusive expansion dynamics, 
which can be obtained by the behaviours of the observable, is displayed. Then we focus on the sudden 
expansion in a one-dimensional hard-core boson model with the three-body interaction. The results 
presented in the main text are obtained for the expansion from the box trap. The hard-core bosons that 
expand from the product of local MI states is probed. Furthermore, we investigate the hard-core bosons 
expansion from the entanglement states. A discussion follows in the last section.

As a result, when the hard-core bosons expand from the product MI states, we obtain the bosons 
expansion ballistically with weak interaction. The expansion velocity decreases with the increase of 
three-body interaction. Moreover, we study the dynamics in the system from the ground state with 
two-thirds filling, and our results indicate that the expansion is also ballistic in the gapless regime.

Model and Measurements
The Hamiltonian we consider is one-dimensional hard-core boson model with three-body interactions, 
and is given by
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where ( )†b bi i  is creation (annihilation) operator of hard-core boson at site i: ( ) = ( ) =†b b 0i i
2 2 , and 

= †n b bi i i is local density operator. The parameter J is the hopping interaction and chosen as the unit of 
energy in the paper, and only the leading three-body interactions with strength W is considered. Open 
boundary conditions are imposed in the system.

As we known, there are two prototypical transport mechanisms in classical physics: ballistic and dif-
fusive transports. The two kinds of transports can be distinguished by using the time dependent radius 
of the density distribution, which is defined as

∑( ) = ( ) ( − ) − ( = ) ,
( )=

R t
N

n t i i R t1 0
2

n
i

L

i n
1

2 2

where the parameter N indicates the number of the particles and L indicates the length of lattice sites. 
The parameter i0 represents the center of mass i0 =  L/2 +  1/2. A ballistic expansion will lead to the 
well-known ( ) ∝R t tn  behavior, while a diffusive expansion with a fixed diffusion constant, will lead to 
the well-known ( ) ∝R t tn  behavior. The radius has the ability to detect transport whether if is ballistic 
or diffusive. These have also been verified for spin and energy dynamics in the spin-1/2 XXZ chain14,15.

Several powerful methods have been employed to study the expansion dynamics in one dimension, 
including the time-dependent density matrix renormalization group method (t-DMRG)25–29. The method 
is also applied in the paper. In our simulations, the Trotter slicing Jt =  0.1 is used, and the t-DMRG codes 
with double precision are performed with a truncated Hilbert space of m =  400. The time that can be 
simulated in the system is determined by the entanglement entropy.

Expansion from MI State
For simplicity, we first discuss the idealized case that all the particles are in a box-like trap. It is not dif-
ficult to achieve in experiments, just like by using the confining potential17. It is important to emphasize 
that the confining potential would influence the three-body interactions. After relaxation of the confining 
potential, its effects on the three-body interaction will disappear. As is known, the theoretical investi-
gation for two-body interactions in such a system is very interesting, and has been investigated in refs 
30,31. Here, we will focus our attention on the effects of three-body interactions. The initial states are 
that all the particles are in a box trap states (Lbox is the length of the box) and the box trap is full of with 
particles, and the initial state is a product of local MI state in the box trap, and is given by

∏Ψ = .
( )≤ ≤

†b 0
3

initial
i i i

i
1 2

The parameter N indicates the number of the particles = = − +N L i i 1box 2 1 , and this state has 
been realized in a recent experiment21.

A typical example for the time evolution of the density ( )n ti  is shown in Fig. 1 for the expansion 
from a MI state with different W. In Fig.  1(a), it is found that the MI melts on a time scale of 

/ /( ) =t L J2 2 5melt box  for W =  0. For the case of W =  0, the Hamiltonian (1) can be diagonalized by 
using Jordan-Wigner transformation and Fourier transformation, which is given by

∑ε= ,
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where

ε π= − ( ), = /( + ), = , , . ( )Jcos k k l L l L2 1 1 2 3 5k

Therefore 2J is the largest possible velocity. In Fig. 1(a,b) two lines are parallel to the outer rays visible 
in the figure, i.e., the fastest propagating particles, and it indicates an excitation spreading out from 
the center box with the same group velocity 2J. When W =  1, tmelt increases, as shown in Fig. 1(b). For 
t >  tmelt, two particle clouds form that propagate into opposite directions, visible as two intense jets, as 
is expected for ballistic dynamics in one dimension system14,15. When W =  3, we cannot find tmelt in 
Fig. 1(c). With strong three-body interaction, the particles are almost all confined in the box trap. There 
is no possibility of compensating the loss in interaction energy with kinetic energy in the system due to 
energy conservation.

In order to clearly distinguish whether the expansion is ballistic or not, we also investigate the radius 
behaviors. In Fig. 2, we show the radius Rn(t) for different magnitude of three-body interactions. Clearly 
when W =  0, 1.0, 1.6, the radius Rn(t) ∼  t within short and intermediate time. In the time region, the 
local densities are large, and the expansion could be considered ballistic. For W =  2.0, 3.0, in the initial 
time it does not follow Rn(t) ∼  t, and after that the radius follows Rn(t) ∼  t. It seems that the expansion 
is ballistic obtained by the radius. But in general, ballistic dynamics in strongly interacting dynamics is 
connected to integrability. The hard-core bosons without any additional three-body interactions expand 
ballistically due to their integrability and the mapping to non-interacting fermions that preserves density. 
The three-body interactions break integrability and the dynamics would be expected as diffusion. With 
strong three-body interactions, that the particles are almost all confined in the box trap also suggests 
that the transport would be diffusive32. However, the sudden expansion of initially trapped particles 
into an empty lattice is more complicated, this can not provide sufficient evidence for diffusion. To be 

Figure 1.  Typical contour plot of the local density 〈ni(t)〉 as function of position and time during the 
expansion from a MI (N = 20, L = 180) with different three-body interaction (a) W = 0, (b) W = 1 and (c) 
W = 3. The slanted lines in (a,b) indicate the speed 2J. It is noted that the strength of (a–c) has the same 
colour-bar.

Figure 2.  The radius Rn(t) is plotted as function of time for different W with N = 20. 
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sure, the intermediate time regime in which Rn is not proportional with time could be an indicator of 
non-ballistic dynamics.

In order to check the results for W =  2.0, 3.0, we investigate the time dependence of the total particle 
current in each half of the system, which is defined as

∑= − ( − . .).
( )

/
> /

+
†J i J b b h c
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i L
i i2

2
1

It is noted that ballistic dynamics are probed into the systems with open boundary conditions due to 
the existence of globally conserved currents33. The results of JL/2 for W =  2, 3 are shown in Fig.  3. The 
parameter JL/2 takes a constant value for W =  2, 3, which is the benchmark feature of ballistic dynam-
ics15. However, the behaviour of JL/2 does not imply that the dynamics will be ballistic. There is a subtle 
solution of the equation that the radius increases linearly with time (if properly defined in Eq. (2)), and 
the total particle current in each half of the system takes a constant. The phenomena generally occur in 
the dilute limit. With strong interaction W =  2, 3, the particles are almost all confined in the box trap, 
and only a few particles transfer. This case could be considered the dilute case, and the dynamics will 
expand ballistically at a very long time, irrespective of whether it is ballistic or diffusive mass transport.

We extract the expansion velocity V by fitting the tDMRG data, i.e., the slope of curves such as the 
ones shown in Fig.  2, with Curve Fitting toolbox in Matlab. The corresponding radial velocity V is 
defined through the reduced radius = ∂ ( )/∂V R t tn . As is known, there are two main sources of errors 
in the adaptive t-DMRG: the Trotter error due to the Trotter decomposition and the DMRG truncation 
error due to the representation of the time-evolving quantum state in reduced Hilbert spaces. For small 
times, the Trotter error plays a major role. For long times, the DMRG truncation error will be domi-
nated29,34. We obtain V with the date Rn(t) in time range 2 ≤  t ≤  10, where both Trotter error and trun-
cation error are small. Results for selected values of W are collected in the main panel of Fig. 4. For the 
expansion from the MI we obtain =V J2  for any N >  0 and W =  018. The expansion velocity also 

Figure 3.  The total particle current JL/2 vs time for different three-body interaction W. 

Figure 4.  The expansion velocity V vs W with different N. The inset: Finite-size scaling of V(N) with 
= ( )W 1  and W =  2(☐). The lines are the fit lines.
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decreases with the increase of W for the same N. This results in an increase of interaction energy and 
therefore a decrease in kinetic energy. The velocity V, which embodies the behaviours of kinetic energy, 
decreases when the interaction increases. The expansion velocity is much smaller than the largest possi-
ble velocity 2J and is always very different from characteristic velocities of the initial state. Figure 4 also 
indicates that the expansion velocity decreases while N increases, and the finite-size effect is shown in 
the inset. For above case, the length of system does not affect the propagation noticeably until the par-
ticles wave front reaches the boundary. We can fit the locations of maximums by the formula

( ) ∼ + , ( )−V N V aN 7c
1

where a is a size-independent constant and N the number of bosons17. We obtain that Vc1 =  0.95 for 
W =  1 and Vc2 =  0.30 for W =  2, see Fig. 4 inset. The results N →  ∞ for different W is also shown in Fig 4. 
The above results about the expansion velocity can provide some information about the initial state.

Expansion from the grand-state
In this section, the initial state can be realized by finding the ground state of a system with (N −  2) and 
then applying two operator flips / / +

† †b bL L2 2 1. The time evolution is then performed at the two-thirds filling 
= / = /n N L 2 3. It is noted that with this filling, the quantum phase transition from the superfluid to 

solid phases in the system is located at . ± .W 2 80 0 15c , which are obtained by the structure factors 
and bond order parameter35. In order to find whether the expansion is ballistic or diffusive, we also 
investigate the radius behavior. In Fig. 5, we display the radius Rn(t) for various three-body interactions 
for = /n 2 3. Clearly when W =  0, 1.0, 2.0, the radius is proportional with time Rn(t) ∼  t. It seems that 
the expansion is ballistic. It is noted that the radius obtained by Eq. (2) does not follow ∝  t or ∝ t  when 
W ≥  2.8 due to the strong oscillations of ( )n ti

14. We also adopt the method of Eq. (13) in ref. 14, the 
oscillations also exist. We cannot conclude the transport is ballistic or diffusive by the radius. We extract 
the expansion velocity V by fitting the tDMRG data. We obtain V with the data Rn(t) in time scale 
2 ≤  t ≤  10, which the Trotter error and truncation error are both small. The velocity for different values 
of W are collected in the main panel of Fig. 6. It is seen that the velocity has a peak which is located at 

.W 2 5. The initial states would be influenced by the finite size effect. The location of peak may change 
for different system size. So we investigate the location of peak with different system sizes. It is found 
that the locations of expansion velocity maximums follow the formula

( ) ∼ + , ( )−W L W cL 8c
1

where c is a size-independent constant and L the system size, seen in Fig.  6 inset. It is found that the 
critical point . ± .W 2 74 0 1c , which is close to the the superfluid to solid phases quantum phase tran-
sition point. The dynamics would be diffusive when W >  Wc

36–38, where the system is in the gapped 
phase39. It means that the peak of velocity will move to the boundary between two kinds of transport 
behaviors, as the system size approaches to infinite.

Discussion
In the paper, we study the expansion Mott insulator in a one-dimensional hard-core boson model with 
three-body interactions by using the adaptive time-dependent density matrix renormalization group 
method. We obtain that the bosons expand ballistically with weak interaction by studying the dynam-
ics of local density and the radius Rn. It is also found that the expansion velocity V, is dependent on 
the number of bosons in the system, and its measurement can provide information about the initial 

Figure 5.  The radius Rn(t) is plotted as function of time for different W with 〈n〉 = N/L = 2/3. 
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state. As a result, the expansion velocity decreases when the strength of three-body interaction increases. 
Moreover, we study the dynamics of the system from the state with the two-thirds filling. Our results 
indicate that the expansion also is ballistic in the gapless phase. In the case of the two-thirds filling, the 
superfluid to solid phases quantum phase transition point can be identified by the peak of the expan-
sion velocity. It would be interesting to test our predictions in experiments. With strong interaction, the 
dynamics could not be ballistic. It would be significance work to get the expansion dynamics by other 
parameters.
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