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Hierarchy of fillings for the FQHE 
in monolayer graphene
Patrycja Łydżba, Lucjan Jacak & Janusz Jacak

In this paper, the commensurability conditions, which originated from the unique topology of two-
dimensional systems, are applied to determine the quantum Hall effect hierarchy in the case of a 
monolayer graphene. The fundamental difference in a definition of a typical semiconductor and a 
monolayer graphene filling factor is pointed out. The calculations are undertaken for all spin-valley 
branches of two lowest Landau levels, since only they are currently experimentally accessible. The 
obtained filling factors are compared with the experimental data and a very good agreement is 
achieved. The work also introduces a concept of the single-loop fractional quantum Hall effect.

The fractional quantum Hall effect (FQHE) in classical semiconductor structures has been widely exam-
ined theoretically1–7 and many experimental results – even with a depiction of fractional filling factors 
out of the lowest Landau level (LLL) – have been provided8–11. Recenty, a lot of interest has been focused 
on the FQHE appearing in the monolayer graphene samples12–24. This enthusiasm arose from a very 
specific character of the graphene energy spectrum. Its gapless nature and a nonzero Berry phase23,25 
cause the lowest Landau level to be placed exactly in the Dirac point, which connects the valence (VB) 
and the conduction band (CB). Thus, the LLL is equally shared between free electrons and free holes. 
This year, a paper reporting fractional ratios reaching fifth spin-valley branch ( ′↑K1  subband of the first 
Landau level) has been published24. The very popular Jain’s model of composite fermions (CFs – com-
plexes of electrons and magnetic field flux quanta pinned to them)4,5, despite of its obvious artificial 
character, can provide a pretty good qualitative analysis of the FQHE in the lowest Landau level of 
graphene. For example, the hierarchy of fillings can be established and the Laughlin correlations can be 
introduced with the use of the Aharonov-Bohm effect26. However, this model seems to be insufficient 
when it comes to the higher Landau levels (LLs). Noticing that not all filling factors can be derived in 
the the monolayer graphene case creates an impression that this simplistic single-particle model cannot 
embrace the entire physics of the quantum Hall effect systems. For this reason, in this article, we intro-
duce the cyclotron subgroups model1–3, which is based on the topology of two-dimensional systems upon 
a strong magnetic field presence, to the issue of the FQHE in graphene.

The main part of this paper (the third section) is divided into separate subsections, each concentrating 
on a different sublevel of the given Landau level (enumerated with a classical electron spin and a valley 
pseudospin called isospin). For every spin-valley branch appropriate commensurability conditions are 
applied. These terms allow to determine filling factors for which the cyclotron orbit of an arbitrary elec-
tron fits perfectly to the interparticle distance and exchanges of particles as well as the collective quantum 
Hall states can be realized. Solely the zeroth and the first Landau level (1LL) are experimentally accessible 
and for this reason only these are analyzed in this paper.

Results
The application of commensurability conditions.  Before proceeding to the application of com-
mensurability conditions, one should realize that there is a great difference between a Hall state in 
graphene compared to one for a two-dimensional electron gas (2DEG) in a conventional semiconductor 
– even when the filling factors are equal22. In the latter case, the filling ratio νsemi is measured in relation 
to the empty LLL. However, in graphene, since a half of the zeroth Landau level is placed in the VB (due 
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to the Berry phase), ν is counted with respect to the first empty sublevel placed in the CB (a third 
spin-valley branch of the LLL). This change in the terminology arises from the fact, that it is natural to 
define ν in terms of an electronic density measured from the Dirac (neutrality) point, so from the bottom 
of the conduction band25. Thus, a zero filling ratio in graphene ν =  0 actually corresponds to two com-
pletely filled spin-valley sublevels – ↑K0  and ↓K0 . Finally, the relation between graphene and typical 
semiconductor filling factor can be expressed in a form,

ν ν= − ( )2 1semi

For example, ν =semi
1
3

 filling for a traditional 2DEG corresponds to ν = − + = −2 1
3

5
3

 for graphene 
samples (Fig. 1).

Let us remind, that the effective low energy Hamiltonian for a monolayer graphene is equal to23,

ζ σ= ⋅ ⋅ ⋅ ( )
ζ,H v p 2q

eff
f

where ζ =  ± 1 (plus for K Dirac point and minus for K′  Dirac point), σ is a vector of Pauli matrices 
(connected with sublattice pseudospin) and p is a quasimomentum. Note, that if one express the qua-
simomentum with its length and direction p =  pn, then the Hamiltonian can be rewritten in the form,

ζ σ ε σ= ⋅ ⋅ ⋅ ⋅ = ( ) ⋅ ⋅ ( )
ζ,H v p pn n 3q

eff
f

where, n =  (ζcos(Jφ), ζsin(Jφ)) (for a monolayer graphene J =  1, but it is convenient to introduce this 
parameter at this point, because after applying J =  2, the obtained ζ,Hq

eff  is proper for a bilayer graphene 
samples27), ε(p) is the absolute value of the energy eigenvalue. The operator σ ⋅  n projects the pseudospin 
onto the direction of the momentum p. Note that the eigenstates of the Hamiltonian are also eigenstates 
of this projection operator with eigenvalues + 1 for electrons and − 1 for holes. In conclusion, the Dirac 
particles are chiral and the pseudospin is always parallel to the momentum for free electrons from con-
duction band and always antiparallel for free holes from the valence band23,28. Simultaneously, the form 
of the eigenfunction (spinor),
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where λ =  ± 1 (plus for the CB, minus for the VB) and φ =  tg(px/py) minus π
2

 stands for the angle between 
the quasimomentum and the abscissa. During the adiabatic evolution of such state, the quasimomentum 
(and so the vector n) is rotating through φ in the reciprocal space. When the quasiparticle encircles a 

Figure 1.  The comparison of a 1/3 fractional Hall state for a monolayer graphene (a) and a typical 2DEG 
(b). The pink colour symbolizes filled (with electrons) parts of subsequent sublevels of the LLL. In a classical 
two-dimensional semiconductor the filling factor νsemi is measured in relation to the empty lowest Landau 
level. However, in graphene, since a half of the lowest Landau level is placed in the VB (due to the Berry 
phase), the filling factor ν is not counted with respect to the empty LLL, but with respect to the first empty 
sublevel of the LLL placed in the CB (third spin-valley branch of the LLL called ′↑K0 ). Thus, such filling in 
graphene ( )ν = 1

3
, unlike in a traditional semiconductor, is accompanied by two completely filled sublevels 

of the LLL located in the VB22,25. The relation between graphene and typical semiconductor filling factor can 
be expressed in a form ν =  νsemi −  2.
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closed contour in the momentum space (φ =  2π), the eigenfunction acquire a nonzero phase equal to π, 
called the Berry phase,
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This feature should not be surprising, since graphene particles are chiral and a rotation of the  
momentum leads to a rotation of the sublattice pseudospin (in the case of the typical free electron  
spin a full rotation also leads to a π phase gain of the eigenfunction). Furthermore, the Berry phase  
(and the J parameter) defines the degree of degeneracy of the LLs27. For a monolayer graphene 

φ π ε( = , = ), ( ) = ±J p v e Bn1 2f  and only n =  0 Landau level lies at zero energy, while for a bilayer 
graphene φ π ε ω( = , = ), ( ) = ± ( − )J p n n2 2 1c  both n =  0 and n =  1 lie exactly at the neutrality 
point. Thus, the Berry phase gives rise to a unique form of the lowest Landau level in a monolayer 
graphene, which is placed exactly at the Dirac point. For this reason, the LLL has states (organized in 
four sublevels) distributed equally between the CB and the VB. Finally, filling factors for free holes from 
the valence band are just a mirror reflection – with a minus sign – of filling factors for free electrons 
from the conduction band, therefore it is convenient to determine ν in relation to the bottom of the CB.

In order to apply the topology based commensurability conditions2,3 to graphene, let us remind that 
this conditions originated from the necessity of determination of generators of the braid group describing 
exchanges of particles on a plane. Upon the magnetic field not all trajectories are available, what leads 
to a redefinition of the full braid group1. Only if cyclotron orbits fit to the interparicle separation, the 
mutual exchange of neighboring particles on a 2D (two-dimensional) manifold with uniform particle 
distribution is possible (Fig. 2). Otherwise the cyclotron orbits are too short to match closest particles 
or too large to maintain a particle separation fixed by the uniform density (rigidly kept constant by 
Coulomb interactions). The cyclotron orbits have the same size for all particles due to a flat band condi-
tion reducing the kinetic energy competition and resulting in the same averaged velocity in a presence 
of a perpendicular magnetic field (though quantumly, velocity is not well defined since its coordinates 
do not commute). The cyclotron orbits restrict the topology of all trajectories uniformly in 2D, thus 
restrict the braid group structure despite of particularities of an interaction and other fields, e.g. of the 
crystal field. Therefore, for graphene, the cyclotron orbit structure is governed by ordinary Landau Levels 
restrictions despite a specific band structure with Dirac points. The latter particularities of graphene 
quantum dynamics are included in the ordinary part of the Feynman path integral, whereas additional 
summation over topologically nonequivalent trajectory classes concerns the braid group structure the 
same as for a 2DEG upon the magnetic field. The difference between the conventional 2DEG systems and 
graphene will be here related with distinct degeration of LLs in graphene compared to a typical semicon-
ductor 2DEG.

The kinetic energy of electrons located on a graphene sample upon a strong magnetic field perpen-
dicular to its surface can be thus established from the Landau level quantization (the crystal field does 
not affect the characterisation of the kinetic energy),

Figure 2.  This figure presents electrons placed on a 2D manifold in the presence of a strong magnetic 
field. The exchanges of neighbouring particles are possible only when the cyclotron orbit fits perfectly to 
the interparticle distance (a). When the cyclotron orbit is too short the exchanges are not allowed, since the 
condition of maintaining the minimum distance Rmin between fermions (protected by Coulomb repulsion 
forces) is not obeyed (b). Similar situation appears when the cyclotron orbit is larger than the spacing 
between electrons. However, in this case, the condition is broken not for nearest but (for example) for next-
nearest neighbours (c).
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ω=

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 +
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
 ( )

E n 1
2 6kin c

where ω =c
eB
mc

 is the cyclotron frequency and n =  0, 1, 2… enumerates the Landau levels. The cyclotron 
orbit size is proportional to Ekin and clearly depends on n numerating LLs, thus it has a distinct value for 
electrons from different LLs. The coincidence of a cyclotron orbit and an orbit that embrace a single 
quantum of an external magnetic field flux in the case of completely filled LLL, allows to use this orbit 
area as the definition of the cyclotron orbit size.

In a graphene all LLs splits into four sublevels with the same degeneration and distinction of electrons 
due to the ordinary spin of electrons (↓ , ↑ ) and the valley pseudospin (K, K′ ). This sublevel degeneration 
equals to,

φ
=

/
=

( )
N BS

hc e
BS

7
0

0

where, S represent the sample surface and φ = hc
e0  is a quantum of the magnetic field flux. Preceding 

subsections contain a derivation of the fillings ν which give rise to integer and fractional quantum Hall 
states, based on an assumption that such collective state can be realized only when particle exchanges are 
possible (as required for determination of the statistics for a correlated multiparticle state), i.e., when the 
cyclotron radius matches perfectly to the integer multiple of a half of minimal distance between particles 
(protected by Coulomb repulsion forces).

Completely filled subband 0 K′↑ of the lowest Landau level.  In the case of a completely filled 
′↑K0  sublevel of the LLL, the number of particles is equal to the value of the degeneration,

φ
= =

/
=

( )
N N BS

hc e
BS

8
0

0

From the above equation it is easy to conclude that also the number of quanta of an external magnetic 
field flux equals N =  N0 and so the minimum area per particle embraces one φ0. For this reason, we can 
establish the surface of the cyclotron trajectory,

=
( )

S
N

hc
eB 90

We assumed that for νe =  1 the loopless exchanges (described with full braid group generators) are 
possible.

Partially filled 0 K′↑ sublevel of the lowest Landau level.  After the applied magnetic field is 
raised (B >  B0, where B0 corresponds to the completely filled lowest sublevel of the LLL), the number of 
electrons filling the ′↑K0  Landau sublevel becomes smaller compared to the degeneracy N <  N0. Therefore, 
the cyclotron radius is not long enough to reach the neighboring carrier and the statistic cannot be 
determined. To create a collective multiparticle state (like a fractional quantum Hall state) the cyclotron 
radius must be enhanced by using braids of multi-looped type (as has been proved1, in 2D spaces 
multi-looped braids can match neighboring particles and substitute single-looped generators of the braid 
group),

⋅ = ⋅ =
( )

p hc
eB

p S
N

S
N 100

where p is an odd number (a half of a closed, p-looped cyclotron trajectory needs to form a proper, open 
exchange trajectory, thus p cannot be even). Simple transformations allow for determining the N to N0 
ratio – the filling factor for particles,

ν = = = , …
( )

N
N p

1 1
3

1
5 11e

0

and analogically for holes in this sublevel (let us emphasize that they are not free holes from the VB in 
graphene, which due to a particle – hole interband symmetry in Dirac points may be assigned with the same 
fractions as free electrons from the conduction band with sign reflection only),

ν = − =
−

= , …
( )p

p
p

1 1 1 2
3

4
5 12h
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The generalized hierarchy, similarly as in a 2DEG1, can be established if one assumes that only p −  1 
loops of a cyclotron trajectory embrace exactly one external magnetic field flux quantum each, whereas 
the last one embrace only a fraction of φ0, but equal to the number of quanta per particle calculated 
formally for other (even fractional) fillings,

ν =


( − ) ±



 =

( − ) ± ( )

−

p
n

n
n p

1 1
1 1 13e

1

ν = −
( − ) ± ( )

n
n p

1
1 1 14h

Thus n does not need to be an integer number (like in the Jain’s hierarchy4,5) – it might be equal to other 
fraction ν (this leads to a fractal-like construction). Examples of the above filling hierarchy for electrons 
are presented in the Table 1.

Fillings with even denominators (like 1
2
) can also be established from the presented picture, if one 

assumes that the last loop takes zero flux quanta φ0 and describes a free movement like in a Fermi liquid 
without an external magnetic field B (it is equivalent to the limit n →  ∞),

ν = ( − ) =
−

= , , …
( )

−p
p

1 1
1

1
2

1
4 15e

1

ν = −
−

= , , …
( )p

1 1
1

1
2

3
4 16h

This compressible liquid states are referred to as the Hall metal states.

Filling of the 0 K′↓ sublevel of lowest Landau level.  For a decreasing magnetic field (B <  B0) the 
second sublevel of the LLL is being filled with N −  N0 free carriers (remaining N0 particles must be 
located in the lowest ′↑K0  sublevel). The cyclotron orbit with the size as before hc

eB
 does not fit to the 

particle distribution,

= ≤
( )

hc
eB

S
N

S
N 170

Only in one exceptional situation the cyclotron radius is long enough to reach neighbouring particles,

= =
/ ( )

hc
eB

S
N

S
N 2 180

The resulting integer filling factor ν =  2 corresponds to both – ′↑K0  and ′↓K0  – completely filled (so 
experiencing integer quantum Hall effect – IQHE) subbands of the LLL.

If, however, the cyclotron orbits are shorter in comparison to the particle separation, the multi-loop 
trajectories are needed to restore the exchanges. In the p-looped case (p – odd),

Table 1.   Filling factors, for the first sublevel of the LLL, for electrons manifesting the FQHE 
determined with the commensurability condition (multi-loop trajectories). The filling factors marked with 
a blue colour are experimentally accessible 12,14–19,22,24. We have noticed that only fillings, which are separated 
from the nearest integer ν by more than ~0.3 −  0.2, are (at the moment) observable. Others are lost in a 
deep and extended minimum of a longitudinal resistivity connected with integer ν.
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= =
− ( )

p hc
eB

p S
N

S
N N 190 0

thus ν = + = = , …+1e p
p

p
1 1 4

3
 and dually for holes ν = − = = , …−2h p

p
p

1 2 1 5
3

 Let us note, that the 
fractional quantum Hall states for the second sublevel are generated by less than half of electrons (the 
rest N0 participate in a creation of the IQHE in the lower subband), hence the dips in a longitudinal and 
plateaus in a transverse resistivity may not be so pronounced.

Analogically, assuming that only a fraction of a flux quantum falls on a last loop from the p-looped 
trajectory, we can generalize the hierarchy (Table 2),

ν ν= +
( − ) ±

, = −
( − ) ± ( )

n
n p

n
n p

1
1 1

2
1 1 20e h

Filling of the ↑K1  subband of the first Landau level.  While the ↑K1  subband of the first Landau 
level is filling, the total number of free particles is raising from a double degeneracy 2N0 to a triple 
degeneracy 3N0 (for νe =  3). During this process, N −  2N0 electrons are being located on the 1LL and 
remaining 2N0 are experiencing the IQHE in the zeroth Landau level. It may be misleading that we only 
include two sublevels of the LLL in our considerations, but remember that N denotes the number of free 
electrons in the conduction band and for that kind of particles only two sublevels are available. Additionally, 
the filling factors for free carriers from the VB (holes) are a simple mirror reflection (with a minus sign) of 
filling factors for free carriers from the CB (electrons).

The surface of a cyclotron orbit from the first Landau level is considerably changed and equals to,

( × + ) = ( )
hc
eB

hc
eB

2 1 1 3
21

This situation (sudden growth of the cyclotron orbit size) allows for new possibilities – new allowed 
commensurability conditions, which are listed below2,3:

	1. The cyclotron orbit may fit perfectly to the minimal interparticle separation in this subband,

= =
− ( )

hc
eB

S
N

S
N N

3 3
2 220 0

thus obtained filling factors are ν = = +2e
7
3

1
3

 and analogically for holes ν = − =3h
1
3

8
3

. Note, that 
in this case multi-looped trajectories are not needed to form a Hall state in a fractionally filled Landau level, 
so obtained filling factors correspond to the single-loop FQHE. This new Hall feature is possible only for 
n >  0. Although the quantization of the transverse resistivity is fractional and simmilar to that for ordinary 
FQHE ( )ν

h
e2 , the Laughlin correlations are represented with the p =  1 power in Jastrow polynomial, which 

displays single-loop braid exchanges similar to that in IQHE. The system is, hence, described with a full 
braid group. This specific FQHE state is associated with single-loop cyclotron braids, in contrast to the 
multi-loop braided FQHE, typical for n =  0. It seems, that the stability of this novel effect might be compa-
rable to the stability of the IQHE, rather than of the ordinary FQHE, what was confirmed in ref. 24 and 
described in more details in a “Comparison with experiment” paragraph.

Table 2.  Filling factors, for the second sublevel of the LLL, for electrons experiencing the FQHE, 
determined with the commensurability condition (multi-loop trajectories). The filling factors marked with 
a blue colour are experimentally accessible12,15,17,22,24.
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	2. Also in this band the cyclotron radius might be too short to match the distance between particles. 
Then the multi-loop trajectories have to be introduced resulting in the FQHE for electrons,

⋅ = ⋅ =
− ( )

p hc
eB

p S
N

S
N N

3 3
2 230 0

thus ν = = + = , …+ 2e
p

p p
6 1

3
1

3
19
9

 We can also estimate the dual filling factor for holes 
ν = − = , …3h p

1
3

26
9

The generalized hierarchy can be established in the same manner as for subbands of the zeroth Landau 
level (we could also derive in that manner the Hall metal hierarchy, n →  ∞),

ν ν= +
( − ) ±

, = −
( − ) ± ( )

n
n p

n
n p

2
3 1 1

3
3 1 1 24e h

Exemplary fractions are presented in the Table 3. It is worth to emphasize, that in the Jain’s model the 
FQHE of electrons is described as the IQHE of CFs. Additionally, within this construction n stands for 
the number of completely filled Landau levels in a diminished effective magnetic field experienced by 
CFs, so it needs to be an integer number. However, in the discussed cyclotron model, 

n
1  is a portion of 

a flux quantum that falls on the last loop of a multi-looped cyclotron trajectory (an implementation of 
a multi-looped braid). Therefore, 

n
1  can be set equal to any number of magnetic field flux quanta per 

particle in the system that ensures, or rather allows, the creation of an collective Hall-like state. Finally, 
n does not need to be an integer number. We assume, that it can take the value of any fractional filling 
factor derived from the commensurability conditions. It is also worth to notice, that φ

n
1

0 embraced by 
a cyclotron orbit from the LLL (defined with exactly one flux quantum), actually corresponds to φ

n
3

0 
embraced by a cyclotron orbit from the 1LL (defined with exactly three flux quanta). Additionally, 
some other commensurability conditions are also worth to consider. The size of a multi-looped trajec-
tory may match the separation of every m'th particle (the biggest value of m, equal to 3 in the 1LL, is 
established from a condition leading to the IQHE formation in this Landau band). Obtained hierar-
chies pretty outstandingly agree with experiment (ν = + = , , , …

( − ) −
2e

n
n p

2
3 1 1

8
3

22
9

12
5

;  

ν = + = , , , , , …
( − ) −

2 3e
n

n p
3

3 1 1
8
3

13
5

18
7

23
9

28
11

; =n
m
3 ; m – integer; p =  3).

We have also noticed that only fillings which are separated from the nearest integer ν by more than 
0.3, are (at the moment) experimentally observable (in the table this filling factors are marked with a 

Table 3.  Filling factors, for the lowest sublevel of the first LL, for electrons experiencing the FQHE, 
determined with the commensurability condition (multi-loop trajectories). The horizontal line separates a 
standard set of fractions (constructed witch n =  m/3, m-integer) from a set of fractal filling factors (that may 
also be derived from higher order commensurability conditions). Colored filling factors decribe fillings, which are 
separated from the nearest integer ν by more than 0.3 and are (at the moment) experimentally observable12,15,22,24. 
Others, are lost in a deep and extended minimum of a longitudinal resistivity connected with the integer ν.
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blue colour). Others, are lost in a deep and extended minimum of a longitudinal resistivity connected 
with the integer ν.

	3. �It is also possible that the cyclotron surface matches to twice the minimal interparticle separation, 
which allows every second carrier to exchange (it allows also for establishing of the statistics),

= =
− ( )

hc
eB

S
N

S
N N

3 3 2
2 250 0

thus ν =e
8
3

 and ν =h
7
3

 (also the single-loop FQHE states – no need for multi-looped trajectories).

	4. �The last condition is fulfilled when the cyclotron orbit fits the minimal separation of every third par-
ticle (making their exchanges possible),

= =
− ( )

hc
eB

S
N

S
N N

3 3 3
2 260 0

Finally, ν =  3, which corresponds to completely filled three subbands (each generating the IQHE) of 
Landau levels (two from the LLL – ′↑K0  and ′↓K0 ; one from the 1LL – ↑K1 ).

Filling of the ↓K1  subband of the first Landau level.  For low magnetic fields, when a number of 
particles is in the range 4N0 >  N >  3N0, one deals with a filling of the ↓K1  sublevel of the 1LL. In lower 
subbands particles are generating the IQHE, in subbands of the LLL ( ′↑K0  and ′↓K0 ) the cyclotron 
orbits fits perfectly to the electron separation =hc

eB
S

N0
, while in the ↑K1  sublevel of the first Landau level 

the commensurability condition has the form =hc
eB

S
N

3 3

0
.

In this subband there are N −  3N0 electrons, the cyclotron orbits have size hc
B

3
3

 and the quantum 
Hall-like states can occur for filling factors derived from commensurability terms:

	1. If the cyclotron orbit equals to the particle separation, the commensurability requirement,

= =
− ( )

hc
eB

S
N

S
N N

3 3
3 270 0

This condition is fulfilled, when ν =e
10
3

 and dually for holes ν =h
11
3

 (the single-loop FQHE is obtained).

	2. �If the cyclotron orbit is too short to reach the neighbouring particles, then multi-looped trajectories 
need to be introduced. This happens for fillings,

ν⋅ = =
−

→ =
+

= + = , …
( )

p hc
eB

p S
N

S
N N

p
p p

3
3

1 9
3

3 1
3

28
9 28e

0 0

The conjugate filling factor (for holes) can also be estimated ν = − =4h p
1

3
35
9

.
The generalized hierarchy takes the form of,

ν ν= +
( − ) ±

, = −
( − ) ± ( )

n
n p

n
n p

3
3 1 1

4
3 1 1 29e h

One should notice that the fractions obtained experimentally24 can be easily derived from the above 
equation, if one considers n equal to the filling factors presented in the Table 1. Exemplary calculations,

ν ν= +
/

⋅ / ⋅ ( − ) −
= , = −

/
⋅ / ⋅ ( − ) −

=
( )

3
3 11

3 3 11 3 1 1
24
7

4
3 11

3 3 11 3 1 1
25
7 30e h

ν ν= +
/

⋅ / ⋅ ( − ) −
= , = −

/
⋅ / ⋅ ( − ) −

=
( )

3
3 13

3 3 11 3 1 1
18
5

4
3 13

3 3 11 3 1 1
17
5 31e h

This fractions may also be accomplished with a use of commensurability conditions mentioned previ-
ously: ν = + = , …

( − ) −
3e

n
n p

2
3 1 1

17
5

; ν = + = , …
( − ) −

3e
n

n p
3

3 1 1
18
5

25
7

; = ,n 1 4
3

; m – integer; p =  3.

	3. �For a commensurability condition = =
−

hc
eB

S
N

S
N N

3 3 2
30 0

 – corresponding to the cyclotron orbit allowing 
for exchanges of every second electron – the filling factor is equal to ν =e

11
3

 (and dually for holes 
ν =e

10
3

).
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	4. �Finally, a commensurability condition = =
−

hc
eB

S
N

S
N N

3 3 3
30 0

 (exchanges of every third electron) results 
in the IQHE for all four subbands (ν =  4).

Filling of the 1 K′↑ subband of the first Landau level.  Further reducing the strength of an external 
magnetic field results in four completely filled Landau sublevels ( ′↑K0 , ′↓K0 , ↑K1 , ↓K1 ) and a partially 
filled third ( ′↑K1 ) subband of the 1LL. In the subbands of the LLL the commensurability condition 

=hc
eB

S
N0

 is fulfilled, while in ↑K1  and ↓K1  subbands from the 1LL the commensurability condition takes 
the form of =hc

eB
S

N
3 3

0
. The total number of particles is placed between 4N0 and 5N0 and the surface 

encircled by a cyclotron orbit of a carrier from the 1LL is equal to hc
eB
3 . Here, there are following 

possibilities:

	1. The cyclotron orbit may fit to the minimal distance between particles,

= =
− ( )

hc
eB

S
N

S
N N

3 3
4 320 0

thus ν =e
13
3

 (and the conjugated state ν =h
14
3

) corresponds to the single-loop FQHE in a partially filled 
′↑K1  subband of the 1LL.

	2. �If the cyclotron radius is shorter than the particle separation, then multi-looped orbits are required 
resulting in the FQHE in this subband. Appropriate filling factors are determined from the condition,

ν⋅ =
⋅

=
−

→ =
+

= + = , …
( )

p hc
eB

p S
N

S
N N

p
p p

3 3
4

12 1
3

4 1
3

37
9 33e

0 0

Symmetrically for holes ν = − =5e p
1

3
44
9

. Also this hierarchy can be generalized (assuming that on a 
last loop from a p-looped trajectory falls only a 

n
1  portion of a flux quantum),

ν ν= +
( − ) ±

, = −
( − ) ± ( )

n
n p

n
n p

4
3 1 1

5
3 1 1 34e h

Exemplary (experimentally observable24) filling factors,

ν ν= +
/

⋅ / ⋅ ( − ) −
= , = −

/
⋅ / ⋅ ( − ) −

=
( )

4
3 13

3 3 13 3 1 1
23
5

5
3 13

3 3 13 3 1 1
22
5 35e h

and

ν ν= +
/

⋅ / ⋅ ( − ) −
= , = −

/
⋅ / ⋅ ( − ) −

=
( )

4
3 11

3 3 11 3 1 1
31
7

5
3 11

3 3 11 3 1 1
32
7 36e h

This fractions may also be accomplished with a use of commensurability conditions mentioned previ-
ously: ν = + = , …

( − ) −
3e

n
n p

2
3 1 1

22
5

; ν = + = , …
( − ) −

3e
n

n p
3

3 1 1
23
5

32
7

; = ,n 1 4
3

; m – integer; p =  3.

	3. �It is possible that the cyclotron trajectory fits perfectly to the separation of every second particle and 
the commensurability condition = =

−
hc

eB
S

N
S

N N
3 3 2

40 0
, and so the filling factor ν =e

14
3

 ( )ν =h
13
3

 corre-
sponds to the single-loop FQHE for a partially filled third sublevel of the 1LL.

	4. �Finally, a commensurability condition = =
−

hc
eB

S
N

S
N N

3 3 3
40 0

, νe =  5 corresponds to the IQHE in all five 
( ′↑K0 , ′↓K0 , ↑K1 , ↓K1  and ′↑K1 ) Landau subbands.

Filling of th 1 K′↓ subband of the first Landau level.  Partial and complete filling of the last sub-
band of the 1LL can be achieved after reducing the strength of the magnetic field and attaining the region 
6N0 >  N >  5N0. As in all previous cases, lower sublevels are already completely filled, fulfilling all condi-
tions for realization of the IQHE ( =hc

eB
S

N0
 in the LLL and =hc

eB
S

N
3 3

0
 in the 1LL). The remaining N −  5N0 

electrons are moving along the cyclotron trajectories (as braid group elements) that encircle a hc
eB
3  surface. 

It is worth to mention that fractions from the last subband of the 1LL are currently not experimentally 
accessible. All possible conditions and resulting ν are listed below:

	1. The commensurability condition,
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= =
− ( )

hc
eB

S
N

S
N N

3 3
5 370 0

and filling factors ν =e
16
3

, ν =h
17
3

 correspond to the single-loop FQHE in a partially filled last sublevel 
of the 1LL.

	2. �For a cyclotron radius shorter than the interparticle separation, the multi-looped trajectories need to 
be introduce and a commensurability condition takes a form,

ν
⋅

=
⋅

=
−

→ =
+

= , …
( )

p hc
eB

p S
N

S
N N

p
p

3 3
5

15 1
3

46
9 380 0

and dually for holes ν = − = , …6
p
1

3
53
9

.

	3. �It is possible that the cyclotron trajectory fits perfectly to the separation of every second particle and 
the commensurability condition = =

−
hc

eB
S

N
S

N N
3 3 2

50 0
, ν =e

17
3

 ( )ν =h
16
3

 corresponds to the (sin-
gle-loop) FQHE for a partially filled ′↓K1  sublevel of the 1LL.

	4. �Finally, commensurability condition = =
−

hc
eB

S
N

S
N N

3 3 3
50 0

, νe =  6 corresponds to the IQHE in all five 
Landau subbands.

Summarizing of filling ratios obtained with the use of the commensurability conditions.  All 
of the filling factors obtained in preceding subsections – from various commensurability conditions – are 
captured in the Table 4. Note, that in a very similar manner as presented in the previous section, one can 
estimate the filling factors for higher Landau levels, only with the use of the commensurability conditions,

	1. If the cyclotron orbit fits perfectly to the interparticle separation, the condition takes the form of,

( + ) = ( + ) =











− ( + − )
= ,

− ( + ( − ) + − )
= , ,

( )


n hc
eB

n S
N

S
N n m N

n

S
N n m N

n
2 1 2 1

2 1
for 0 1

2 4 1 1
for 2 3 4

39
0

0

0

Table 4.   Filling factors obtained from commensurability conditions for all spin-valley branches of n = 0 
and n = 1 Landau levels. Fillings ν describing the IQHE and the single-loop FQHE are marked with three 
colours: a dark blue colour - the cyclotron orbit fits to the interparticle separation, a light blue colour - when 
it fits to the separation of every second particle and a green colour - if it fits to the separation of every third 
particle. Additionally, filling factors describing the ordinary FQHE are also marked with three different 
colours: a red colour - when the fraction is derived from the basic hierarchy, a magenta colour - when the 
fraction is derived from the generalized hierarchy with n =  m/3 (m-integer) and a black colour - also for 
fractions derived from the generalized hierarchy but with n ≠ m/3 (these fillings may also be derived from 
higher order commensurability conditions).
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where, n =  0, 1, 2… is the Landau level index and m =  {1, 2, 3, 4} (m =  {1, 2} in the LLL) enumerates 
the sublevels of LLs.

	2. If the cyclotron orbit is twice in dimension of the interparticle separation,

( + ) = ( + ) =











− ( + − )
= ,

− ( + ( − ) + − )
= , ,

( )


n hc
eB

n S
N

S
N n m N

n

S
N n m N

n
2 1 2 1

2
2 1

for 0 1

2
2 4 1 1

for 2 3 4
40

0

0

0

	3. If the cyclotron orbit fits to the separation of every third particle,

( + ) = ( + ) =











− ( + − )
= ,

− ( + ( − ) + − )
= , ,

( )


n hc
eB

n S
N

S
N n m N

n

S
N n m N

n
2 1 2 1

3
2 1

for 0 1

3
2 4 1 1

for 2 3 4
41

0

0

0

	4. �The last commensurability condition is useful in the case, when the cyclotron orbit is too short to 
reach the neighbouring particle and the multi-loop trajectories are necessary to restore exchanges,

( + ) = ( + ) =











− ( + − )
= ,

− ( + ( − ) + − )
= , ,

( )


p n hc
eB

p n S
N

S
N n m N

n

S
N n m N

n
2 1 2 1

2 1
for 0 1

2 4 1 1
for 2 3 4

42
0

0

0

Note, that the generalized hierarchy can also be derived.
Also, one can define which ν are filling ratios of the ordinary FQHE and which of the single-loop 

FQHE. Note, that an integer quantum Hall effect can be defined as a collective state that is formed 
without the implementation of multi-looped trajectories (multi-looped braids) to provide the particle 
exchanges. In the same time, the ordinary fractional quantum Hall effect is defined as a collective state 
with multi-looped trajectories implemented. That is why it is rather improper and may be misleading to 
call the collective states described with fractional filling factors, but created with cyclotron orbits with 
no additional loops, as the ordinary FQHE states or even the IQHE states. In this paper we named this 
unique ν as single-looped FQHE filling factors.

It is also worth to emphasize, that the role of the Coulomb repulsion force is crucial even within the 
cyclotron subgroup model, since it ensures that the minimal interparticle separation (particles cannot 
approach closer to each other) is rigidly kept. Otherwise, it would be kept only in average and trajec-
tories outside the cyclotron subgroup could be occasionally realized. Besides the interactions, also the 
two-dimensionality of a manifold is an important prerequisite (the rich structure of a full braid group). 
Finally, the commensurability conditions of the cyclotron orbit and the minimal interparticle distance 
reflect the necessity of exchanges of neighbouring particles for creation of collective states like the frac-
tional (ordinary or single-looped) and integer quantum Hall states.

Comparison with the experiment.  Since its first isolation by Geim and Novoselov (2004), graphene 
was subjected to the intensive, experimental research. Due to very strong interactions between massless 
Dirac particles (as a result of small dielectric constant ε in comparison to a standard 2DEG) signs of a 
collective behaviour, resulting in the integer and the fractional quantum Hall effect formation, were 
highly expected. Also the possibility of modifying with a lateral gate voltage (Vbg <10 V to avoid collapse 
of a sample induced by electrostatic attraction14) of the carrier density in a fixed magnetic field strength, 
made experiments on monolayer graphene exceptional. Although the IQHE appeared to be extremly 
robust, allowing for its observation even in room temperatures29, the FQHE remained hidden by the 
cause of a high disorder level. A significant improvement in transport properties was achieved after a 
preparation of graphene both suspended and placed on a boron-nitride substrate. However, scientists 
experienced a great disappointment – measurements carried out on these samples in a standard Hall-bar 
geometry failed to develop quantum Hall features30 (a recently achieved31 implementation of non-invasive 
contacts, which are not strictly connected to the probed area of a sample, finally allowed for an observa-
tion of Hall-like states in four-terminal measurements). Later it was argued16, that the possible problem 
in multi-terminal devices may lie in small dimensions of samples (especially a small length to width ratio 
W/L). The voltage probing lead placed within a large potential drop region – a hot spot – and a proximity 
of the current probing lead may result in shorting out of the Hall voltage. Additionally, adsorbates may 
not be completely removed from a device body – but only redistributed over a monolayer graphene flake 
– upon the current annealing (passing a large current through a sample)31. This problem also arises from 
the interfering nature of electrodes in the Hall-bar geometry, which act like heat sinks – electrons with 
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a very high kinetic energy can easily leak out through voltage probing terminals – and give rise to an 
inhomogeneous temperature profile31. Consequently, abandoning a typical measurment geometry and 
adopting a two-terminal observation metod allowed for the first observation of a ν = 1

3
 FQHE state in 

graphene14,19. One should, however, know, that a detailed description of a quantum Hall state in the 
two-terminal geometry can be quite tricky. For exemple, the value of obtained conductance G actually 
depends on both longitudinal and transverse conductivities16. Although, in a vicinity of σxx dips, the total 
conductivity G is expected to coincide with σxy, its value may still be higher than those of traditional 
Hall-bar measurements14. Also the estimation of a FQHE excitation gap – and other quantitative char-
acterizations – cannot be performed in a straightforward manner18. The latter requires an appropriate 
theoretic approach, like the Gaussian model with peak positions and widths, together with a sample W/L 
relation (effective rather than real, since its value may differ from the geometric aspect ratio of the 
device), as parameters16. It was also demonstrated, that in such devices pinning of an electron density 
below the contacts, which results in a inhomogenous density in the graphene sample and a p-n-p junc-
tion formation (or p-n, n-n’ and others), gives rise to a fractional conductance G connected with IQHE 
and not FQHE as expected16,32.

Moreover, recently other type of a measurement setup appeared to be very successful in developing of 
collective features – especially in the LLL. Since graphene flakes may be much cleaner on the nanometer 
scale, probing a smaller area can allow for observation of the fragile FQHE states, which are absent in 
typical transport experiments. Because of a nonzero disorder, the typical procedure gives only an average 
view of the sample characteristics and may cover up some interaction induced effects17. The microscopic 
information is not blurry and can be obtained with the use of local electronic compressibility measure-
ments, performed with single-electron transistors12,15.

It is also worth to emphasize, that finally some plateaus in σxy corresponding to the integer and the 
fractional quantum Hall effect were observed in multi-terminal devices18,22,24. The progress in a Hall-bar 
measurements was achieved after replacing the invasive contacts, directly connected to a sample body 
probed by transport measurements, with the non-interfering electrodes, connected with a flake by 
the etched constrictions31. As a matter of fact, the experiment carried out in this geometry by Amet  
et al.24 was the first one to reveal the plethora of fractional quantum Hall states in the first Landau level 
(although a few states, mostly associated with the single-loop FQHE, were already evidenced earlier22).

Additionally, in high magnetic fields, in graphene samples, a transition to the insulating state was 
observed for low concentrations of carriers14,19. The latter manifest itself as a dramatic increase in the 
resistance. It was also pointed out by Du et al.19, that the fractional quantum Hall states (like ν =  − 1/3) 
may compete with this insulating phase, leading to the disappearance of Hall plateaus in the presence 
of high disorder. However, the FQHE may reappear after annealing of the sample. Thus, a great value 
of mobility seems to play a triggering role in a collective Hall-like state creation, what stays in perfect 
agreement with the cyclotron subgroup model, since a sufficiently longer mean free path is needed to 
traverse multi-looped trajectories.

The recent measurement of the transconductance in the PET configuration of small scrapings of 
graphene (0.8 ×  3 μm) in a varying gate voltage Vbg +  δVbg(t) (f =  433 Hz, Vbg ~ 1 V, δVbg ~ 10 mV), has 
revealed a fine structure of local correlated states17. This structure is visible in typical transport experi-
ments as noisy-like oscillations but in the not-noisy regime. The detailed inspection of this fluctuations 
was done by visualization of the transconductance in the (N, B)-plane, which revealed a highly ordered 
pattern (Fig. 2 in 17) attributed to series of local correlated states closely accompanying fractions for the 
IQHE (and the FQHE as well) in monolayer graphene with broken SU(4) symmetry. The linear character 
of this new feature was discovered, including several bunches collinear to directions of main IQHE/FQHE 
ratios in (N, B)-plane. Let us briefly investigate these peculiarities. Straight lines, which lie in a (N, B)-plane 
and have a common point in a coordinate origin, are connected to a constant filling factor value; 

=
ν

B Nhc
e

1 . In ref. 17 units were selected in a manner, that = 1hc
e

. An arbitrary line in a (N, B)-plane can 
be described with an expression B =  αN +  β. Its successive points are related to filling factors making up 
the hierarchy ν =

α β+
N

N
, (αN +  β =  N/ν). The latter seems to match quite well the FQHE hierarchy in 

consecutive subbands of LLs, according to the scheme arising from the commensurability conditions for 
monolayer graphene in magnetic field presence, ν = ±

⋅ ( + ) ⋅ ( − ) ±
b l

l n p2 1 1 1
 with n enumarating Landau 

bands, b depending on n and level degeneracy, first ±  arising from an electron – hole symmetry and 
second one – from the ‘eight-figure-shape’ of the trajectory. These fractions are gradually shifted towards 
subband edges with growing n and compressed to smaller periods for higher n, which also agrees with 
the details of the new observation17. Similarly, vertical lines appearing in the picture (ν = .const

B
, N =  const.) 

might be associated with a basic filling factor set ν =
p
1 .

The hierarchy of filling factors for the spin-valley branches ′↑K0  and ′↓K0  of the LLL determined  
by commensurability conditions stays in close agreement with the local compressibility  
measurements performed by Yacobi group12,15. The filling factors ν = , , , , , , , , , , ,1 1
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in graphs contained in this paper, but they can be easily found in Fig. 1b in ref. 15 and Fig. 4c in ref. 15, 
respectively).

In the next subbands – ↑K1 , ↓K1 , ′↑K1  (the highest subband of the 1LL is still unreachable in exper-
iments) – the situation slightly changes and there are three, not one, filling factors corresponding to the 
single-looped braid group generators (two single-loop FQHE states and one IQHE state),

ν
ν
ν










= / , / , ↑
= / , / , ↓
= / , / , ′↓ ( )

K
K
K

7 3 8 3 3 for 1
10 3 11 3 4 for 1
13 3 14 3 5 for 1 43

All of this ν, presented in Fig. 5, were observed experimentally in C.R.Dean et al.22 and F.Amet et al.24 
papers. Once again we emphasize that in the standard composite fermion theory integer filling factors 
always correspond to the IQHE4,5, while all other fractions are assigned with the FQHE. However, within 
the cyclotron subgroup model fractional ratios may correspond to the so-called single-loop FQHE. The 
collective Hall-like states, that are accomplished without the need of multi-looped trajectories, are 

Figure 3.  Inverse compressibility µd
dn

 as a function of a carrier density and a magnetic field  
(a). = − ×μ − meVcm2 10d

dn
10 2 is colored with a dark blue colour, while = ×μ − meVcm4 10d

dn
10 2 is colored 

with a dark red colour. This picture is based on the measurements in ref. 12. The experimentally observed 
dips in the longitudinal resistance corresponding to the FQHE in the ′↑K0  and ′↓K0  subblevels of the 
zeroth Landau level24 (b). The filing factors from the LLL are marked blue (there are some additional, mostly 
integer, filing factors from higher LLs).

Figure 4.  Inverse compressibility µd
dn

 as a function of a filling factor and a magnetic field. The filling 
ratios from the LLL are marked blue. In the (a) picture = − ×μ − meVcm2 10d

dn
10 2 is colored with a dark 

blue colour (− 1 ×  10−16 eVm2 (b)), while = ×μ − meVcm4 10d
dn

10 2 is colored with a dark red colour 
(2 ×  10−16 eVm2 (b)). The (a) diagram is based on a measurement form ref. 12, while the (b) diagram - from 
ref. 15.
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responsible for this phenomenon. Thus, particles are not forced to traverse path consisted of many loops 
(to enhance a cyclotron radius and restore particle exchanges) and the system is described with a full 
braid group, not a subgroup. Although, these single-loop states are combined with a noninteger value of 
a transverse conductivity σxy, its nature is expected to have more in common with the integer quantum 
Hall effect, rather than the ordinary FQHE. Our conclusions seem to agree with a measurment presented 
in Fig. 1c in ref. 24. Remarkably, the dips in a longitudinal resistance Rxx described with fractional filling 
factors ν = , , ,8

3
10
3

11
3

13
3

 are developing, side by side with integer ν, in Landau fan diagram for magnetic 
fields as low as 5T. This happens even before the famous ν = 1

3
 state emerges (as well as its counterpart 

4
3

 from the second spin-valley branch of the LLL). This proves that states described by multiples of 1
3

 
(solely in the 1LL) are almost as stable as integer quantum Hall states, as it was predicted by the 
topology-based model.

The FQHE filling factors from the first Landau level (determined from the main and the generalised 
hierarchy) are gathering close to the subband rims, which are marked with the integer filling ratios. The 
higher the subband index is, ν converge closer to the rims (this is also the feature of the FQHE fillings 
in typical 2D semiconductors2). The fractional filling factors placed in the vicinity of the IQHE ratio 
may disappear in its extended dip of the longitudinal resistivity. This mixing leads to the further flatten-
ing of the minimum already large in diameter. These predictions are consistent with the experimental 
observations, since a great amount of the theoretically derived Hall states stay beyond the resolution 
ability of measurement techniques. We have noticed, that only filling factors, which are separated from 
the nearest integer ν by more than 0.3 are measured. The latter is confirmed by the fact, that all filling 
factors – derived in the previous sections – that fulfill this condition (for example all ν marked with a 
blue colour in the Table 3),

ν
ν
ν










= / , / , / , / , / , / ↑
= / , / , / , / ↓
= / , / , / , / ′ ↓ ( )

K
K
K

12 5 13 5 17 7 18 7 22 9 23 9 for 1 LL
24 7 25 7 18 5 18 7 for 1 LL
23 5 22 5 31 7 32 7 for 1 LL 44

are observed in the experiments carried out in the Goldhaber-Gordon group24 and presented in Fig. 6.

Discussion
The commensurability conditions are entirely based on a unique topology of two-dimensional mani-
folds with the magnetic field presence – and its impact on an appropriate braid group describing the 
multi-particle system – taken into account. In a great simplification, the commensurability conditions 
determine whether the cyclotron orbit fits to the interparticle distance or not. The fulfillment of fitting 
terms ensures that the analyzed filling factor describes the collective quantum Hall-like state. In this 
article we have determined the FQHE and the IQHE hierarchy for the two lowest Landau levels, which 
seem to stay in a perfect agreement with the data provided by experiments. It is worth to notice, that 
states with fractional fillings may also correspond to the single-looped fractional quantum Hall effect, 
when the particles do not need the multi-looped trajectories (arising from new multi-looped operators 
of a reduced full braid group called a cyclotron braid subgroup) for exchanges. The paper also presents 
a summary equations for ν calculation in the n =  0 and the n =  1 Landau level, but they can be eas-
ily generalized for higher LLs. We have also pointed out the basic differences between the typical 2D 
semiconductor and the monolayer graphene, with a special attention paid on a distinct definition of a 
filling factor in the latter case. It is also emphasised that, although the calculations were carried out for 
free electrons from the CB, the obtained hierarchy is actually a mirror reflection taken with a minus 
sign of the one for free holes from the VB, which is usually more pronounced in experimental results. 
Additionally, it is worth to remember that the specific character of the graphene energy spectrum and a 
nonzero Berry phase cause that the LLL is placed exactly in the Dirac point and only two out of its four 
sublevels are placed in the conduction band and are accessible for free electrons.

Figure 5.  The experimentally observed dips in the longitudinal resistance corresponding to the IQHE 
and the sigle-loop FQHE in the ↑K1 , ↓K1 , ′↑K1  subblevels of the 1LL24.
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In the future work we would like to derive and present the detailed description of the appropriate 
braid subgroup for all filling factors, even out of the lowest Landau level. Note, that the appropriate 
generators (of cyclotron subgroups) were already defined for the main line 

q
1  (q – odd) of the FQHE 

hierarchy1–3.
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