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Identification and analysis of 
the N6-methyladenosine in 
the Saccharomyces cerevisiae 
transcriptome
Wei Chen1,2, Hong Tran2, Zhiyong Liang3, Hao Lin3 & Liqing Zhang2

Knowledge of the distribution of N6-methyladenosine (m6A) is invaluable for understanding RNA 
biological functions. However, limitation in experimental methods impedes the progress towards 
the identification of m6A site. As a complement of experimental methods, a support vector machine 
based-method is proposed to identify m6A sites in Saccharomyces cerevisiae genome. In this model, 
RNA sequences are encoded by their nucleotide chemical property and accumulated nucleotide 
frequency information. It is observed in the jackknife test that the accuracy achieved by the proposed 
model in identifying the m6A site was 78.15%. For the convenience of experimental scientists, a web-
server for the proposed model is provided at http://lin.uestc.edu.cn/server/m6Apred.php.

The methylation of the 6th nitrogen of Adenosine (N6-methyladenosine, m6A) is the most prevalent form 
of RNA modification and is found in all three domains of life1. m6A is catalyzed by an evolutionarily con-
served, multi-component enzyme2. Unlike adenosine-to-inosine editing, m6A does not alter the coding 
capacity of transcripts3,4. However, it has been demonstrated that m6A is associated with a number of key 
biological processes including mRNA splicing, export, stability, and immune tolerance5–7. Moreover, it 
has been reported that m6A is closely correlated with the mammalian brain development8. The regulatory 
role of m6A in cell division has also been reported in plants9.

By using high-throughput techniques such as MeRIP-Seq8 and m6A-seq10, the distribution of m6A has 
been characterized in the human and mouse transcriptomes8. The experimental results revealed that m6A 
sites tend to occur near the stop codon, in 3’ UTR, and within long internal exons8,11. The nonrandom 
distribution of m6A sites across the genome is highly conserved from yeasts to humans11,12, suggesting 
that m6A modification is both fundamental and important for organisms. The experimental results also 
demonstrated that the m6A sites identified in the yeast harbored the RGAC (R =  A/G) consensus motif12, 
reminiscent of the mammalian RRACU (R =  A/G) motif11. Similar to epigenetic DNA and histone mod-
ifications, m6A modification is also dynamic and reversible, the m6A patterns change in different cell 
types10 or when cells are stressed12.

The experimental methods yielded quite encouraging results and did play a role in promoting the 
research progress on identifying the distribution of m6A in the transcriptome. However, resolution of 
both m6A-seq and MeRIP-seq methods is low, only ~24 nt (nucleotide) around the methylated adeno-
sine11. Therefore, experimental methods cannot pinpoint which adenosine residue is actually modified. 
In addition, current experimental methods are both costly and time consuming. Therefore, it is necessary 
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to develop new methods for studying the distribution and function of m6A. As excellent complements to 
experimental techniques, computational methods will speed up genome-wide m6A detection.

However, to the best of our knowledge, there is no computational tool available for the discovery of 
m6A. In the present study, we propose a support vector machine based method to identify the m6A sites 
in the Saccharomyces cerevisiae genome. By using the nucleotide chemical property and accumulated 
nucleotide frequency information, the sequence-order effects and nucleotide physicochemical properties 
are integrated together in the proposed model. In the jackknife test, an overall accuracy of 78.15% is 
achieved in identifying the m6A sites in the benchmark dataset. For the convenience of the experimental 
scientists, a web-server for the proposed model is provided at http://lin.uestc.edu.cn/server/m6Apred.
php.

Results
Nucleotide preference. In order to understand nucleotide preference surrounding m6A sites, based 
on the benchmark dataset, we computed the sequence logos of the 10 upstream and 10 downstream 
nucleotides using WebLogo13. As shown in Fig.  1, besides the well-known consensus motif RGAC 
(R =  A/G) located at − 2 to 1 bp relative to the m6A site (position 0)12, strong preference of nucleotides 
in both upstream and downstream sequences surrounding the m6A site were also observed. The adenines 
are favored at positions − 4, − 3, and − 2, whereas the uracils are favored at positions from + 2 to + 4. In 
contrast, except for the RGAC (R =  A/G) located at − 2 to 1, no exclusive preference of nucleotides was 
observed surrounding the unmethylated adenosine.

m6A sites identification. Three cross-validation methods, the sub-sampling (or K-fold 
cross-validation) test, the independent dataset test, and the jackknife test, are often used to evaluate 
the quality of a predictor. Among the three methods, the jackknife test is deemed as the least arbitrary 
and most objective14 and hence has been widely recognized and increasingly adopted by investigators to 
examine the quality of various predictors15–17. Accordingly, the jackknife test was used to examine the 
performance of the model proposed in the current study. In the jackknife test, each sample in the training 
dataset is in turn singled out as an independent test sample and all the properties are calculated without 
including the one being identified.

In order to compare the contribution of the features for m6A site identification, we firstly performed 
the predictions using individual nucleotide chemical property and their combinations. The predictive 
results are reported in Table 1. Among the three kinds of nucleotide chemical properties, the hydrogen 
bond yields the highest predictive accuracy (71.32%), indicating that it has the largest contribution for 
m6A site identification. However, the predictive accuracies obtained by using each kind of nucleotide 
chemical property alone are all lower than that obtained by using all three kinds of nucleotide chemical 
properties (Table 1).

Considering the observed nucleotide preference surrounding the m6A sites (Fig.  1) and the above 
results, the accumulated nucleotide frequency and nucleotide chemical property were combined to 
encode the sequences in the training dataset. Hence, each 21-bp long sequence in the dataset was rep-
resented by an 84 (4× 21)-dimensional vector (see Methods) and used as the input of SVM to train 
the model for identifying m6A sites. In the jackknife test, the proposed model obtained an accuracy of 

Figure 1. Sequence logo of the 10 upstream and 10 downstream nucleotides surrounding m6A sites. 

Features Sn (%) Sp (%) Acc (%)

Ring Structure 69.27 63.43 66.34

Functional Group 70.70 69.90 70.31

Hydrogen Bond 74.18 68.46 71.32

Nucleotide chemical property 75.23 78.02 75.87

Nucleotide chemical property and 
accumulated nucleotide frequency 79.21 77.04 78.13

Table 1.  The predictive results by using different features for m6A identification.

http://lin.uestc.edu.cn/server/m6Apred.php
http://lin.uestc.edu.cn/server/m6Apred.php
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78.15% with a sensitivity of 79.21% and specificity of 77.04% (Table  1). The predictive accuracy thus 
obtained is higher than that obtained by merely using nucleotide chemical properties (75.87%), indicat-
ing that nucleotide frequency contributes slightly to the identification of m6A sites.

As the performance of the proposed model may depend on the threshold, similar to a recent work18, 
three thresholds of high, medium and low obtained in jackknife test were selected with the specificity 
values of 95%, 90% and 85%, respectively. The predictive performances of the proposed model with these 
different thresholds were reported in Table 2. Meanwhile, in order to provide a graphical illustration to 
show the performance of the model as its discrimination threshold varied, the ROC curve was plotted 
in Fig. 2 and an AUROC of 0.84 was obtained.

To ensure that the predictive accuracy is not sensitive to the selection of negative data, we repeated 
the random sampling procedure ten times and obtained ten random samples of negative datasets for 
downstream training and prediction. The predictive results of these models for identifying m6A sites in 
the jackknife test were reported in Supplementary Table S1. We found that the predictive accuracy is not 
affected by the selection of negative data.

In addition, the proposed model was also evaluated on the independent testing dataset (see Methods). 
We found that the proposed model obtained an accuracy of 75.73% with a sensitivity of 53.89% and a 
specificity of 79.07% for identifying m6A sites on the testing dataset with the positive-to-negative ratio 
of 1:10. The precision-recall curve, which plots the corresponding precision-recall pairs over a range 
of values, was also plotted in Supplementary Figure S1. These results demonstrate the reliability of the 
model developed in this study.

Comparison with Other classifiers. To further demonstrate the power of the proposed method, we 
also did some comparative calculations as described below.

First, based on the sequence similarity principle, we used the classic sequence similarity search-based 
tool BLAST19 to conduct the jackknife test on the same benchmark dataset. The results thus obtained are 
given in Table 3, from which we can see that the percentage rate for Acc obtained by BLAST is about 
10% lower than the proposed model for m6A identifications.

Second, we also compared the predictive results of the proposed method with that of four other 
commonly used classifiers, i.e., Naïve Bayes20, Logistic Function21, RBFNetwork22, and Random Forest23 
as implemented in WEKA24. The jackknife test results for identifying m6A sites in the benchmark dataset 
for different classifiers were listed in Table  3. It is shown that the sensitivity, specificity, accuracy and 
AUROC of the proposed SVM model are all higher than that of Naïve Bayes, Logistic Function, and 
Random Forest. Although the specificity of the proposed method is lower than that of RBFnetwork, 

Classifier Sn (%) Sp (%) Acc (%)

High 38.22 94.95 66.59

Medium 55.05 90.02 72.54

Low 68.39 84.98 76.68

Table 2.  Performance of the proposed model at different thresholds on jackknife test.

Figure 2. A graphical illustration to show the performance of the model by means of the ROC curve. 
The vertical coordinate is the true positive rate (Sn) while horizontal coordinate is the false positive rate  
(1-Sp). The area under the ROC curve (AUROC) is 0.84.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:13859 | DOi: 10.1038/srep13859

its sensitivity, accuracy, and AUROC are all higher than that of RBFnetwork. Hence, these results sug-
gest that our proposed method is promising and has great potential to become a useful tool for m6A 
identifications.

Web-server
To enable applications of the proposed model and for the convenience of the vast majority of experi-
mental scientists, an online predictor is created. The step-by-step guide on how to use it is provided as 
the following:

Step 1. Open the web server at http://lin.uestc.edu.cn/server/m6Apred.php and you will see the top 
page on your computer screen, as shown in Fig. 3. Click on the Read Me button to see a brief introduc-
tion about the predictor and the caveat when using it.

Step 2. On clicking the open circle, the threshold (All, High, Medium, or Low) as reported in Table 2 
will be selected. Either type or copy/paste the query RNA sequences into the input box at the center 
of Fig.  3. The input sequence should be in FASTA format. A sequence in FASTA format consists of a 
single initial line beginning with a greater-than symbol (“> ”) in the first column, followed by lines of 
sequence data. The words right after the “> ” symbol in the single initial line are optional and only used 
for the purpose of identification and description. All lines should be no longer than 120 characters and 
usually do not exceed 80 characters. The sequence ends if another line starting with a “> ” appears; this 
indicates the start of another sequence. Example sequences in FASTA format can be seen by clicking on 
the Example button right above the input box.

Step 3. Click on the Submit button to see the predicted result. For example, if use the query RNA 
sequences in the Example window as the input, the following results will be shown on the screen: the 
outcome for the 1st query example is: the ‘A’ at position 11 is methylated with a probability of 0.92 and 
the ‘A’ at position 32 is also methylated with a probability of 0.92. The outcome for the 2nd query sample 

Classifier Sn (%) Sp (%) Acc (%) AUROC

Blast 70.75 67.55 69.11 –

Naïve Bayes 78.72 70.91 74.81 0.82

Logistic Function 79.32 74.76 77.04 0.83

RBFNetwork 61.18 84.49 72.83 0.79

Random Forest 78.73 64.78 71.75 0.78

SVM 79.21 77.04 78.15 0.84

Table 3.  Comparison of different classifiers for m6A identification.

Figure 3. A semi-screenshot for the top page of the web-server at http://lin.uestc.edu.cn/server/
m6Apred.php.

http://lin.uestc.edu.cn/server/m6Apred.php
http://lin.uestc.edu.cn/server/m6Apred.php
http://lin.uestc.edu.cn/server/m6Apred.php
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is: the A at position 11 is unmethylated with a probability of 0.96. All these results are consistent with 
the experimental observations.

Step 4. Click on the Data button to download the datasets used to train and test the model.
Step 5. Click on the Citation button to find the relevant paper that reports the detailed development 

and algorithm of the model.

Caveats. Each of the input query sequences must be 21 bp or longer and only contains valid charac-
ters: ‘A’, ‘C’, ‘G’, ‘U’.

Conclusions
By using the nucleotide chemical property and nucleotide density information, we proposed a support 
vector machine based model to identify m6A sites in the Saccharomyces cerevisiae transcriptome. To 
identify the key features for m6A site identification, we compared the predictive results obtained by 
using different kinds of parameters (Table  1). In comparison with accumulated nucleotide frequency, 
nucleotide chemical property plays the more important roles for m6A site identification. Among the three 
considered nucleotide chemical properties, the hydrogen bond has the largest contribution for m6A site 
identification, consistent with the recent finding that the hydrogen bond is implicated in formation of 
RNA secondary structure25 which decreases the m6A methylation26.

In addition, we also compared the predictive accuracy of SVM with four other commonly used clas-
sification methods for m6A site identification. We found that the predictive result of SVM is better than 
those of Naïve Bayes, Logistic Function and Random Forest. This is likely due to the limited number 
of the experimentally validated m6A sites that used to train the models. Naïve Bayes, Logistic Function 
and Random Forest require a large number of samples to train, whereas SVM needs fewer training data.

For the convenience of researchers in the scientific community, a web-server for the proposed model 
is provided. We hope that these results will provide further insights into the understanding of the dis-
tribution and function of m6A modifications. As the current method is only applicable to Saccharomyces 
cerevisiae, future work will expand to other species to train and improve the model.

Methods
Dataset. By using the m6A-seq technique, Schwartz et al. identified 1,307 methylated adenine (m6A) 
sites centered around RGAC motifs from 1,183 genes in Saccharomyces cerevisiae12. In order to obtain a 
high quality training dataset and avoid experiment bias, the 832 m6A sites with distances to the detected 
m6A-seq peaks less than 10 bp were selected as positive samples of the training dataset12. The pair-
wise sequence similarity within all the positive training samples is less than 85%. The remaining 475 
(1,307− 832 =  475) m6A sites were used to construct the independent testing dataset. The negative sam-
ples were obtained by the following steps. By searching Saccharomyces cerevisiae genome, we obtained 
33,280 adenines centered around the RGAC consensus motif, which were not detected by the m6A-seq 
technique. Therefore, the 33,280 adenines were deemed as nonmethylated adenine. To balance out the 
numbers between positive and negative samples in model training, we randomly picked 832 samples 
from the 33,280 non-methylated adenines and used them as negative samples. Following these proce-
dures, we obtained a benchmark dataset including 832 m6A site containing sequences and 832 non-m6A 
site containing sequences, respectively. To examine whether the predictive accuracy is sensitive to the 
selection of negative data, we repeated the random sampling procedure ten times and obtained ten ran-
dom samples of negative datasets for downstream training and prediction. We also randomly fetched 
4,750 negative samples from the ten negative datasets and merged them with the above mentioned 475 
samples in the testing dataset. By doing so, an independent testing dataset with the positive-to-negative 
ratio of 1:10 (475:4,750) was obtained.

It was observed via preliminary trials that when the length of the sequences in the benchmark 
dataset is 21 bp with the m6A in the center, the corresponding predictive results were most promising. 
Accordingly, all the sequences in the training and testing dataset are 21 bp long and are available at http://
lin.uestc.edu.cn/server/m6Apred.php.

Sequence encoding. One of the keys in developing a model for identifying genomic attributes is to 
encode the biological samples with effective expressions. In the present study, nucleotide chemical prop-
erties and density information of each nucleotide in RNA sequences were considered.

Chemical property of each nucleotide. There are four different kinds of nucleotides, i.e., adenine (A), 
guanine (G), cytosine (C) and uracil (U), found in RNA. Each nucleotide has different chemical structure 
and chemical binding. Shown in Fig. 4, adenine and guanine have two rings, while cytosine and uracil 
have only one ring. Although RNA is generally single stranded, its biological functions are correlated 
with the secondary structure. When forming secondary structures, in terms of hydrogen bond, gua-
nine and cytosine have strong hydrogen bonds, whereas adenine and uracil have weak hydrogen bonds. 
Additionally, in terms of chemical functionality, adenine and cytosine can be classified into the same 
group, called amino group, while guanine and uracil into the keto group. Therefore, the four kinds of 
nucleotides can be classified into three different groups in terms of these chemical properties (Table 4).

http://lin.uestc.edu.cn/server/m6Apred.php
http://lin.uestc.edu.cn/server/m6Apred.php
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In order to include these chemical properties in RNA encoding, we define three coordinates (x, y, z) 
to represent three chemical groups and assign 1 or 0 values. Hence, each nucleotide si =  (xi, yi, zi) in the 
sequence can be encoded by the following formula27.
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where the coordinate value of each nucleotide is determined by their chemical property of the nucleotide 
as shown in Table 4. Thus, based on chemical properties, A can be represented by coordinates (1, 1, 1), 
C can be represented by coordinates (0, 1, 0), G can be represented by coordinates (1, 0, 0), U can be 
represented by coordinates (0, 0, 1).

Accumulated nucleotide frequency. In order to include the nucleotide frequency information and the 
distribution of each nucleotide in the RNA sequence, we define the density di of any nucleotide si at 
position i in RNA sequence by the following formula26,
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where l is the sequence length, |Si| is the length of the i-th prefix string {s1, s2, …, si} in the sequence, 
q ∈  {A, C, G or U}. Suppose an example sequence “UCGUUCAUGG”. The density of ‘U’ is 1 (1/1), 0.5 
(2/4), 0.6 (3/5), 0.5 (4/8) at positions 1, 4, 5, and 8, respectively. The density of ‘C’ is 0.5 (1/2), 0.33 (2/6) 
at positions 2 and 6, respectively. The density of ‘G’ is 0.33 (1/3), 0.22 (2/9), 0.3 (3/10) at positions 3, 9, 
and 10, respectively. The density of ‘A’ is 0.14 (1/7) at position 7.

By integrating both the nucleotide chemical property and accumulated nucleotide information, the 
sample sequence “UCGUUCAUGG” can be represented by {(0, 0, 1, 1), (0, 1, 0, 0.5), (1, 0, 0, 0.33), (0, 0, 
1, 0.5), (0, 0, 1, 0.6), (0, 1, 0, 0.33), (1, 1, 1, 0.14), (0, 0, 1, 0.5), (1, 0, 0, 0.22), (1, 0, 0, 0.3)}. By doing so, 
not only the chemical property was considered, but also the long range sequence order information was 
incorporated. Therefore, the samples in the benchmark dataset were encoded in terms of both nucleotide 
chemical property and nucleotide densities.

Support vector machine. The SVM classification algorithm has been widely used in the realm of 
bioinformatics28–30. Its basic principle is to transform the input vector into a high-dimension Hilbert 
space and seek a separating hyperplane with the maximal margin in this space.

In this study, the libsvm-3.18 package was used as an implementation of SVM, which can be down-
loaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Because of its effectiveness and speed in nonlin-
ear classification process, the radial basis kernel function (RBF) was selected to perform the prediction. 
A grid search method was used to optimize the regularization parameter C and kernel parameter γ. The 
probability score obtained from SVM was used to make predictions.

Figure 4. Chemical structure of each nucleotide. 

Chemical property Class Nucleotides

Ring Structure
Purine A, G

Pyrimidine C, U

Functional Group
Amino A, C

Keto G, U

Hydrogen Bond
Strong C, G

Weak A, U

Table 4.  Chemical property of nucleotide in RNA sequence.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Performance evaluations. The performance of the model was evaluated using the following metrics: 
sensitivity (Sn) also named recall, specificity (Sp), precision and accuracy (Acc), which can be expressed 
as











=
+

=
+

=
+

=
+

+ + + ( )

Sn TP
TP FN

Sp TN
TN FP

Precision TP
TP FP

Acc TP TN
TP FN TN FP 3

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, 
respectively.

Meanwhile, in order to provide a graphical illustration to show the performance of the model as its 
discrimination threshold varied, the ROC (receiver operating characteristic) curve was created, where its 
vertical coordinate is for the true positive rate while horizontal coordinate for the false positive rate. The 
best possible prediction method would yield a point with the coordinate (0, 1) representing 100% true 
positive rate and 0 false positive rate or 100% specificity. Therefore, the (0, 1) point is also considered as 
a perfect classification. A completely random guess would give a point along a diagonal from the point  
(0, 0) to (1, 1). The AUROC (area under the ROC curve) is often used to indicate the performance quality 
of a binary classifier: the value 0.5 of AUROC is equivalent to random prediction while 1 of AUROC 
represents a perfect one.
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