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Preparation of topological modes 
by Lyapunov control
Z. C. Shi1, X. L. Zhao1 & X. X. Yi2

By Lyapunov control, we present a proposal to drive quasi-particles into a topological mode in 
quantum systems described by a quadratic Hamiltonian. The merit of this control is the individual 
manipulations on the boundary sites. We take the Kitaev’s chain as an illustration for Fermi 
systems and show that an arbitrary excitation mode can be steered into the Majorana zero mode 
by manipulating the chemical potential of the boundary sites. For Bose systems, taking the 
noninteracting Su-Schrieffer-Heeger (SSH) model as an example, we illustrate how to drive the 
system into the edge mode. The sensitivity of the fidelity to perturbations and uncertainties in the 
control fields and initial modes is also examined. The experimental feasibility of the proposal and the 
possibility to replace the continuous control field with square wave pulses is finally discussed.

Compared to classical computation, quantum computation has unparallel advantages in solving prob-
lems like factoring a large number1. However, it is difficult to realize in practice due to decoherence 
caused by environments. In order to overcome this obstacle, topological quantum computation2–6 has 
been proposed, where the ground states are isolated from the rest energy spectrum by gaps, making 
it robust against perturbations. The topological quantum computation can be performed by braiding 
non-Abelian anyons7,8 while the evolution of the system, protected by topology, is described by a non-
trivial unitary transformation. The simplest example of the non-Abelian anyons is the Majorana fermions 
which are self-conjugate quasiparticles and have been extensively studied both theoretically and exper-
imentally. Recently, the Majorana fermions are predicted to exist in fractional quantum Hall system9, 
interface between topological insulator10,11, topological superconductors12–17, solid state system18, optical 
lattices19,20 and spin chains21. Although there are great progress in this field, how to prepare and manip-
ulate Majorana fermions in quantum systems remains challenging.

Generally speaking, a quantum system cannot evolve into a desired state without any quantum 
controls22. While most readers are familiar with the feedback control, here we begin with introducing 
Lyapunov-based quantum control. The Lyapunov control refers to the use of Lyapunov function to design 
control fields for manipulating a dynamical system. In quantum mechanics, the evolution of system 
is governed by the Schrödinger equation and the system state can be described by a time-dependent 
vector. The Lyapunov function then can be defined as the distance between the time-dependent vec-
tor and the target vector. Until now, most studies of Lyapunov control focus on the analysis of largest 
invariant set23–26, quantum state steering or preparations27,28. In this work, we extend the application of 
Lyapunov control and apply it to manipulate many-body system, e.g., driving quasiparticles in a quantum 
many-body system.

To be specific, by the use of Lyapunov control technique, we present a method to manipulate the top-
ological modes in both Fermi and Bose systems. For a Fermi system described by the Kitaev model, we 
show how to steer an arbitrary initial mode into the Majorana zero mode by manipulating the chemical 
potential of the boundary sites. The system can be driven into a special Majorana zero mode localized 
at one of the boundaries when the initial mode is represented only by creation or annihilation opera-
tors. For a Bose system described by the noninteracting Su-Schrieffer-Heeger (SSH) model, the control 
mechanism is similar to the Fermi system. Nevertheless, due to the vanishing off-diagonal block (pairing 
terms) in the Hamiltonian, it is impossible to drive an arbitrary superposition of operators with different 
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sites into the target mode except for two special cases, namely, the modes can be solely described by 
creation (or annihilation) operators or by creation and annihilation operators at same site. An unconven-
tional Lyapunov technique is also explored to achieve the target mode while the conventional Lyapunov 
control is not effective. The sensitivity of the fidelity to perturbations and uncertainties in the control 
fields and initial modes is also examined. Finally, we show that the control field can be replaced with 
square wave pulses, which might make the realization of the control much easier in experiments.

Results
In this part, we present the main results of this work by showing how well the topological modes can be 
prepared via the Lyapunov control. The details of calculation and simulation can be found in METHODS. 
Without loss of generality, we consider a quantum system described by quadratic Hamiltonian,
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where â j and ˆ †a j denote the annihilation and creation operators for fermions or bosons at the spatial 
position j. “∗” stands for complex conjugate. The N ×  N matrix A0 (B0) with elements Aij

0 (Bij
0) should 

satisfy ε= ( = )
†A A B B0 0 0 0  to guarantee the hermicity of H0, where “∼ ” denotes transposition, and 

ε =  −1 for fermions while ε =  1 for bosons. Since the commutation relations of fermions are different 
from bosons, we will study the control for the Fermi and Boson systems separately.

Fermi system.  We take the 1D Kitaev’s chain of spinless fermions29 as an example. The Hamiltonian 
reads,
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where J and Δ  are hopping and pairing amplitude, respectively. ( )†a aj j  is the fermionic annihilation 
(creation) operation at site j, and μ represents the chemical potential. By the pioneering work29, one can 
find that there exist two different topological phases when parameters change. The quantum critical line 
separating those phases is given by μ=J2  and Δ  =  0. To be specific, the parameter satisfying μ>J2  
and Δ  ≠ 0 is a nontrivial topological phase which can support a Majorana zero mode at the boundaries. 
In following, we set Δ  =  1 and J = μ =  2 to ensure the existence of the Majorana zero mode in the Kitaev’s 
chain. The Majorana zero mode can be revealed by solving the secular equation of the BdG Hamiltonian,
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where the elements of matrices A0 and B0 are
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It can be found easily that Xi =  Xi* and Yi =  Yi* due to the time-reversal symmetry of the Hamiltonian.
Figure 1(a) demonstrates the eigenvalues of the BdG Hamiltonian, while Fig. 1(b–e) show the distri-

bution of the left and right Majorana zero mode, respectively. As seen in this figure, the Majorana zero 
mode is located near the two boundary sites of the chain. Taking a chain of length N =  30 for concrete-
ness, we show in the following that the Majorana zero mode can be achieved by controlling the chemical 
potential at the two ends of the Kitaev’s chain. Consider two control Hamiltonians = ˆ ˆ†H a af

1 1 1 and 
= ˆ ˆ†H a af

N N2 , the nonzero elements of matrices Ak given by Eq. (20) corresponding to the control 
Hamiltonian  ( = , )k 1 2k

f  are =,A 11 1
1  and =,A 1N N

2 .
Suppose that the initial mode is an equally weighted superposition of all sites, namely the initial mode 

can be expressed as ( ) = ∑ ( ) + ( )=ˆ ˆ ˆ †a C a D a0 0 0j
N

j j j j1  with ( ) = ( ) = /C D N0 0 1 2j j . The form of 
Lyapunov function could be chosen as V =  Q†PQ and the hermitian matrix P could be constructed in 
the following manner (see methods),
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Here pi =  0, pT =  −  1, and UT is the target eigenvector. Then the control field becomes 
( ) = ⋅ ,†f t iF Q P Q[ ]k k k

f  and we choose Fk =  10 for the numerical calculations. Figure  2 shows the 
occupations of the left and right mode as a function of evolution time, where the occupation is defined 
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by = †O Q Ul
30 2

 for the left mode, and = †O Q Ur
31 2

 for the right mode. We observe that the initial 
mode asymptotically converges to the Majorana zero mode with time, and the control fields almost 
vanish when the system arrives at the target mode. Further simulations show that this proposal works 
for almost arbitrary initial modes. For example, it can also be driven to the Majorana zero mode when 
the initial modes are θ θ( ) = +ˆ ˆ ˆ †a a a0 sin cosj j  with θ ∈  [0, 2π].

For a finite length N of the Kitaev’s chain, there exists a weak interaction between the left and right 
mode with the interaction strength λ ∝  e−N/ξ 29, where ξ is the coherence length. Obviously, the left and 
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Figure 1.  The energy spectrum and spatial distributions of the BdG Hamiltonian  f
0  describing the 

Kitaev’s chain with total number N =  30 of sites. We have set the lattice spacing as units. There exists two 
Majorana modes in the band gap, i.e., the 30th and 31th eigenmodes. The 30th eigenmode is labeled by left 
mode and the 31th is labeled by right mode. (b,c) are the coefficients X30 and Y30 of the left mode, while 
(d,e) are the coefficients X31 and Y31 of the right mode.
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Figure 2.  The dynamical evolution of system as a function of time with initial mode 
∑( ) = ( ) + ( )= ˆ ˆˆ †a C a D a0 0 0j j j j j1

N . Ol and Or represent the occupations of the left and right mode, while 
Ol +  Or approaching unit implies the other quasiparticle modes except the right and left modes are 
suppressed. (b,c) denote the dynamical evolution of the control fields f1(t) and f2(t), respectively.
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right modes are degenerate when N/ξ    1. Therefore, it is impossible to drive an initial mode into one 
of the Majorana zero mode individually, if the initial mode includes both the creation and annihilation 
operators at the same site. However, when the initial mode can be represented by 

( ) = ∑ ( ) + ( )=ˆ ˆ ˆ †a C a D a0 0 0j
N

j j j j1  with constraint that Dj(0) =  0 if Cj(0) ≠ 0 or Cj(0) =  0 if Dj(0) ≠ 0, it 
might be possible to drive the initial mode into one of the Majorana zero mode. Figure  3 shows this 
possibility for driving the system into the right mode while the initial mode is ( ) = ∑ ( )= ˆa C a0 0j

N
j j1  with 

( ) = /C N0 1j . As expected, it converges to the right mode asymptotically.

Bose system.  For the case of bosons, we take the noninteracting Su-Schrieffer-Heeger (SSH) model30 
to show the control performance. The Hamiltonian reads
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where ε is a parameter to change the hoping amplitude J, 0 ≤  ε ≤  1, and μ is the chemical potential. This 
model can be applied to describe bosons hopping in a double-well 1D optical lattice31. The edge mode 
in the topological band has been shown in Ref. 31, which can be witnessed by the nontrivial Zak phase32 
of the bulk bands. Thereby it can be taken as the target mode in this control system, and we choose the 
parameters J =  1, μ =  2, N =  21, and ε =  0.3 for the following numerical calculation. Firstly, we present 
the results of exact diagonalization of τ ⋅ z

b
0 33 (see methods) in Fig. 4(a) and give the coefficients of 

the edge mode in Fig. 4(b–e). It can be found that the edge mode is located near the first site of the chain, 
this suggests us to regulate the on-site chemical potential (energy) of site 1 to manipulate the system. 
Namely, the control Hamiltonian is suggested to be = .ˆ ˆ†H a ab

1 1 1  As the Hamiltonian is block diagonal, we 
could drive the system from an arbitrary initial mode to the target mode for two special cases listed 
below.

Case 1.  The initial mode is described by an arbitrary superposition of creation operators or annihilation 
operators only. Since the annihilation and creation operators that describe quasi-particle modes  
are decoupled each other, the control system can only converge to the annihilation or creation operators 
in the target mode, respectively. For the numerical calculations, we choose the initial mode described  
by a superposition of creation operators ( ) = ∑ ( )=ˆ ˆ †a D a0 0j

N
j j1  with ( ) = /D N0 1j . That is, the  

initial mode contains the creation operators of all sites in this control system. The Lyapunov function  
is taken as = − †V Q Q1 T

2
 with = = ( , )

∼ ∼ ∼
Q U X YT

T 32 32 , T =  32, and the control field is given by 
( ) = ⋅ ( )† †f t F Q Q Q QIm b

T T1 1 1  with F1 = 2, where Im(·) denotes the imaginary part of (·).
Figure 5 shows the occupation of right mode as a function of evolution time t. It demonstrates that 

the operator ( )â t  does not completely converge to the right mode since the occupation of the right mode 
approaches 0.5814. On the other hand, when resolving the characteristic spectrum of the free and control 

Figure 3.  The dynamical evolution of system as a function of time with initial mode 
= ∑( ) ( )= ˆâ 0 C 0 aj j j1

N .
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Hamiltonian, one can find that the target mode is controllable for an arbitrary superposition of creation 
operators. Next, we adopt an implicit Lyapunov-based method to steer an arbitrary initial mode into the 
right mode23, where the Lyapunov function is redefined as

= − | | . ( )η, ( )
†V Q W1 6T Q
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Figure 4.  The eigenvalue spectrum and spatial distributions of the Hamiltonian τ ⋅ z
b
0 in the SSH 

model with N =  21 sites. Two edge mode are found in the band gap, corresponding to the 11th and 32th 
eigenvectors. We label the 11th eigenvector as left mode while the 32th eigenvector is the right mode. (b) 
and (c) are the coefficients X11 and Y11 of the left mode while (d,e) are the coefficients X32 and Y32 of the 
right mode.
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Figure 5.  The dynamical evolution of system as a function of time with conventional Lyapunov 
technique and initial mode = ∑( ) ( )=ˆ ˆ†a 0 D 0 aj j j1

N . (c) denotes the dynamical behavior of the Lyapunov 
function V.
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Here, WT,η(Q) is a target eigenvector of the matrix  η+ ( )Qb b
0 1  with η(Q) ∈   (corresponding to the 

right mode when η =  0, i.e., WT, 0 =  UT). The secular equation can be written as,

 η λ( + ( ) ) = , = , … ..., , ( )η η η, ( ) , ( ) , ( )Q W W j N1 7
b b

j Q j Q j Q0 1

where λj, η represents the eigenvalues. It returns to the secular equation of the matrix b
0 when η(Q) =  0. 

The control field can be rewritten as η( ) = ( ) + ′ ( )f t Q f t1 1 , where η(Q) is implicitly defined as

( )η θ( ) = − | | . ( )η, ( )
†Q Q W1 8T Q

2

Here θ(t) is a slowly varying real function satisfying θ(0) =  0 and θ(t) >  0 for every t >  0. We set θ(t) =  0.5 t 
for simplicity. By taking the time derivative of V, one can find

( )= ⋅ ′ ( ) ⋅ , ( )η η, ( ) , ( )


† †V F f t Q W W QIm 9
b

T Q T Q1 1 1

where F1 is an positive constant. We can choose the control field ′ ( ) = − ⋅f t F Im1 1   
( )η η, ( ) , ( )

† †Q W W Qb
T Q T Q1  with F1 =  1 to guarantee ≤V 0. Figure 6 demonstrates the dynamics of occu-

pation of the right mode, we find that it can reach about 0.9887 when completing the control. Hence an 
arbitrary initial mode can be steered to the right mode by making use of the implicit Lyapunov 
function.

Case 2.  The initial mode is an arbitrary superposition of creation and annihilation operators at the 
same site only, i.e.,

( ) = ( ) + ( ) . ( )ˆ ˆ ˆ †a C a D a0 0 0 10j j j j

In this case, the Lyapunov function is chosen a bit different from before, which becomes 
= − +† †V Q Q Q Q2 T T1

2
2

2
 with = ( , )
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Q X YT1

11 11  and = ( , )
∼ ∼

Q X YT 2
32 32 . Subsequently, the control 

field can be straightforwardly taken as  ( ) = ⋅ ( − )† † † †f t F Q Q Q Q Q Q Q QIm b
T T

b
T T1 1 1 1 1 1 2 2 . We set 

( ) = .C 0 1 22 , ( ) = .D 0 0 22  while the other coefficients vanish and F1 =  1 for numerical calculation. 
The occupations of the left and right mode are given in Fig.  7. As expected, the Lyapunov function 
reaches its minimum when the system arrives at the edge mode. The final mode could be approximately 
written as ( ) ≈ ( ) + ( )ˆ ˆ ˆ†

a T C b D b0 0T T2 2 , showing that we have realized the edge mode. Note that the 
occupation difference − =O O 1r l  could not guarantee that the final mode converges to the edge 
mode, which is distinct to the aforementioned cases + =O O 1r l . As the evolution of the coefficients 
of the operator is unitary (see equation (22)) when B =  0, the coefficients should satisfy 
∑ | ( )| + | ( )| == C t D t constant[ ]j

N
j j1

2 2 , i.e., it is invariant during the evolution. From the numerical 
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Figure 6.  The dynamical evolution of system as a function of time with unconventional Lyapunov 
technique. The physical parameters are the same to the Fig. 5 except for the Lyapunov function.
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calculation, we can find that the final mode can be approximately written as ( ) ≈ ( ) + ( )ˆ ˆ ˆ†
a T C b D b0 0T T2 2 , 

indicating that the coefficients of the other quasiparticle modes almost vanish.

Discussions
Until now, we have achieved the goal of driving the initial mode of many-body system into a desired 
quasi-particle mode. The proposal needs to know exactly the system Hamiltonian and the initial mode, 
as well as to implement precisely the control fields. However, this may be difficult in practice. In exper-
iments, we often encounter uncertainties in the initial modes, perturbations in the control fields, and 
uncertainties in the Hamiltonian. In previous section, the proposal has been implemented in the Fermi 
and Bose systems without any perturbations or uncertainties. In following, we discuss the effect of per-
turbations and uncertainties in the control fields, initial modes and Hamiltonian on the performance of 
the control.

We first examine the effect of uncertainties in the initial mode and perturbations in the control fields. 
Taking ( ) =ˆ ˆa a0 1 in the Fermi system as the initial mode without uncertainties, we can write the initial 
mode with uncertainties as ε ε( ) = − ( ) +′ˆ ˆ ˆa a a0 1 0 j with ε quantifying the uncertainties. The 
dependence of the fidelity on ε is plotted in Fig. 8(a). For the control field with perturbations, we write 
it as δ′ ( ) = ( + ) ( )f t f t1k k  with fk(t) representing the perturbationless control field. The dependence of 
the fidelity on the perturbations is presented in Fig.  8(b). One can find from Fig.  8 that the fidelity is 
more sensitive to the uncertainties in the initial mode, while it is robust against the perturbations in the 
control fields. In fact, from the principle of the Lyapunov control, it is suggested that the fidelity of the 
control process is sensitive to the sign rather than the amplitude of the control fields. This observation 
can be used to understand the robustness against the perturbations in the control fields.

In a more realistic circumstance, individual controls on the boundary sites are difficult to implement, 
which means that the control on the boundary sites might affect the on-site chemical potential of their 
nearest neighbors. Suppose that the chemical potential of the nearest-neighbor sites, which is affected by 
the control fields, can be characterized by δ′′ ( ) = ⋅ ( )f t f tk k , i.e., the on-site chemical potential of 2nd 
and (N −  1)th site are replaced by ( )μ+ ′′ ( )f t1 k . The results in Fig. 9 suggest that the fidelity keeps high 
even though the control fields have influences on the nearest-neighbor sites.

On the other hand, the Lyapunov control requires to know the system Hamiltonian exactly, which 
may be difficult in practice. One then may ask how does the control performance change if there exist 
uncertainties in the Hamiltonian. We now turn to study this problem. The Hamiltonian with uncertain-
ties can be written as δ′ = +H H H0 0 0. Here, δH0 denotes the deviation (called uncertainties) of the 
Hamiltonian in the control system. This deviation might manifest in the hopping amplitude J, pairing Δ , 
or the chemical potential μ. As the control is exerted on the boundary sites only, we study the deviation 
in the boundary sites and the bulk sites, separately. Figure 10(a) shows the fidelity as a function of the 
deviations in the boundary Hamiltonian, δ′ = ( + )Z Z1j j ( μ≡ , Δ,Z Jj , where j =  1, N). It finds that 
the deviations caused by the boundary Hamiltonian do not have a serious impact on the fidelity. When 
the deviation happens in the bulk sites, for example, the on-site chemical potential μ ′

j  of the bulk sites 
is replaced with μ ε μ′ = ( + )1j j (note that site j is randomly chosen from the bulk, and ε is an random 
number, ε ∈ [ −  0.02, 0.02]), we consider n (n =  1, …, 20) uncertainties appearing simultaneously at each 

Figure 7.  The dynamical evolution of system as a function of time with the Lyapunov function 
= − +† †V Q Q Q Q2 T T1

2
2

2
. It can be found that ( )O C 0l 2

2 and ( )O D 0r 2
2 imply the other 

quasiparticle modes being suppressed.
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instance of evolution time. In other words, we simulate n fluctuations for the on-site chemical potentials, 
where each fluctuation is generated for a randomly chosen site n, the value of fluctuations for chosen 
sites is randomly created and denoted by ε. By performing the extensive numerical simulations, we 
demonstrate the results in Fig. 10(b). It can be found that the quantum system is robust against small 
uncertainties since the fidelity is always larger than 97.9%. An interesting observation is that with the 
number of fluctuations increasing, the fidelity increases. This can be understood as follows. Firstly, the 
small deviations cannot close the gaps in the topological system, thus the fidelity would not deteriorate 
sharply. Secondly, although more uncertainties participate in the control procedure, the average of the 
uncertainties almost approaches zero as the average of the random number ε is zero.

Since the form of control field generally takes ( ) = ⋅ ,ˆ†f t iF Q P Q[ ]k k k , the amplitude of the control 
fields may change fast with time, which increases the difficulty in the realizations. It is believed that the 
square wave pulses can be readily achieved in experiments. Therefore we try to take the square wave 
pulses instead of ( ) = ⋅ ,ˆ†f t iF Q P Q[ ]k k k  for the control field. The principle to design the square wave 
pulses should satisfy,

Figure 8.  The fidelity versus (a) the uncertainties in the initial mode and (b) the perturbations in the 
control fields f1(t) and f2(t). Other parameters are the same as in Fig. 3. The control time is terminated when 
the fidelity reaches 99.15%. One can observe that the fidelity is still above 98% even though there are 10% 
perturbations in the control fields.

Figure 9.  The fidelity versus the chemical potential of nearest-neighbor sites of the boundaries affected 
by the control fields. We describe this influence by δ′′ ( ) = ⋅ ( )f t f tk k . Other parameters are the same as in 
Fig. 8. δ =  0.5 means that the value of control fields on the nearest-neighbor site is the half of control fields 
on the boundary sites.
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As an example, we focus on the Bose system whose parameters are the same as in Fig. 7 except that the 
control field f1(t) is replaced by the equation (11) with ′ = .F 0 041 . Figure 11 demonstrates the results for 
the square wave pulses of the control field and it can also achieve the edge mode eventually. On the other 
hand, we find that convergence time is shortened as well. Of course, the square wave pulses of the control 
fields can also be applied to the Fermi system.

Finally, we would like to discuss on the experimental feasibility for the present control protocols. The 
SSH model can be experimentally realized by 87Rubidium atoms34 in 1D double-well optical lattice35. The 
implementations of Lyapunov control require to perform operations defined by the control Hamiltonians 
with strengths defined by the control fields. In our case, the control Hamiltonians are the particle num-
ber operators of the boundary sites, and the control can be experimentally realized by manipulating 
the on-site chemical potentials of the boundary sites. The realization of Kitaev’s chain requires spinless 
fermions, which can be prepared in an optical lattice by trapping the fermions and the BEC reservoir 

Figure 10.  The effect of uncertainties in the Hamiltonian on the fidelity. The influence of boundary 
Hamiltonian is depicted in (a). Each point is an average over 30 simulations in (b). The horizontal axis 
denotes the number of perturbations at each instance of time in the Kitaev’s chain. Other parameters are the 
same as in Fig. 8.

Figure 11.  The dynamical evolution of system as a function of time with the square wave pulses. 
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with Feshbach molecules (the couplings between them can be induced by an rf-pulse)36. By driving the 
fermions with Raman laser to produce a strong effective coupling, the system in this situation is equiva-
lent to the Kitaev’s chain. In order to realize the control Hamiltonians, one can adopt additional lasers to 
control the chemical potentials of the boundary sites, where the intensity of lasers is simulated by square 
wave pulses (e.g., see f1(t) in Fig.  11(b)). In addition, we can realize the effective Kitaev’s chain in the 
quantum-dot-superconductor system37, a linear array with quantum dots linked by s-wave superconduc-
tors with normal and anomalous hoppings. In this system, the chemical potential in each quantum dot 
can be controlled individually by gate voltages with a high degree of precision. Alternatively, the Kitaev’s 
chain can also be achieved in the system which consists of a strong spin-orbit interaction semiconductor 
nanowire (in the low density limit) coupling to a superconductor in magnetic field38,39. Then the bound-
ary chemical potential can be controlled by local gates40,41. Most recently, the observation of Majorana 
fermions in this system has also been observed in experiments41,42.

In summary, we present a scheme to prepare quasi-particle mode by Lyapunov control in the both 
Fermi and Bose systems. For the Fermi system, we choose the Kitaev’s model as an illustration and 
specify the Majorana zero mode as the target mode. The results show that by controlling the chemical 
potential at the two boundary sites, the system can be driven asymptotically into one of the Majorana 
zero mode such as the right mode. In contrary, the situation for bosons is different due to the commuta-
tion relations. As an example, in the noninteracting SSH model, we show how to prepare the edge mode 
by the control fields. In particular, we apply the implicit Lyapunov-based technique to the boson system 
which provides us with a new way to steer the bosons. The robustness of the fidelity against perturbations 
and uncertainties is also examined. Finally, we try to replace the control fields with square wave pulses, 
which might help realize the control fields more easily in experiments since it is difficult to apply a fast 
time-varying control fields in practice.

Methods
In this part, we give the derivation of the control scheme, starting with the quadratic Hamiltonian,

( )∑ ∑= + + .
( ), = , =

ˆ ˆ ˆ ˆ ˆ ˆ† † † ⁎H A a a B a a B a a1
2 12i j

N

ij i j
i j

N

ij i j ij j i0
1

0

1

0 0

For the case of fermions, we denote the Hamiltonian by H f
0 , i.e., =H Hf

0 0. The operators obey the 
anticommutation relations: δ, = , , = ,ˆ ˆ ˆ ˆ†{ } { }a a a a 0i j ij i j  and , = .ˆ ˆ† †{ }a a 0i j  Define a time-dependent fer-
mionic operator,

∑( ) = ( ) + ( ) ,
( )=

ˆ ˆ ˆ †a t C t a D t a
13j

N

j j j j
1

where the operators â j and ˆ †a j are time-independent while the coefficients are time-dependent. It is easy 
to check that ∑ | ( )| + | ( )| == C t D t[ ] 1j

N
j j1

2 2  according to the anti-commutation relation 
( ), ( ) =ˆ ˆ †a at t{ } 1. In the Heisenberg picture, the evolution of this operator satisfies (ħ =  1),

( ) = ( ), . ( )ˆ ˆa ai t t H[ ] 14f
0

After a brief algebraic operation, the equation becomes

( ) ( )∑( ) = 


( ) + ( ) − 


+ 


( ) + ( ) − 


.
( ), =

ˆ ˆ ˆ⁎ ⁎ †a { }i t C t A D t B a C t B D t A a
15n j

N

j jn j jn n j jn j jn n
1

0 0 0 0

The evolution of coefficients Cj(t) and Dj(t) then can be written in a compact form of matrix,





− = ,

=






( )

( )





,

=




− −






,

( )



⁎

⁎

⁎ ⁎

iQ Q

Q
C t
D t

A B
B A 16

f

f

0

0

0 0

0 0

where ( ) = ( ( ), …, ( ))

⁎ ⁎ ⁎C t C t C tN1  and ( ) = ( ( ), …, ( ))
∼⁎ ⁎ ⁎D t D t D tN1 . We use the Gothic letter 0 to 

denote the matrix in equation (16) corresponding to the Hamiltonian H0 in equation (12) for simplicity 
hereafter.

For the Fermi system, the quadratic Hamiltonian can be rewritten as α α= †H f f
0

1
2 0  up to a constant 

factor ( f
0  called Bogoliubov-de-Gennes(BdG) Hamiltonian), where α = ( , …, , , …, )

ˆ ˆ ˆ ˆ† †a a a aN N1 1 . 
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Clearly, = f f
0 0 . In fact, the equation (16) is actually the BdG-Schrödinger equation43, where Q is the 

quasi-particle wave function in the Nambu representation. One can claim that if εl is an eigenvalue of 
 f

0  with corresponding eigenvector = ( , )
∼ ∼

U X Y
l l l , l =  1, …, N:

ε= , ( ) U U 17f l
l

l
0

= ( , )
∼ ∼+ − + − + −

U X Y
N l N l N l2 1 2 1 2 1  is also an eigenvector with eigenvalue − εl, i.e.,

ε= − , ( )+ − + − U U 18f N l
l

N l
0

2 1 2 1

where Xl* =  Y2N + 1 − l, Yl* =  Y2N + 1 − l, = ( , …, )
∼X X X

l l
N
l

1 , and = ( , …, )Y Y Yl l
N
l

1 . Thus the eigenvalues 
come in pairs ± εl for the BdG Hamiltonian  f

0
33. Diagonalizing the BdG Hamiltonian, the quasi-particles 

can be represented by annihilation (creation) operators ( )ˆ ˆ†
b bl l ,

( )
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∑
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where l = 1, …, N. In terms of the quasi-particle modes, the Hamiltonian can be written as 
ε= ∑ =

ˆ ˆ†
H b bf

l
N

l l l0 1 , where εl are the energy of the quasi-particle b̂l.
Let one of the quasi-particle modes be the target mode which we want to prepare, e.g.,  = +ˆ ˆ ˆ†

ub vbT T  
where u and v are arbitrary constants. b̂T  and ˆ

†
bT  are the annihilation and creation operators of the target 

mode, respectively. The goal is to design control fields that can drive any initial modes to the target one. 
It should be noticed that we cannot choose the target arbitrarily because it depends on the free 
Hamiltonian. In other words, we need a stationary target mode which does not evolve under the free 
Hamiltonian. As the edge mode is robust against perturbations, we focus on the preparation of it. The 
evolution described by the equation (16) is unitary since  f

0  is hermitian. As a result the sum 
= ∑ | ( )| + | ( )|=M C t D t[ ]j

N
j j1

2 2  remains unchanged during the time evolution. To make the calculation 
clear, we write the target mode as = ∑ +=

ˆ ˆ ˆ †b X a Y aT j
N

j
T

j j
T

j1 , in which = ( , )
∼ ∼

U X Y
T T T  is an eigenvector 

of the BdG Hamiltonian  f
0 , meanwhile it is also a solution of equation (16). Namely, 

= = ( , ) = ( ( ), ( ))
∼ ∼ ∼∼

 

⁎ ⁎
Q U X Y C t D tT

T T T
T T , where = ( , …, )

∼X X X
T T

N
T

1  and = ( , …, )Y Y YT T
N
T

1 . 
Assume that there are K control Hamiltonians Hk

f  for the system in quadratic form: 
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2 1 , k =  1, …, K. Together with the original 

Hamiltonian, the equation of motion for the coefficients in the operator â (t) becomes
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where fk(t) is the control field.
There are many choices for the Lyapunov functions, for example, = −V Q QT1

2, = − †V Q Q1 T2
2
, 

and V3 =  Q†PQ. Here, ⋅  denotes the norm. Those Lyapunov functions are nonnegative and reach the 
minimum when the system arrives at the target. Apparently, different Lyapunov functions lead to differ-
ent invariant set and different characteristics of convergence. In following, we choose V =  Q†PQ as the 
Lyapunov function to show how our scheme works while the analysis for other Lyapunov functions are 
similar to it. To this end, it is instructive to deduce the first-order time derivative of the Lyapunov 
function,

∑= ( ) ⋅ , ,
( )=



†V f t iQ P Q[ ]
21k

K

k k
f

1

where we have set  , =P[ ] 0f
0  by properly constructing the matrix P. In order to make the time deriv-

ative of V non-positive, one can design the control fields in the following style: ( ) = ⋅ ,ˆ†f t iF Q P Q[ ]k k k
f  

with Fk >  0. Strictly speaking, the quantum system converges to the invariant set determined by the La 
Salle’s invariance principle, equivalent to the solution =V 0.

Note that the commutation relations for bosons: δ
 , 

 = ,ˆ ˆ †a ai j ij  and 
 , = , 

 = ,ˆ ˆ ˆ ˆ† †a a a a] [ 0i j i j  are differ-
ent from fermions. Keeping this difference in mind and by an analysis similar to the case of fermions, 
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one can obtain a dynamical evolution of operator ( ) = ∑ ( ) + ( )=ˆ ˆ ˆ †a t C t a D t aj
N

j j j j1  with 
|∑ | ( )| − | ( )| | = ,= C t D t[ ] 1j

N
j j1

2 2
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In this case, the matrix of BdG Hamiltonian b
0 is 











⁎ ⁎

A B
B A

0 0

0 0
. Therefore, we can find that  τ= ⋅b b

z0 0 , 

where τ σ= ⊗ z z , σz is Pauli matrix and II is the N ×  N identity matrix. The dynamics of coefficients 
are not unitary in general except for B0 =  0. For this special situation, the control mechanism is analogous 
to the case of fermions.
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