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Single-point position and 
transition defects in continuous 
time quantum walks
Z. J. Li1 & J. B. Wang2

We present a detailed analysis of continuous time quantum walks (CTQW) with both position and 
transition defects defined at a single point in the line. Analytical solutions of both traveling waves 
and bound states are obtained, which provide valuable insight into the dynamics of CTQW. The 
number of bound states is found to be critically dependent on the defect parameters, and the 
localized probability peaks can be readily obtained by projecting the state vector of CTQW on to 
these bound states. The interference between two bound states are also observed in the case of a 
transition defect. The spreading of CTQW probability over the line can be finely tuned by varying the 
position and transition defect parameters, offering the possibility of precision quantum control of the 
system.

Compared to the classical random walk, which is a memoryless Markov process, a quantum walk is 
unitary and time-reversible1,2. It exhibits markedly different behavior due to superposition, interference, 
and quantum correlations. For instance, a quantum walk can propagate quadratically faster than its 
classical counterpart and result in a probability distribution vastly different from the classically expected 
Gaussian distribution3. Quantum walks have become useful tools for modeling and analyzing the behav-
ior of quantum systems, for simulating biological processes such as energy transfer in photosynthesis4, 
for studying quantum phenomena such as perfect state transfer5, Anderson localization6 and topologi-
cal phases7, as well as for developing novel quantum algorithms in quantum information processing8,9. 
Experimentally, quantum walks have been implemented in a variety of systems, such as nuclear magnetic 
resonance10, trapped ions and trapped cold neutral atoms11,12, single photons in bulk13, fiber optics14, and 
coupled waveguide arrays15.

With the physical implementation of quantum walks comes the issue of disorder and decoher-
ence. The effects of decoherence and disorder on the quantum walks have been extensively studied, 
for example, their transition to classical random walks under the influence of decoherence16–18. Static 
and dynamic disorder also alters quantum walks from ballistic spread to localization through a disrup-
tion of the interference pattern19–24. Recently, Wójcik et al.25, Li et al.26 and Zhang et al.27 investigated 
the localization property of one-dimensional discrete time quantum walks (DTQW) with a single-point 
phase defect. Motes et al.28 use a bit-flip coin at a boundary to introduce the position defects and find 
the walker escapes dramatically faster through the boundary. For continuous time quantum walk with 
defects, although a precursor work by Koster and Slater29 has explored quantitatively the limiting case of 
a single diagonal defect in a one-dimensional molecular crystal using a nearest-neighbor tight-binding 
model, an analytic derivation is absent to provide insight for the prevalence results relying on numerical 
methods. Li and Izaac26,30 have compared similar behaviors between CTQWs and DTQWs with single- 
and double-point defects. In this paper, we extend these works to include not only position defects but 
also transition defects in continuous time quantum walks, presenting analytical solutions of both trave-
ling waves or bound states of CTQWs in position space. Here, the bound state means that the quantum 
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walk is localized in one region of the position space with zero probability in the limit of asymptotic 
infinity. We use its analytical expression to discuss the associated eigenstate localization.

Results
The single-point defect model of CTQW. The continuous time quantum walk was first posited by 
Farhi and Gutmann2, as a quantization of the corresponding classical continuous time random walk. In 
CTQWs, classical probabilities are replaced by quantum probability amplitudes, with the system evolv-
ing as per the Schrödinger equation in discrete space, rather than the Markovian master equation31. To 
illustrate, we consider a classical continuous time random walk on the discrete graph G(V, E) described 
by two sets V and E. The set V is composed of the unordered nodes j and the set E includes the edges 
ejk =  (j, k) connecting the node j to the node k. The transition rate matrix H is defined as
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where γjk is the probability per unit time for making a transition from node k to node j. For the proba-
bility to be conservative, the constraint
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is required, where N is the total number of nodes in the graph. If the transition rates between any two 
connected nodes are the same, i.e. γjk =  γ, the diagonal element εj =  djγ with dj denoting the degree of 
the node j or the number of sites connected to node j. The state of the random walker is fully described 
by the probability distribution vector P(t), with its time evolution governed by the master equation

d t
dt

H t
P

P 3
( )
= ( ), ( )

which has the formal solution P(t) =  eHtP(0).
Extending the above description to the quantum realm involves replacing the real valued probability 

distribution vector P(t) with a complex valued wave function tψ ( )  and adding the complex notation 
− i to the evolution exponent, namely

t e 0 4iHtψ ψ( ) = ( ) . ( )−

The quantum transition matrix H, often referred to as the system Hamiltonian, is required to be Hermitian 
instead of being constrained by Eq. (2). Consequently, the above time evolution is unitary, guaranteeing 
that the norm of tψ ( )  is conserved under a CTQW. Let j be the position operator with eigenvector j . 
The system state vector can be expanded in the position Hilbert space with basis j{ }, t a t jj jψ ( ) = ∑ ( )  
where a t j tj ψ( ) = ( )  represents the probability amplitude of the walker being found at node j at time 
t. The resulting probability distribution is given by ψ= | ( )| = ( )P a t j tj j

2 2.
For a CTQW on a uniform infinite line, its Hamiltonian can be expressed as

H j j j j j j1 1
5j j

0 ∑ ∑ε γ= − ( + + − ).
( )

Here, each node is connected to its neighboring nodes by a constant transition rate γ, and each node 
has a constant potential energy ε. Now we introduce two types of single-point defects in this model, one 
being a position defect that has a different potential energy α at node jd and the other as a transition 
defect, where a distinctive transition rate β is assigned. Without loss of generality, we assume that the 
parameters ε, γ, α and β are reals. To account for these defects, the system Hamiltonian is modified as

H H H H 60 1 2= + + , ( )

with

α= | 〉〈 |, ( )H j j 7d d1

β= − (| 〉〈 + | + | + 〉〈 | + | 〉〈 − | + | − 〉〈 |). ( )H j j j j j j j j1 1 1 1 8d d d d d d d d2

The position energy at the defect node jd is ε +  α and the transition rate between it and its neighboring 
nodes is γ +  β.
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Eigen problem of the model Hamiltonian. The Hamiltonian of the CTQW on an uniform infinite 
line is invariant under spatial translation. Consider the discrete translational operator Tn, which acts on 
the node states such that j j nTn = + . This operator is unitary, and as such can be written in the form 
Tn =  eikn, where k is an Hermitian operator and the generator of the translation. In the case where the 
Hamiltonian is invariant under spatial translation, the Hermiticity of k indicates that its eigenstates 
k e jj

ikj= ∑  form a complete orthonormal basis, satisfying the eigenvalue equation 
H k k k2 cos0 ε γ= ( − ) , where 0 ≤  k ≤  π. The addition of a defect breaks the translational symmetry 
of the system, which results in an emergence of localized eigenstates of the corresponding quantum walk. 
The eigenstates of CTQW on a infinite line with a single-point defect can be obtained by solving a set of 
recurrence equations as the following.

Expanding the eigenstate ψ  of H in the position space as C jj jψ = ∑  and substituting it into the 
eigen equation j H jψ λ ψ=  with eigenvalue λ, we get a set of recurrence equations about Cj

C C C j j j0 for 1 9j j j d d1 1γ ε λ γ− ( − ) + = ≠ , ± , ( )+ −
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The general solution of Eq. (9) is
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where A and B are arbitrary constants, and y satisfies the following equation
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Solving the above equation yields y
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( − ) ± − + ( − ) . It can be easily shown that y y 1=+ −
− , and 

therefore we only need to substitute y =  y+ into Eq. (13) as our general solution.
Due to the reflection symmetry of the underlying potential with defects at a single node j =  jd, the 

system eigenvectors in position space must possess either an odd or even parity at the defect node. In 
the case of odd parity, i.e. = − − +C Cj j j2 d

, we let = ( − )( + )
| − | −| − |C sign j j Ay Byj d
j j j jd d , Substituting 

this into Eqs. (9–12) and using Eq. (14), we obtain the coefficients as
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In the case of even parity, i.e. C Cj j j2 d
= − + , we let = +| − | −| − |C Ay Byj
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The arbitrary constant A in Eqs. (15) and (16) will be determined by the normalized condition of the 
state vector.

The eigen vectors are traveling waves or bound states in position space are modulated by the module 
value of y, which depends on the eigenvalues of the system. When λ ∈  [ε −  2|γ|, ε +  2|γ|], |y| =  1 and we 
can set y =  eik. The solution given by Eq. (13) is thus a traveling wave, and the corresponding eigenvalue 
λ can be obtained from Eq. (14)

k2 cos 18kλ λ ε γ= = − ( ), ( )
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where k is analogous to the wave number of free particle in period lattice. Substituting Eq. (18) into Eq. 
(15) and Eq. (16), we get the normalized odd-parity traveling eigenvector
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We note that odd-parity traveling eigenvector is independent on the defect parameters α and β,  
just like on the uniform infinite lattice line traveling with constant amplitude. It is very different  
for the even-parity traveling eigenvector, in which the wave traveling towards right and the wave  
traveling towards left have different amplitudes and they are inversion symmetry about the defect  
position. The amplitudes are adjusted not only by the defect parameters but also by the wave  
number k. If only β =  0, the the even-parity traveling eigenvector reduces to 
ψ = ∑ ( | − |) + ( | − |)

π
γ
α γ

α
γ

( )

− + ( )

( )k j j k j j j[cos sin ]k
e k

i k j d
k

d
1

2
4 sin

2 sin
csc
2

 as given by Izaac et al.30. If 

both β =  0 and α =  0, it comes back to the free case ψ = ∑ ( | − |) .
π
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When λ <  ε −  2|γ|, we have |y| >  1, and when λ >  ε +  2|γ|, |y| <  1. For Eq. (13) being convergent at 
the infinity, either A or B must be zero. In the case of odd-parity, there is no physical solution for Cj due 
to the requirement B =  − A. However, for the case of even parity, if f sign y1( − )(λ) =  0, Eq. (13) can be 
reduced to = ( ≠ , ± )( − ) | − |C Ay j j j 1j
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1 d , the bound eigenvector exists, and the corresponding 
bound eigenvalues λb can be obtained from solving the equation f sign y1( − )(λ) =  0 as
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In this case the system has zero, one, or two bound eigenstates, dependent on the value range of the 
parameters ε, γ, α and β to satisfy with |y| >  1 or |y| <  1. Other coefficients in Eq. (16) are found to be 
C Ajd
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Its distribution on the position space is centered at the defect node, and exponentially decays with 
increasing of the distance from defect node. The height of the center peak and the decaying rate are 
determined by the strength of the defect.

Using the orthogonality relations of the sine and cosine functions, it can be easily shown that 
0 0 0k

o
k
e

k
o b

k
e bψ ψ ψ ψ ψ ψ= , = , =  for all values of 0 ≤  k ≤  π, and 

I dkb
b b
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k
o

k
e

k
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0∫ψ ψ ψ ψ ψ ψ= ∑ + ( + ).
π  That is to say, the eigenvectors obtained above 

remain orthonormal with respect to each other and they form a complete set of basis. Consequently, the 
time-evolution of an arbitrary initial state 0ψ ( )  can be constructed in an integral form as
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We have verified numerically in the following calculation that the integral result given by the above 
equation is completely consistent with that obtained by taking the matrix exponential of the Hamiltonian 
directly from Eq. (4).

The effect of a position defect. Choosing the parameter values ε =  2, γ =  1 and β =  0, we firstly 
examine the effects of a position defect on the quantum walk. In this case, there is always one bound state 
as long as α ≠ 0. The bound eigen energy λb as a function of α is shown in Fig. 1, in which λb =  λ+ >  ε +  2γ 
if α >  0 or λb =  λ− <  ε −  2γ if α <  0.

The left panel of Fig. 2 shows the CTQW probability distribution at t =  30, given that the quantum 
walk initially starts at the origin j0 =  0, the strength of defect α =  3, and the defect position jd =  0, 1, 2, 
5, respectively. If a defect is located at the initial position jd =  j0, a large sharp peak appears at this position 
(see Fig.  2(a)) and its height remains largely unchanged with time. For comparison, the dashed line 
depicts the probability distribution of the free quantum walk without the defect. When the defect posi-
tion is the nearest to the initial position of CTQW, i.e. | − |j jd 0  =  1, the probability distribution also has 
a small peak localized at the defect position (see Fig. 2(b)). However, when the defect position deviates 
away the initial position more a little, i.e. | − |j jd 0  >  1, the CTQW probability at the defect position 
decrease rapidly to a minimum (see Fig. 2(c,d)). This phenomenon is related to the bound state induced 
by the presence of a single defect. It can be readily illustrated through decomposed form of the CTQW 
probability at the defect position
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The first term in the sign of absolute value is zero forever due to j 0d k
oψ =  in Eq. (19). With the 

changes of jd −  j0, the probability deriving from the second term has larger amplitudes at the tails of its 
distribution, just similar to the probability distribution of the free quantum walk induced by the inter-
ference of traveling waves. Unlike that, the probability deriving from the third term is mainly localized 
around jd −  j0 =  0. Compared with the third term, the second term can be neglected when the distance 
between the initial position and the defect position is not too large. So Eq. (25) can be approximated as

P j j 26j
b

d
b2

0

2

d
ψ ψ≈ , ( )

which is the combined projections of the initial position state | 〉j0  and defect position state | 〉jd  onto the 
bound eigenstate bψ . This approximation may be weakly depend on the defect parameter values and 
evolution time, but under our choosing parameter values they are at least different from two orders of 
magnitude. The height of the large sharp peak in Fig. 2(a), calculating from Eq. (25), is 0.692427, and 
the height of the smaller peak in Fig. 2(b) is 0.0637546, which almost agree with the approximate results 

from Eq. (26) P A 0 692308j b
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respectively. Therefore, the spike in the probability distribution at the defect position can be regarded as 
a fingerprint of this bound state, which can be termed as eigen-localization. When | − | >j j 1d 0 , 

( )= ( )
γ
γ β+

( − ) | − |P A A yj b b
sign y j j

2
1 2

d
d0  in Eq. (26) decrease exponentially with the increase of distance 

Figure 1. The variation of bound energy with the strength of position defect. 
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| − |j jd 0  and the approximation becomes invalid. From Fig. 2(b–d), it is also observed that the CTQW 
is largely reflected by the defect with a small probability of transmission. Prior to encountering the defect, 
the CTQW is free and evolves symmetrically in both the left and right direction. Once the part moving 
in the right direction meets the defect, it will be largely reflected and move towards the left. As a result, 
two envelopes appear on the left side of the defect position and they overlap each other resulting in a 
complex interference pattern, as shown in Fig. 2(c,d).

The right panel of Fig. 2 shows the CTQW probability distribution at the defect position jd =  0, 1, 2, 5, 
respectively, as a function of the defect strength α at t =  30. It is shown that, although the bound energy 
is less than the traveling-wave energy when α <  0 and greater when α >  0, the probability at the defect 
position is symmetric about α =  0. That is to say, CTQW treats the single-point position defect exactly 
the same regardless of it being a potential barrier or a potential well. When the CTQW starts from 
the defect position, the probability amplitude at the defect position increases monotonically with the 
strength of the defect potential (see Fig. 2(e)). The stronger the defect potential, the larger the probability 
amplitude, with the CTQW largely localized at the defect position. When the CTQW does not start from 
the defect position, the probability at the defect position is not monotonic but rather increases firstly 
and then decreases with increasing defect strength α. It tends to zero for the stronger defect strength.

In addition, Fig. 2(a) shows that, besides a large peak at the origin, two smaller peaks are also observed 
at the tails of probability distribution, as the same locations as the ballistic peaks of the free quantum 
walk. Even when the CTQW starts from the left of the defect and it is largely reflected, as shown in 
Fig. 2(b–d), the probability distribution still has a smaller peak on the right tail. For illustrating how a 
single-point position defect affect the CTQW spreads on the line, we plot the variation of CTQW’s 
standard deviation t t t tj j2 2σ ψ ψ ψ ψ= ( ) ( ) − ( ) ( )  with time t in Fig. 3, which demonstrates 
predominantly a linear relationship regardless of being localized or reflected by the defect. However, the 
spreading speed (given by the slope of standard deviation with time) is dependent on the position of the 
defect. The appearance of defect makes the standard deviation less than that of a defect free CTQW. As 

Figure 2. Left panel: the probability distribution of CTQW with a single-point position defect when 
t = 30, α = 3, j0 = 0 and jd = 0, 1, 2, 5; Right panel: the probability at the defect position as a function of 
position defect strength. 
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expected, for the case jd =  j0 the spreading speed is the least due to strong localization. The pink 
dash-dot-dot line of | − |j jd 0  =  5 clearly shows that the CTQW spreads like a free QW at the beginning, 
but when it encounters the defect the spreading speed starts to decrease. In general, the larger the dis-
tance | − |j jd 0 , the greater the spreading speed. As an exception, we observe a much higher spreading 
speed for the case | − |j jd 0  =  1 (the red dotted line in Fig. 3) due to the large reflected peak at the far 
left end, indicating strong interference and resonance for this special case.

The effect of transition defect. In this section, we focus on the effect of a single-point transition 
defect on the spreading properties of CTQW. We choose the parameters ε =  2,γ =  1 and α =  0, the bound 
energy as a function of transition defect strength is shown in Fig. 4. When |γ +  β| ≤  1 (i.e. − 2 ≤  β ≤  0), 
no bound eigenstate exists, or else there are two bound states.

When the defect is located at the initial position (jd =  j0 =  0), the resulting probability distribution 
over the discrete position space at time t =  30 is shown in Fig. 5. Some important features to note: (1) 
if (γ +  β) =  0, the initial position is disconnected from its neighbors and consequently the CTQW stays 
at the initial position; (2) as |γ +  β| deviates slightly from zero, the residual effect of the disconnection 
still shows and the probability distribution has a peak at the initial position (see Fig.  5(a)); this peak 
decreases with time, which distinguishes it from the localized peak induced by eigen bound state; (3) as 
|γ +  β| increases until it approaches 1, the CTQW spreads in a similar way as a free QW since there is 
no bound state yet (see Fig. 5(b)); and (4) when |γ +  β| >  1 (e.g. β =  0.5 and 2, as shown in Fig. 5(c,d) 
respectively), the transition defect induces two bound states surrounding the defect, resulting in a large 
probability in the vicinity of the defect position due to eigen-localization.

Unlike the position defect induced localization where the maximum of probability is always at the 
defect position, the maximum probability induced by a transition defect may also be at the defect neigh-
bors (see the insert in Fig.  5(c,d)), which is resulted by interference between the two bound states. 
Neglecting the contribution from traveling eigen state, the localization probability around defect position 
(jd =  j0) can be approximately expressed by

Figure 3. The standard deviation of CTQW with a single-point position defect as a function of time. 

Figure 4. The variation of bound energy with the strength of the transition defect. 
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The last terms in the square brackets of the above equations represent the interference between the two 
bound states. The values of Eqs. (27) and (28) are approximately equal to the peak values in Fig. 5(c,d), 
fully indicating that these peaks are the eigen localization. In Fig. 6, we plot the localized probability at 
defect position as a function of the transition defect strength β when jd =  j0. The oscillatory behavior in 
the range of |γ +  β| >  1 displays clearly the coherent effect between the two bound states. Similar oscil-
lation also occurs for the probabilities at the neighbors of the defect position. When β =  − γ =  − 1, com-
plete disconnection between the initial position and its neighbors, we have P 1jd

= . Smooth variation of 
P jd

 with the small deviation from β =  − 1 indicates the disconnection effect remains.
The influence of a transition defect on the spread speed of CTQW is shown in Fig.  7 through the 

variation of its standard deviation with time. One particular interesting case is β =  − 0.5, where the 
spreading speed is significantly larger than that of a defect free CTQW, due to constructive interfer-
ence caused by the defect. In general, however, the transition defect reduces the spreading speed due 

Figure 5. The probability distribution of CTQW with a single-point transition defect when t = 30, 
jd = j0 = 0, and β = −0.9, −0.5, 0.5, 2. 

Figure 6. The probability at defect position as a function of the transition defect strength when t = 30 
and jd = j0. 
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to eigen-localization and transition defect trapping. Also, when |γ +  β| deviates slightly from zero (e.g. 
β =  − 0.9), the variation of standard deviation is clearly non-linear. This is because the residual discon-
nection effect decreases with time, as the probability remaining at the initial position decreases, and 
correspondingly the spreading speed increases.

When the CTQW does not start from the defect position, i.e., jd ≠ j0 =  0, Fig. 8 presents the probability 
distribution at time t =  30. The left panel, with β =  − 0.5 and thus no bound state existing, shows that the 
CTQW wave-packet is largely reflected with a smaller transmission peak observed at the same locations 
as the ballistic peaks of the free quantum walk. The right panel is the situation for β =  0.5, where two 
bound state exist. If the defect position is the nearest to the initial position of the CTQW, jd =  j0 +  1, the 
eigen localization induced by two bound states accumulates the probability in the vicinity of the defect 
position and displays strong eigen-localisation (see Fig.  8(b)). Only considering the projections of the 
bound eigenvectors, we have P 0 003j 1d

= .=  and P P 0 209j j1 2 1 0d d
= = .+ = − = , which is nearly equal to 

the coordinate values in Fig. 8(b). If the defect position goes away from the initial position, | − |j jd 0  >  1, 

Figure 7. The standard deviation of CTQW with a single-point transition defect as a function of time. 

Figure 8. The probability distribution of CTQW with a single-point transition defect when t = 30, j0 = 0, 
jd = 1, 2, 5 and β = −0.5, 0.5. 
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the factor ( − ) | − | ( − ) | − |y ysign y j j sign y j j1 1d d 0  in combinated projection j jb b
0ψ ψ  makes the 

eigen-localization probability decay exponentially with increasing distance | − |j jd 0 .

Discussion
We have introduced a new form of defects in continuous time quantum walks, namely a single-point 
transition defect. A complete set of analytical eigenvectors in position space for CTQW on the line with 
a single -point position defect and a single-point transition defect is obtained. While the system contain-
ing only a single-point position defect has one bound state, the system possessing a single-point transi-
tion defect has zero, one, or two bound states dependent on the transition defect parameters. With these 
bound eigenstate solutions we are able to understand the detailed dynamical properties of CTQW, 
including transmission, reflection and localization. We found that the induced localization at the defect 
position is determined by the combined projections of the initial position state | 〉j0  and defect position 
state | 〉jd  onto the bound eigenstate bψ . Also, the coherent effect between two bound eigenstates can be 
identified through the oscillating eigen localization for the case of single-point transition defect. We 
present a particularly interesting case where, due to constructive interference caused by the defect, the 
spreading speed is significantly larger than that of a defect free CTQW. This study provides another way 
of controlling the scattering properties of quantum walks by introducing transition defects besides the 
previously studied position defects.

This kind of eigenstate localization is different from the Anderson localization of CTQWs. The 
Hamiltonian in the Anderson model are randomly chosen whereas the Hamiltonian under our consid-
eration is deterministic. The propagation behavior for a system which exhibits Anderson localization is 
that for any initial state and an arbitrary number of time steps, and the probability to find the particle at 
a position is upper bounded by an almost exponentially decaying function in the distance from its initial 
position. The eigenstate localization for our model considered depend strongly on the initial state of the 
quantum walker, more precisely on the distance between the defect position and the initial position. In 
fact, there are initial states such that the propagation behavior is ballistic in the sense that the variance of 
the particle’s position distribution grows quadratically with time. The single-point defects in our model, 
as a local modification, can be regarded as a perturbation of a translationally invariant Hamiltonian and 
such perturbations generically generate bound eigenvectors. The peak in the probability distribution, 
occurring around the defect, can be understood as eigen-localization, which should be also allowed for 
high dimensions.

References
1. Aharonov, Y., Davidovich, L. & Zagury, N. Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993).
2. Farhi, E. & Gutmann, S. Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998).
3. Kempe, J. Quantum random walks - an introductory overview. Contemp. Phys. 44, 307–327 (2003).
4. Oliveira, A. C., Portugal, R. & Donangelo, R. Decoherence in two-dimensional quantum walks. Phys. Rev. A 74, 012312 (2006).
5. Kurzyński, P. & Wójcik, A. Discrete-time quantum walk approach to state transfer. Phys. Rev. A 83, 062315 (2011).
6. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013).
7. Kitagawa, T. et al. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 882–889 

(2012).
8. Bhattacharya, N. et al. Implementation of Quantum Search Algorithm using Classical Fourier Optics. Phys. Rev. Lett. 88, 137901 

(2002).
9. Childs, A. M. Universal Computation by Quantum Walk. Phys. Rev. Lett. 102, 180501 (2009).

10. Du, J. et al. Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A 67, 042316 (2003).
11. Schmitz, H. et al. Quantum Walk of a Trapped Ion in Phase Space. Phys. Rev. Lett. 103, 090504 (2009).
12. Karski, M. et al. Quantum Walk in Position Space with Single Optically Trapped Atoms. Science 325, 174–177 (2009).
13. Broome, M. A. et al. Discrete Single-Photon Quantum Walks with Tunable Decoherence. Phys. Rev. Lett. 104, 153602 (2010).
14. Schreiber, A. et al. Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations. Phys. Rev. Lett. 104, 050502 

(2010).
15. Sansoni, L. et al. Two-Particle Bosonic-Fermionic Quantum Walk via Integrated Photonics. Phys. Rev. Lett. 108, 010502 (2012).
16. Schreiber, A. et al. Decoherence and Disorder in Quantum Walks: From Ballistic Spread to Localization. Phys. Rev. Lett. 106, 

180403 (2011).
17. Kendon, V. & Tregenna, B. Decoherence can be useful in quantum walks. Phys. Rev. A 67, 042315 (2003).
18. Annabestani, M., Akhtarshenas, S. J. & Abolhassani, M. R. Decoherence in a one-dimensional quantum walk. Phys. Rev. A 81, 

032321 (2010).
19. Yin, Y., Katsanos, D. E. & Evangelou, S. N. Quantum walks on a random environment. Phys. Rev. A 77, 022302 (2008).
20. Mülken, O. & Blumen, A. Continuous-Time Quantum Walks: Models for Coherent Transport on Complex Networks. Phys. Rep. 

502, 37–87 (2011).
21. Ribeiro, P., Milman, M. & Mosseri, R. Aperiodic Quantum Random Walks. Phys. Rev. Lett. 93, 190503 (2004).
22. Keating, J. P. et al. Localization and its consequences for quantum walk algorithms and quantum communication. Phys. Rev. A 

76, 012315 (2007).
23. Kollár, B. et al. Asymptotic Dynamics of Coined Quantum Walks on Percolation Graphs. Phys. Rev. Lett. 108, 230505 (2012).
24. Chandrashekar, C. M. Disordered-quantum-walk-induced localization of a Bose-Einstein condensate. Phys. Rev. A 83, 022320 

(2011).
25. Wójcik, A. et al. Trapping a particle of a quantum walk on the line. Phys. Rev. A 85, 012329 (2012).
26. Li, Z. J., Izaac, J. A. & Wang, J. B. Position-defect-induced reflection, trapping, transmission, and resonance in quantum walks. 

Phys. Rev. A 87, 012314 (2013).
27. Zhang, R., Xue, P. & Twamley, J. One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 89, 042317 

(2014).
28. Motes, K. R., Gilchrist, A. & Rohde1, P. P. Quantum random walks on congested lattices. arXiv:1310.8161.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:13585 | DOi: 10.1038/srep13585

29. Koster, G. F. & Slater, J. C. Wave Functions for Impurity Levels. Phys. Rev. 95, 1167 (1954).
30. Izaac, J. A., Wang, J. B. & Li, Z. J. Continuous-time quantum walks with defects and disorder. Phys. Rev. A 88, 042334 (2013).
31. Manouchehri, K. & Wang, J. B. Continuous-time quantum random walks require discrete space. J. Phys. A 40, 13773–13785 

(2007).

Acknowledgements
This work was supported by National Nature Science Foundation of China (Grant No. 10974124, 
11274208) and Shanxi Scholarship Council. The authors also like to acknowledge support from The 
University of Western Australia.

Author Contributions
Z.J.L. and J.B.W. conceived the idea, designed the research, performed calculations and prepared the 
manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Li, Z. J. and Wang, J. B. Single-point position and transition defects in 
continuous time quantum walks. Sci. Rep. 5, 13585; doi: 10.1038/srep13585 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Single-point position and transition defects in continuous time quantum walks
	Introduction
	Results
	The single-point defect model of CTQW
	Eigen problem of the model Hamiltonian
	The effect of a position defect
	The effect of transition defect

	Discussion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Single-point position and transition defects in continuous time quantum walks
            
         
          
             
                srep ,  (2015). doi:10.1038/srep13585
            
         
          
             
                Z. J. Li
                J. B. Wang
            
         
          doi:10.1038/srep13585
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep13585
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep13585
            
         
      
       
          
          
          
             
                doi:10.1038/srep13585
            
         
          
             
                srep ,  (2015). doi:10.1038/srep13585
            
         
          
          
      
       
       
          True
      
   




