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Non-Markovian Complexity in the 
Quantum-to-Classical Transition
Heng-Na Xiong1,2, Ping-Yuan Lo1, Wei-Min Zhang1, Da Hsuan Feng3 & Franco Nori4,5

The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how 
classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition 
has mainly been described with memory-less (Markovian) quantum processes. Here we study the 
complexity of the quantum-to-classical transition through general non-Markovian memory processes. 
That is, the influence of various reservoirs results in a given initial quantum state evolving into 
one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or 
oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or 
full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the 
quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue 
for the development of future quantum technologies because the remaining quantum oscillations in 
steady states are decoherence-free.

The quantum-classical correspondence, searching for the unambiguous classical world starting from 
quantum theory1, is a time-honored question that has been explored since the birth of quantum physics. 
In the last two decades, significant progress has been made from the decoherence-dynamics point of 
view for systems interacting with their environments. A typical feature of decoherence is that the inevi-
table interaction between the system and its environment drives system states from the quantum regime 
(dominated by quantum coherence) to the classical regime (with a complete loss of quantum coherence). 
This process describes the quantum-to-classical transition (QCT)2. The environment-induced deco-
herence of quantum systems is not only a fundamental topic in quantum physics, but also the major 
obstacle in the development of quantum information processing. Many works, including both theories 
and experiments, have been devoted to this topic, see for examples Refs.  2–4. However, most of the 
previous works were focused on the weak system-environment coupling regime in which the memory 
effects or non-Markovian dynamics between the system and the environment are not essential. New 
experimental implementations of nanoscale solid-state quantum information processing4–7 make strong 
non-Markovian memory effects unavoidable. Thus the investigation of non-Markovian memory effects 
have recently become an important research topic in the study of quantum information processing8–28.

As we know, any realistic quantum system in nature has inevitable interactions with its surroundings 
(or environment). Such systems are called “open quantum systems”. All kinds of quantum devices, devel-
oped in recent years for quantum information processing, are open systems. In contract to an isolated 
quantum system, whose dynamics is governed by the Schrödinger equation, the dynamical evolution of 
an open quantum system is described by the master equation. Physicists have attempted for decades, 
using many different approaches, to derive the exact master equation for arbitrary open quantum sys-
tems. Unfortunately, no satisfactory answer was obtained, except for Brownian motion29–32. Very recently, 
by going beyond the toy model for Brownian motion, and using the coherent-state path-integral formal-
ism29,33, an exact master equation for a large class of open quantum systems has been obtained10,34,35. 
These open systems consist of arbitrary N  energy levels coupled, through various particle-particle 
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exchanges (or particle tunnelings), to general environments with arbitrary continuous spectra at arbitrary 
temperature. These are also the basic physical systems widely used for recent developments of quantum 
transport and quantum decoherence in nano-electronics and nano-photonics36,37. The environment-induced 
energy-level renormalization, dissipation and thermal fluctuations are naturally incorporated into our 
master equation and can be nonperturbatively determined from the nonequilibrium Green functions38,39. 
These Green functions obey the microscopic Kadanoff-Baym equation for nonequilibrium dynamics40. 
Thus, we are able to take into account all the environment-induced non-Markovian memory effect in the 
study of the decoherence dynamics of nano-structured (nano-electronic and nano-photonic) quantum 
devices.

In this article, we present the general solution of the exact master equation for these quantum devices 
derived in Refs. 10,34,35. Based on the general solution, we demonstrate the complexity of the QCT for 
different dissipation processes. For a Markovian or a weakly non-Markovian environment, the system 
will eventually evolve into a thermal or a thermal-like state. This is the typical process for the QCT. 
For strongly non-Markovian environments, some of the quantum coherence could remain, leading to a 
quantum steady state or an oscillating quantum nonstationary state. In this case, the QCT never occurs. 
Some examples are presented to illustrate the complexity of non-Markovian dynamics in various differ-
ent dissipation processes. At the end, we also present in detail the time evolution of Schrödinger cat-like 
states. The complexity of non-Markovian dynamics is examined, to demonstrate various scenarios for the 
QCT. An experimental proposal to measure such non-Markovian complexity in the QCT is also given.

Results
General Solution of Open Quantum Systems. We consider a large class of open quantum systems, 
consisting of arbitrary N energy levels, and coupling, via particle-particle exchange processes or particle 
tunnelings, to general environments with various possible continuous spectra. Such open systems cor-
respond to the Fano-Anderson model in condensed matter physics41–44 and the Lee-Friedrichs model 
in atomic and molecular physics45–47. The exact master equation describing the time evolution of the 
reduced density matrix of such open systems was recently derived10,34,35
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where †ai  (ai) is the particle creation (annihilation) operator of the ith energy level of the open system. 
The first term in Eq. (1) describes the unitary evolution of the open system with the environment-induced 
renormalized Hamiltonian ω( ) = ∑ ′ ( )′

,
†H t t a aS ij S ij i j. The second and third terms describe the 

environment-induced dissipation and fluctuations, respectively. The signs ±  and  in the third term 
correspond to the system being bosonic or fermionic. This exact master equation nonperturbatively takes 
into account all the environment-induced non-Markovian memory effects, which is reflected by the 
renormalized frequency of the system ω ( )′ tS , the dissipation coefficient γ (t) and the fluctuation coeffi-
cient γ( )


t . Here the environment is assumed initially in equilibrium at a finite temperature T and is 

initially decoupled from the system29,48.
All the time-dependent coefficients in the master equation are fully determined by the nonequilib-

rium Green functions through the following relations10,34,35,
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where the nonequilibrium particle propagating Green function u(t, t0) and the fluctuated correlation 
Green functions τ( ) ≡ ( ′, )

τ ′=
v vt t

t
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∫ω
τ
τ τ τ τ τ( , ) + (τ, ) + ′ ( , ′) ( ′, ) = ,

( )

τ
u u g ud

d
t i t d t 0

3S
t

0 0 0
0

∫ ∫ω
τ
τ τ τ τ τ τ τ τ τ τ( , ) + ( , ) + ′ ( , ′) ( ′, ) = ′ ( , ′) ( ′, ),

( )

τ


†v v g v g ud
d

t i t d t d t
4S

t t

t

0
0 0



www.nature.com/scientificreports/

3Scientific RepoRts | 5:13353 | DOi: 10.1038/srep13353

subjected to the boundary conditions u(t0, t0) =  1 and v(t0, t) =  0, with τ ∈ ,t t[ ]0 . The frequency ωS is 
an N ×  N matrix for the N-level system, and the integral kernels, g(τ, τ′ ) and τ τ( , ′)g , are defined by
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where J(ω) is the spectral density which characterizes all the non-Markovian memory of the environment 
on the system. The function ω( , ) = / ω/

n T e1 [ 1]k TB  is the initial particle distribution of the 
environment.

The exact solution of these nonequilibrium Green functions has been presented in Ref. 20. Thus, by 
solving the exact master equation, the quantum state evolution of open systems can be precisely depicted. 
To be specific, consider a simple system with a single-particle energy level, e.g. a single-mode nanocavity 
coupled to a general environment with spectral density J(ω) at temperature T. Also, consider the system 
to be initially in an arbitrary state (in terms of the density matrix)
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( ), =

∞

t c m n
6m n
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0

in which the diagonal matrix element cnn represents the probability of the system in the particle number 
state n , and the off-diagonal matrix element cmn(m ≠ n) characterizes the quantum coherence between 
the states n  and m . Then, under the influence of the environment, the time evolution of the quantum 
state, i.e. the exact solution of Eq. (1) is given by

 ∑ ∑ρ ρ( ) = ( ) ( ( )) ( ),
( ), =

∞

=

,



†t c d t v t t
7m n

mn
k

m n

k mk nk
0 0

min{ }

where



∑ρ( ( )) =
( )

+ ( )
,

( ) =
!

( − ) ! !






( , )

+ ( )





 ,

( )

=

∞

+

−



† †

v t
v t

v t
n n

t m
m k k

u t t
v t

a

[ ]
[1 ]

1 8

n

n

n

mk

m k
0

1

0

and = 

 −





( , )

+ ( )
d 1k

u t t
v t

k

1
0

2
. These results show that the time evolution of the quantum state is fully deter-

mined by u(t, t0) and v(t). The analytical solution of these two basic nonequilibrium Green functions can 
be found in Ref. 20, and are also given in the Methods Section. As a result, the exact non-Markovian 
dynamics of open systems can be systematically explored within the present framework.

Non-Markovian complexity of QCT. From the equations (3) and (4), the particle propagating Green 
function u(t, t0) and the fluctuated correlation Green function v(t) are mainly determined by the spectral 
density of the environment J(ω), which is defined as the environment density of state  ω( ) multiplied by 
the system-environment coupling strength V(ω), i.e., ω π ω ω( ) = ( ) ( )J V2 2. Based on our recent 
results20, different spectral densities for environments induce completely different dissipation and fluctu-
ations on the system dynamics, due to different types of the non-Markovian memory effects. Therefore, 
from the general solution of the evolution state (7), one can derive the complexity of the QCT, as sketched 
in Fig.  1. Consider either weak or strong non-Markovian memories, arbitrary initial quantum states 
would be driven into steady states that could be thermal states, thermal-like states, quantum steady states, 
or oscillating quantum nonstationary states. Which scenario the system will eventually evolve is basically 
determined by the dissipation dynamics, described by the particle propagating function u(t, t0) of the 
system. While the fluctuation dynamics, given by the fluctuated correlation v(t), determine the nonequi-
librium particle distributions. Below we will discuss case-by-case the four different scenarios.

1. Thermal steady states. If a system undergoes a dissipation process with a monotonic exponential 
decay, as shown in Fig. 1c.i, i.e.,

ω( , ) −( + Γ/ )( − ) → , ( )u t t i t texp{ 2 } 0 90 0

when t →  ts ≫  1/Γ , then the system will eventually lose all the initial quantum coherence and evolve into 
a mixed steady state of the form
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This process happens usually when the system-environment coupling is sufficiently weak (compared 
with the system frequency) and the spectral density has a rather broad distribution, J(ω) ≃  Γ , as shown 
in Fig. 1d.i. Correspondingly, the particle correlation in the environment gives almost a delta-function 
profile in the time domain. In other words, the system loses all the memory during its evolution, due to 
rapidly exchanging information with its environment. Thus, the initial quantum coherence is completely 
washed away at the end [so the steady solution (10) is totally independent of the initial state (6)]. On the 
other hand, the wide-broad spectral density ensures that the environment remains in its initial thermal 
equilibrium state, and the system finally reaches equilibrium with its environment. The particle correla-
tion in the steady state becomes

ω( ) = ( , ), ( )v t n T 11s S

and the solution (10) is indeed the well-known thermal state at the given temperature T. This is the 
microscopic picture for the QCT that has been extensively investigated2,30.

2. Thermal-like steady states. However, for many practical open systems, their dynamics do not fol-
low a monotonic exponential decay, in particular, when the system-environment couplings become a 
bit stronger, or the reservoir has band gaps. The corresponding dissipation dynamics usually shows a 
nonexponential decay and sometimes even becomes dissipationless20. Therefore, the quantum state may 

Figure 1. Schematic diagrams of the complexity of the quantum-to-classical transition. (a) An open 
quantum system, subject to an external environment, will undergo a nonunitary evolution. In this process, 
the quantum system may lose its initial quantum coherence, i.e., will exhibit quantum decoherence. This is 
the root of the quantum-to-classical transition (QCT). (b) For an arbitrary initial quantum state ρ(t0), a 
nonunitary evolution may lead the system to evolve into four possible steady states: thermal state, thermal-
like state, quantum state, and oscillating quantum nonstationary state. If the system finally steps into the 
former two kinds of steady states, the QCT definitely happens. Otherwise, the system remains in the 
quantum regime, and the QCT (strictly) never emerges. The four kinds of steady states correspond to the 
four typical dissipation processes i-iv in figure (c) i, a dissipation process with exponential decay, where the 
non-Markovian memory of the environment is negligible. This is the standard QCT process; ii, a dissipation 
process in terms of a profile of exponential decay accompanied with short-time oscillations, which is a 
manifestation of weak non-Markovian memory; iii, a dissipation process stopped by a strong non-
Markovian memory; iv, a dissipation process with oscillating steady state, also caused by a strong non-
Markovian memory. The four dissipation processes stem from the four features of the spectral density (one-
to-one correspondence) in figure (d) i, a wide-broad spectral density; ii, a spectral density which is a little 
different from the wide-broad one; iii, a spectral density with one forbidden frequency regime giving rise to 
a single localized mode ωb; iv, a spectral density with two (or more than two) forbidden regimes (band gaps) 
generating two (or more than two) localized modes ωb1

 and ωb2
.
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not evolve into the thermal state (10) as could be naively expected. To be specific, let us now consider a 
spectral density, Fig. 1d.ii, which is a bit different from the wide-broad distribution shown in Fig. 1d.i. 
The particles in the environment take a correlation time that is not extremely short in comparison with 
the time scale of the system. In this case, the system will partially remember (memory) its response to 
the information exchange with the environment in a similar time scale. Consequently, the dissipation 
process exhibits a short-time deviation from the exponential decay, although u(ts, t0) →  0 at the end, see 
Fig. 1c.ii. This is a manifestation of the weak non-Markovian memory effect. The quantum state of the 
system will reach the steady state with the same form as Eq.  (10) but the particle correlation resulted 
from thermal fluctuations becomes

∫
ω
π

ω ω( ) = ( ) ( , ). ( )v t d n T
2 12s c

Notice that the memory effect in this case takes place in a relatively short time, so that the steady-state 
solution is still independent of the initial state (6). The quantum coherence is also totally lost at the end. 
But the steady-state particles in the system are thermally distributed in the broadened spectrum of the 
system,

 ω
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. If J(ω) is approximately a 
constant, then Δ (ω) →  0, and Eq. (12) is reduced to Eq. (11) of the case 1. We name the steady state of 
Eq.  (10) with the distribution (12) as a thermal-like state. We will show later that such a weak 
non-Markovian memory effect is achieved when the system-environment coupling strength is smaller 
than a critical value for some colored spectral densities.

3. Quantum steady states. The situation becomes rather interesting when the spectral density does not 
cover the whole frequency regime, as shown in Fig. 1d.iii. In this case, the system has a localized mode 
ωb. As shown in Fig. 1c.iii, the dissipation dynamics is significantly different from that shown in Fig. 1c.i 
and ii. In particular, the dissipation is even stopped after a certain time (becomes dissipationless, and u(ts, t0) 
remains a nonzero constant). This is a striking manifestation of the strong non-Markovian memory effect. 
The quantum state of the system will evolve into the steady state

 ∑ ∑ρ ρ( ) = ( ) ( ) ( ),
( ), =

∞

=

,



†t c d t t t
14

s
m n

mn
k

m n

k mk s s nk s
0 0

min{ }

which has exactly the same form as the general solution of Eq. (7), with the steady-state solution of the 
particle propagating Green function

 ω( , ) = − ( − ) , ( )u t t i t texp{ } 15s b b s0 0

obtained directly from Eq.  (31) in the Methods, where b is the amplitude of the steady-state particle 
field ( )a t s  arisen from the localized mode20. The particle correlation is characterized by

 ∫
ω
π

ω ω ω( ) = ( ) + ( ) ( , ), ( )v t d n T
2

[ ] 16s l c

which is similar to Eq. (12) in the case 2, but having an additional contribution arose from the localized 
mode, D Zω ω ω ω( ) = ( ) /( − )Jl b b

2 2. This shows that the solution (14) never becomes a completely 
mixed state as long as the dissipation is stopped at a certain time (i.e., u(ts, t0) ≠ 0 due to the existence of 
the localized state). The off-diagonal matrix elements in the state (14) never vanish so that some quantum 
coherence is constantly maintained. Also, the average particle number in the system is given by

( ) = ( , ) ( ) + ( ), ( )n t u t t n t v t 17s s s0
2

0

which depends explicitly on the initial particle number15,23,25. In other words, the system has the longest 
memory effect (memorizes forever some of its initial state information), and never reaches equilibrium 
with its environment. This indicates that open systems can stay in a steady but nonequilibrium state that 
has constant information (coherence) exchange with its environment through non-Markovian memory 
processes.

4. Oscillating quantum steady states. Moreover, when the spectral density has more than one band gap, 
such as quantum dots in semiconductor nanostructures and micro/nano-cavities in photonic crystals, it 
could bring more than one localized state to the system, as shown in Fig. 1d.iv. These localized modes 
produce dissipationless dynamics of the system with different oscillation frequencies. As a result, the 
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system state evolves into a steady state having the same form as Eq. (14) but the dissipationless dynamics 
is very different. It combines different localized modes to forming an oscillating steady state with

∑ ω( , ) = − ( − ) .
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18

s
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As a result, the particle correlation, still given by Eq. (16) in which  ω( )l  becomes
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oscillates in time. This pure quantum oscillation is a very interesting feature for quantum devices. It may 
be useful for quantum information processing against decoherence, because the localized modes have 
already taken into account all the environmental back-action effects and therefore are decoherence-free. 
A typical physical realization for this situation is a quantum device coupled to a structured reservoir, as 
we will demonstrate below.

In summary, we prove that for a general non-Markovian environment, the system can evolve into 
one of four possible steady states: thermal state, thermal-like state, quantum steady state, and oscillat-
ing quantum nonstationary state. The first two correspond to the standard QCT usually occurring in 
the weak-coupling limit, while the last two steady states partially maintain the initial-state quantum 
coherence, which is a remarkable manifestation of the strong non-Markovian memory effect. Thus, the 
quantum-to-classical transition due to the environment-induced decoherence is crucially determined by 
the system-environment coupling strengths as well as the environment spectral properties. This transi-
tion mainly occurs when the system-environment coupling strength is not so strong and/or the envi-
ronment does not contain band gap structures such that the interactions between the system and its 
environment cannot generate localized bound states. The localized bound states do not allow the system 
to approach equilibrium with its environment23,25,41.

Note that the classical states in the above QCT refer to completely mixed states in which all quantum 
coherence effects are lost through the decoherence process, as defined explicitly in the Introduction 
(also see2). This classical domain is different from the conventional classical limit of an isolated quan-
tum system. The latter requires to find some intrinsic parameters (such as energy scale, particle number 
or angular momentum, etc.) of the system, such that certain semiclassical approximation can be made 
under a proper limit of these parameters with respect to the Planck constant1. However, the conven-
tional classical limit can be explored in the above QCT in the weak system-environment coupling at 
high temperatures. Note that the general solution of the fluctuation Green function of Eq.  (4), given 
by Eq.  (33), is the generalized nonequilibrium quantum fluctuation-dissipation theorem20. In the weak 
system-environment coupling regime, the localized bound states either do not occur, as we have shown 
above, or their contribution to the fluctuation dynamics is generally negligible when the environment 
has band-gap structures25. Thus, the generalized nonequilibrium quantum fluctuation-dissipation theo-
rem of Eq. (33) is reduced to the equilibrium fluctuation-dissipation theorem49 at the steady-state limit 
(see the detailed proof in the Supplemental Material of Ref. 20). Then at high temperatures, the equilib-
rium fluctuation-dissipation theorem is reduced further to the Einstein’s fluctuation-dissipation theorem, 
which can also be derived from the classical Langevin equation50. This classical limit is consistent indeed 
with the result of the classical Brownian motion derived by Caldeira and Leggett30 from a quantum har-
monic oscillator coupled to a thermal bath within the same framework.

Applications. We now illustrate how the complexity of non-Markovain dynamics can be observed in 
real physical systems. Since the steady state that an open system will eventually reach depends closely 
on features of the spectral density, we consider first a general environment with the Ohmic-type spectral 
density48 for simulating a large class of thermal reservoirs,

ω πηω ω ω ω ω( ) = ( / ) (− / ), ( )−J 2 exp 20c
s

c
1

where η is a dimensionless system-environment coupling strength, and ωc is a cutoff frequency. The 
parameter s classifies the spectral density into three types: sub-Ohmic (0 <  s <  1), Ohmic (s =  1), and 
super-Ohmic (s >  1). These describe different non-Markovian environments for different physical systems.

The noise process of some examples listed in Fig. 2 can indeed be described by the Ohmic-type spec-
tral density of Eq. (20). In particular, for solid-state devices at low temperatures, such as nano-scale LC 
circuits, superconducting Josephson junctions, and quantum dot devices, the dominant noise sources 
could be simulated by sub-Ohmic spectral densities or 1/f low-frequency noises51,52. For nanomechanical 
resonators, the interesting noise source should be phonon-bath noises which are mainly described by 
super-Ohmic spectral densities48,53. However, for photonic crystal cavities and waveguide cavities, the 
spectral densities may contain photonic band gap structures25,54. These different physical systems could 
provide very different non-Markovian decoherence behaviors under different noise processes, as we show 
below.
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Any Ohmic-type spectral density takes the profile shown in Fig. 1d.iii, with ω ≥  0. It shows that there 
is a localized mode with frequency ωb located in ω <  0 when the coupling strength exceeds the critical 
point ηc =  ωS/[ωcΓ (s)], where ∫Γ( ) =

∞ − −s x e dxs x
0

1  is the gamma function. This negative but finite 
renormalized frequency ωb is a natural result of the open system in the strong system-reservoir coupling 
regime for Ohmic-type spectral densities20,23. Although the renormalized frequency of the system is 
negative, it is easy to prove that the total energy is always positive-definite for all decoupled initial states48 
used for deriving the exact master equation. This is mainly because of the conservation of the total par-
ticle number for the total system. The boundary line ηc =  ωS/[ωcΓ (s)] distinguishes the dissipation and 
dissipationless regimes (through the zero and nonzero values of the particle field amplitude |u(ts, t0)|), 
which tells how and when a thermal-like state or a quantum steady state will show up through varying 
the coupling strength in the spectral density, as shown in Fig. 3. Note that the standard QCT with the 

Figure 2. Illustration of various examples of open systems. An open photon system with single-mode can 
be any kind of cavity, such as a Fabry-Parot cavity, a photonic-crystal cavity, or a waveguide cavity. It could 
also be trapped ions with a vibrational mode. Alternatively, it could be various solid-state devices as well; for 
instance: LC circuits and Josephson junctions.

Figure 3. Transition from thermal-like state and quantum steady state. The figure displays the steady 
value of the particle field amplitude |u(ts, t0)| with sub-Ohmic (s =  1/2), Ohmic (s =  1), and super-Ohmic 
(s =  3) spectral densities for arbitrary system-environment coupling strength η and cutoff frequency ωc. Here 
ωS is the frequency of the system. For each type of spectral density, |u(ts, t0)| remarkably transits from zero 
to nonzero with the boundary line ηc =  ωS/[ωcΓ (s)], corresponding to the transition from classical thermal-
like steady state to quantum steady state, respectively.
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state (10) known in the literature corresponds to the limit case where the height of the spectral distribu-
tion ηωc/ωS ≪  1 and the spectral width ωc/ωS ≫  1, in which the non-Markovian memory is truly 
negligible.

To demonstrate the existence of oscillating quantum steady states, we consider a nanocavity subject to 
a structured reservoir consisting of a coupled-resonator array17,54. Thus, the reservoir can be modeled by 
a tight-binding one-dimensional system, and its dispersion has the form ωk =  ωc −  2ξ cos (k). This leads 
to the finite-band structure, for which the spectral density

ω η ξ ω ω( ) = − ( − ) ( )J 4 21c
2 2 2

with the band: |ω −  ωc| ≤  2ξ17,54, where ωc is the band center of the reservoir, ξ is the intercavity coupling 
inside the reservoir, and η is the ratio between the cavity-reservoir coupling and intercavity coupling ξ. 
It is easily to show that, when the coupling strength η η δ ξ> = + /2c , where δ =  ωS −  ωc is the 
detuning, there are two localized modes ω

±b  located at two outsides of the band. These two 
simultaneously-occurring modes cause the oscillatory dissipation dynamics, as shown in Fig.  1d.iv. In 
particular, in the zero-detuning case, the steady value of the particle field oscillates as a cosine:

η

η
ω ω ω( , ) =

−

−
− ( − ) | − |( − )

( )±
u t t i t t t t

2
1

exp{ }cos{ }
22s c s b c s0

2

2 0 0

with two localized modes ω ω η ξ η= ± / −
±

1b c
2 2 . This gives rise to an oscillating quantum nonsta-

tionary state.

The quantum-to-classical transition for Schrödinger cat-like states. We now examine the 
time-evolution of Schrödinger cat-like states in a general environment. Schrödinger cat-like states have 
been considered as a prototypical example used to demonstrate the QCT3,4. Here we shall demonstrate 
the memory-induced complexity of the non-Markovian dynamics through the measurement of the 
remaining quantum coherence in the steady states of Schrödinger cat-like states, in terms of the fringe 
visibility.

A Schrödinger cat-like state is defined as a superposition of two oppositely-moving coherent states: 
ψ α α= ( + − )/φei

0 0 . Its time evolution at a later time t is given by

N
� � �ρ ( ) = 
 ( ) + ( ) + ( ) , ( )+ −t t t t1

23I

where





α ρ α

α ρ α

( ) = (± ( )) ( ( )) (± ( )),

( ) = ( ) (− ( )) ( ( )) ( ( )) + . . , ( )φ
± 

 

†

†

t D t v t D t

t F t e D t v t D t[ H c ] 24I
i

and  ( )± t  and  ( )tI  correspond to the evolution of the coherent states ±a0  and the interference between 
them, respectively. Here D(α) is the displacement operator, and α(t) =  u(t, t0)α0 and α α( )= ( )/ + ( )


t t v t[1 2 ]. 

The prefactor F(t) in the interference term  ( )tI  is just the fringe visibility, given explicitly in (27).
The Wigner distribution gives a description of the density matrix in phase space (in the coherent-state 

representation here). For the quantum state (23), the corresponding Wigner distribution is given by17


( , ) = ( , ) + ( , ) + ( , ) ,

( )+ −W z t W z t W z t W z t1 [ ] 25I
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and W±(z, t) and WI(z, t) are the Wigner distributions of  ( )± t  and  ( )tI , respectively.
The fringe visibility is an experimentally-measurable signature of quantum conference, i.e. interfer-

ence, for identifying the quantumness of a density matrix. It can be defined as the peak-to-peak ratio 
between the interference and the direct terms in the Wigner function for Schördinger cat-like states2. 
From the Wigner distribution of Schrödinger cat-like states, the fringe visibility is exactly given by the 
prefactor in the interference term  ( )tI ,
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Since the fringe visibility ranges from the minimum value Fmin =  exp[− 2|α0|2] (complete decoherence) 
to the maximum value Fmax =  1 (full coherence), the decay of F(t) directly depicts the quantum decoher-
ence process. For weak non-Markovian memory processes, the particles in the system will be eventually 
dissipated into the environment [because u(ts, t0) →  0] so that the fringe visibility reaches its minimum 
value. That is, quantum coherence is completely lost, and the system evolves into the classical regime 
with a thermal or a thermal-like steady state3,4. However, if there are band gaps appearing in the spectral 
density, then a strong non-Markovian memory effect leads to dissipationless dynamics20, characterized by 
a nonzero steady-state value of u(ts, t0). Thus the initial quantum coherence in the Schrödinger cat-like 
state can be partially maintained after the system reaches its steady state, which can be measured through 
the fringe visibility with the value greater than its minimum.

Figure 4 shows the steady-state values of the fringe visibility for Ohmic-type spectral densities at zero 
and finite temperatures, respectively. In the regime η <  ηc, F(ts) takes only its minimum value Fmin ~ 0 
(for α0 =  2). This corresponds to the classical steady-state regime. While for η >  ηc, F(ts) is always greater 
than Fmin. Namely, partial quantum coherence is maintained, and the corresponding steady states always 
memorize some of the initial quantum coherence information, and thus the system never really reaches 
the classical regime. The difference between F(ts) and Fmin measures how much quantum coherence 

Figure 4. The fringe visibility of Schrödinger cat-like states. The fringe visibility F(ts) of an initial 
Schrödinger cat-like state for three different Ohmic-type spectral densities: sub-Ohmic, Ohmic, and super-
Ohmic at zero and finite temperatures (T =  0, 2ωS, 10ωS). The initial coherent amplitude is α0 =  2.
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remains in the steady state. Obviously, at finite temperatures, the remaining quantum coherence in the 
regime with η >  ηc is partially suppressed by thermal fluctuations, in comparison with the zero temper-
ature case. When the temperature becomes higher, the memory effect decreases rapidly. In other words, 
thermal fluctuations speed up the transition from the quantum domain to the classical domain, and the 
memory effect becomes in general less important in the high temperature regime, as expected. This result 
agrees with the recent work by Pachón et al.55. Also notice that for a super-Ohmic reservoir (s =  3), the 
remaining quantum coherence does not change too much for different temperatures. This is because 
for a super-Ohmic spectral density with s >  2, the damping rate is extremely small, even in the weak 
system-reservoir coupling regime28,56, while the damping quickly stops in the strong-coupling regime 
because of the occurrence of the localized bound states28. Thus, thermal fluctuations cannot suppress the 
non-Markovian memory effect, as shown in Fig. 3. In other words, the non-Markovian memory effect 
is robust against thermal fluctuations in preserving quantum coherence for super-Ohmic environments.

To see how fast the coherence is lost in different dissipation processes, we compute the time depend-
ence of the fringe visibility. In Fig.  5, the time-dependence of the fringe visibility is plotted, with the 
corresponding time evolution of the Wigner function for an initial Schrödinger cat-like state for all 
four typical dissipation processes. The initial fringe visibility takes always the maximum value F(t0) =  1, 
namely, the cat state has the maximum quantum coherence. The initial Wigner function always has 
negative interference fringes (see the figures at t0 =  0), as a signature of quantumness. In the Markovian 
(memory-less) process, the initial cat state smoothly loses all its quantum coherence and becomes a 
thermal state (the Wigner function becomes a thermal Gaussian distribution located at the origin, see 
the last plot in Fig. 5a). Correspondingly, the fringe visibility F(t) decays exponentially from 1 to Fmin. 
For other non-Markovian memory processes, the initial cat state takes different decoherence behaviors. 
For a weak non-Markovian decay given in Fig. 5b, although the steady state (reached at t =  10/ωS) is a 
thermal-like one, its decoherence is much faster than the pure thermal state (which takes t =  500/ωS 
to reach the steady state as shown in Fig. 5a), so does the fringe visibility. Furthermore, with a strong 

Figure 5. Dynamics of the Fringe visibility and Wigner distribution. On the left column, the dynamics of 
the fringe visibility F(t) is displayed. On the right column, several snapshots of the Wigner distribution are 
shown for the time-evolution. The four dynamical processes here correspond to the four kinds of dissipation 
processes in Fig. 1c. Here the parameters are set as: (a) Ohmic spectral density with coupling strength 
η =  0.001 and cutoff frequency ωc =  10ωS. The Markovian memory is almost negligible; (b) Ohmic spectral 
density with coupling strength η =  0.1 and cutoff frequency ωc =  5ωS. Here η <  ηc =  0.2. This is still in the 
weak non-Markovian memory regime; (c) Super-Ohmic spectral density with coupling strength η =  0.12 and 
cutoff frequency ωc =  5ωS. Here η >  ηc =  0.1 and the effect of the strong non-Markovian memory shows up; 
(d) The spectral density for a tight-binding one-dimensional system with coupling strength η =  3.0 and band 
center ωc =  ωS. Here the region η η> = 2c  is in the strong non-Markovian memory regime. In all of these 
four cases, the initial environment temperature is set as T =  2ωS and the initial coherent amplitude α0 =  2.
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non-Markovian memory effect, see Fig. 5c (or 5d), the fringe visibility only decays to a constant value 
higher than Fmin (or a steady oscillation pattern), where the Wigner function never becomes a thermal 
Gaussian distribution. In either case, the dynamics of the fringe visibility clearly characterizes the deco-
herence process of the system.

An experimental proposal for measuring the non-Markovian memory effects. Decoherence 
processes have been measured through the reconstruction of the density matrix3,57. Here, we propose 
an alternative and simpler method to experimentally measure the fringe visibility. The fringe visibility 
given by Eq. (27) is fully determined by the particle propagating function |u(t, t0)|2 and the fluctuation 
correlation function v(t). These two Green functions provide full information of dissipation and thermal 
fluctuation of the system induced by the environment, and are independent of the initial state ρ(t0) of 
the system [see Eqs (3) and (4)]. Meanwhile, the particle number (intensity) of the system is n(t) =  |u(t, 
t0)|2n(t0) +  v(t), which can be directly measured. Thus one can obtain |u(t, t0)|2 and v(t) by detecting the 
intensity (particle number) under two different initial states. In cavity systems, the intensity detection is 
a well-developed technique, so the fringe visibility can be directly measured without going through the 
reconstruction of the density matrix3,57.

For example, we consider two initial coherent states (two laser beams) with different intensities n1(t0) 
and n2(t0). Then by detecting the intensities n1(t) and n2(t) at time t, one can obtain the Green functions 
|u(t, t0)|2 and v(t) in the time domain as follows

( , ) =
( ) − ( )

( ) − ( )

( ) =
( ) ( ) − ( ) ( )

( ) − ( )
.

( )

u t t
n t n t

n t n t

v t
n t n t n t n t

n t n t 28

0
2 1 2

1 0 2 0

1 0 2 2 0 1

1 0 2 0

In this manner, not only the dissipation and fluctuations, characterized explicitly by u(t, t0) and v(t), and 
also the fringe visibility F(t) can be easily obtained. It is also worth pointing out that once the Green 
functions u(t, t0) and v(t) can be obtained through the detection of the intensity, one can extract the 
spectral density from the Fourier transformation of these Green functions. Explicitly, the Fourier trans-
formation, ∫ ω( , ) = ( )ω

π
ω− ( − )u t t ed

s
i t t

0 2
0 , provides the modified spectrum of the system due to the cou-

pling to the environment20:

D Z D∑ω π δ ω ω ω( ) = ( − ) + ( ),
( )

2
29

s
j

b bj j

where  ω( ) is given by Eq. (13) as a function of the spectral density J(ω). This could provide an alter-
native, but simpler, experimental approach to measure the spectral density J(ω), in comparison to the 
direct measurement of the noise spectrum from the two-time correlation functions of the relevant phys-
ical quantities51,52,58.

Discussions
We have provided a general picture on the QCT for quantum systems coupled to arbitrary non-Markovian 
environments. We find that a Markovian (or weak non-Markovian) environment will give rise to a ther-
mal state (or a thermal-like state) of the quantum system. That is, the system finally loses all its initial 
quantum coherence, which produces the expected QCT phenomenon. However, a strong non-Markovian 
environment could maintain partial or full quantum coherence, leading to a quantum steady state or 
an oscillating quantum nonstationary state in which the QCT never occurs. This brings up totally new 
features for quantum devices. Namely, a quantum device will not always evolve into equilibrium with 
its thermal reservoir, and it can maintain quantum oscillations in its localized modes. These unexpected 
new features provide a new avenue for the development of future quantum technologies because the 
remaining quantum oscillations in steady states are decoherence-free.

Taking Schrödinger cat-like states as specific initial states, we explicitly show how to employ the fringe 
visibility to quantitatively measure the dynamical quantum coherence in the steady state, to demonstrate 
the non-Markovian complexity in various decoherence processes. The results not only reproduce the 
QCT through the decoherence of Schrödinger cat-like states, which has been measured in Haroche’s 
experiments3, but also provide new features of non-Markovian decoherence for structured reservoirs that 
could be measured in the future. We also propose how to experimentally measure the fringe visibility 
through the measurement of the particle number of the system. This experimental scheme provides an 
easily-accessible way to observe experimentally the non-Markovian decoherence process.

Methods
As one can see, the time evolution of the quantum state described by the exact master equation is fully 
determined by the nonequilibrium Green functions u(t, t0) and v(t′, t). The physical meaning of these 
two nonequilibrium Green functions can be seen from the following relations34,35:
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( ) = ( , ) ( ) ,

( ) ( ′) = ( ′, ) ( ) ( , ) + ( ′, ), ( )† ⁎

a t u t t a t

a t a t u t t n t u t t v t t 30
0 0

0 0 0

where a and a† are particle annihilation and creation operators, and ( )a t0  and n(t0) are the initial 
particle field and initial particle number in the system. As it has been proved in Ref. 20, the general 
solution of the particle propagating Green function u(t, t0), solved directly from Eq. (3), is given by

Z D∫∑ ω
π

ω( , ) = + ( ) ,
( )

ω ω− ( − ) − ( − )u t t e d e
2 31j

b
i t t

c
i t t

0 j
b j 0 0

where ωb j
 is the localized-mode frequency which is determined by ω ω ω− − Σ( ) = 0b S bj j

, with the 
corresponding amplitude  ω= / − ∂ Σ( ) |ω ω ω=1 [1 ]b j bj

, and

∫
ω
π

ω
ω

Σ( ) =
′ ( ′)
− ′ ( )z d J

z2 32

is the environment-induced self-energy correction. The dissipation-induced broadened spectrum of the 
system is given by Eq. (13). The solution (31) shows that the dynamics of the system contains two parts: 
one for the localized modes (the first term) induced by the band gaps of the spectral density, and the 
other one is the non-exponential damping (the second term) characterized by the dissipation spectrum 
 ω( )c , i.e. Eq (13) which is determined by the spectral density profile. The localized modes are dissipa-
tionless, a long-lived non-Markovain memory effect which can partially maintain the initial quantum 
coherence of the system so that the system will not evolve into classical steady state, as shown in the text.

On the other hand, the general solution of the fluctuation Green function v(t′ , t) gives the 
non-equilibrium fluctuation-dissipation relation, also solved directly from Eq. (4)20,34,

∫ ∫τ τ τ τ τ τ( ′, ) = ( ′, ) ( , ) ( , ).
( )

′


⁎v t t d d u t g u t
33t

t

t

t

1 2 1 1 2 2 0
0 0

Its steady-state value is given by Eq.  (16). The solution (16) gives rise to the different particle distribu-
tions for the four different steady states leading to the complexity of QCT, as shown explicitly in the text.
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