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Separability criteria via sets of 
mutually unbiased measurements
Lu Liu1, Ting Gao1 & Fengli Yan2

Mutually unbiased measurements (MUMs) are generalized from the concept of mutually unbiased 
bases (MUBs) and include the complete set of MUBs as a special case, but they are superior to MUBs 
as they do not need to be rank one projectors. We investigate entanglement detection using sets 
of MUMs and derive separability criteria for multipartite qudit systems, arbitrary high-dimensional 
bipartite systems of a d1-dimensional subsystem and a d2-dimensional subsystem, and multipartite 
systems of multi-level subsystems. These criteria are of the advantages of more effective and wider 
application range than previous criteria. They provide experimental implementation in detecting 
entanglement of unknown quantum states.

Quantum entanglement as a new physical resource has drawn a lot of attention in the field of quantum 
information in the past decade1–10. It plays a significant role in quantum information processing and has 
wide applications such as quantum cryptography2,11,12, quantum teleportation1,9,13–16, and dense coding17. 
A main task of the theory of quantum entanglement is to distinguish between entangled states and 
separable states. For bipartite systems, various separability criteria have been proposed such as positive 
partial transposition criterion18, computable cross norm or realignment criterion19, reduction criterion20, 
and covariance matrix criterion21. For multipartite and high dimensional systems, this problem is more 
complicated. There are various kinds of classification for multipartite entanglement. For instance, one 
can discuss it with the notions of k-partite entanglement or k-nonseparability for given partition and 
unfixed partition, respectively. In22, Gao et al. obtained separability criteria which can detect genuinely 
entangled and nonseparability n-partite mixed quantum states in arbitrary dimensional systems, and fur-
ther developed k-separability criteria for mixed multipartite quantum states23. In24, the authors defined 
k-ME concurrence in terms of all possible k partitions, which is a quantitative entanglement measure that 
has some important properties. One of the most important property is that Ck−ME is zero if and only if 
the state is k separable. Combining k-ME concurrence with permutation invariance, a lower bound was 
given on entanglement for the permutation-invariance part of a state that apply to arbitrary multipartite 
states25. At the same time, the concept of “the permutationally invariant (PI) part of a density matrix” is 
proven to be more powerful because of its basis-dependent property.

Although there have been numerous mathematical tools for detecting entanglement of a given known 
quantum state, fewer results were obtained of the experimental implementation of entanglement detec-
tion for unknown quantum states. In 1960, Schwinger introduced the notion of mutually unbiased 
bases (MUBs) under a different name26. He noted that mutually unbiased bases represent maximally 
non-commutative measurements, which means the state of a system described in one mutually unbiased 
base provided no information about the state in another.

Later the term of mutually unbiased bases were introduced in27, as they are intimately related to the 
nature of quantum information28–30. Entanglement detection using entropic uncertainty relations for two 
MUBs was developed in31 and extended to arbitrary numbers of MUBs in32. This method was experi-
mentally implemented in33. In34, the authors availed of mutually unbiased bases and obtained separability 
criteria in two-qudit, multipartite and continuous-variable quantum systems. For two d-dimensional 
systems, the criterion is shown to be both necessary and sufficient for the separability of isotropic states 
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when d is a prime power. However, when d is not a prime power, the criterion becomes less effective. 
The maximum number N(d) of mutually unbiased bases has been shown to be d +  1 when d is a prime 
power, but the maximal number of MUBs remains open for all other dimensions27, which limits the 
applications of mutually unbiased bases. The concept of mutually unbiased bases were generalized to 
mutually unbiased measurements (MUMs) in35. A complete set of d +  1 mutually unbiased measure-
ments were constructed35 in a finite, d-dimensional Hilbert space, no matter whether d is a prime power. 
Recently, Chen, Ma and Fei connected the separability criteria to mutually unbiased measurements36 
for arbitrary d-dimensional bipartite systems. Another method of entanglement detection in bipartite 
finite dimensional systems were realized using incomplete sets of mutually unbiased measurements37. 
In37, the author derived entropic uncertainty relations and realized a method of entanglement detection 
in bipartite finite-dimensional systems using two sets of incomplete mutually unbiased measurements.

In this paper, we study the separability problem via sets of mutually unbiased measurements and 
propose separability criteria for the separability of multipartite qudit systems, arbitrary high dimensional 
bipartite systems and multipartite systems of multi-level subsystems.

Preliminaries
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A set of orthonormal bases   , , ,{ }m1 2  of Hilbert space d is called a set of mutually unbiased bases 
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If d is a prime power, then there exist d +  1 MUBs, which is a complete set of MUBs, but the maximal 
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holds34. Particularly, for a complete set of MUBs, the inequality above can be simplified as Id+1 ≤  2.
To conquer the shortcoming that we don’t know whether there exists a complete set of MUBs for all 

dimensions, Kalev and Gour generalized the concept of MUBs to mutually unbiased measurements 
(MUMs)35. Two measurements on a d-dimensional Hilbert space,  = ≥ , ∑ =( ) ( ) ( )

=
( )P P P I{ 0 }b

n
b

n
b

n
d

n
b

1 , 
b =  1, 2, with d elements each, are said to be mutually unbiased measurements (MUMs)35 if and only if,
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Here κ is efficiency parameter, and 1
d
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A complete set of d +  1 MUMs in d dimensional Hilbert space were constructed in35. Consider d2 −  1 
Hermitian, traceless operators acting on d satisfying Tr(Fn,bFn′,b′) =  δn,n′δb,b′. Here, the generators of 
SU(d) were used35
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Using such operators, a set of traceless, Hermitian operators Fn
b( ), = , , , +b d1 2 1, n d1 2= , , , , 

were built as follows35,
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, , b d1 2 1= , , , + .  Then one can construct d +  1 MUMs explicitly35,
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Given a set of M MUMs  = , ,( ) ( )
 { }M1  of the efficiency κ in d dimensions, consider the sum 

of the corresponding indices of coincidence for the measurements, there is the following bound37,
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For pure state the equation can be more simplified as
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Corresponding to the construction of MUMs, the parameter κ is given by
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Detection of Multipartite Entanglement
For multipartite systems, the definition of separability is not unique. So we introduce the notion of 
k-separable first. A pure state ϕ ϕ  of an N-partite is k-separable if the N parties can be partitioned into 
k groups A A Ak1 2, , ,  such that the state can be written as a tensor product 
ϕ ϕ ρ ρ ρ= ⊗ ⊗ ⊗A A Ak1 2

. A general mixed state ρ is k-separable if it can be written as a mixture 
of k-separable states pi i iρ ρ= ∑ , where ρi is k-separable pure states. States that are N-separable don’t 
contain any entanglement and are called fully separable. A state is called k-nonseparable if it is not 
k-separable, and a state is 2-nonseparable if and only if it is genuine N-partite entangled. Note that the 
definitions above for k-separable mixed states don’t require that each ρi is k-separable under a fixed 
partition. But in this paper, we consider k-separable mixed states as a convex combination of N-partite 
pure states, each of which is k-separable with respect to a fixed partition. The notion of fully separable 
are same in both statements. In the following theorems, we give the necessary conditions of fully sepa-
rable states. For k-separable state for given partition we will discuss it after the theorems.

Firstly, we will give a lemma that is generalized from the AM-GM inequality39.
Lemma 1. For any list of n nonnegative real numbers x x xn1 2, , , , we have the following inequality
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where a a an1 2, , ,  are any list of n nonnegative real numbers, and the equality holds if and only if 
a a an1 2= = =

. For x x xn1 2, , , , we have
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The function f(x) =  xa is an increasing function when a ≥  0 and x ≥  0, so for nonnegative real numbers 
x i n1 2i, = , , , , we have
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which completes the proof.
Theorem 1. Let ρ be a density matrix in d m( )⊗  and  ( ){ }i
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Proof. To prove that the inequality is satisfied for all fully separable states, let us verify that it holds 
for any fully separable pure state i
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By using the relation (8) for pure state ρ, we obtain
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The inequality holds for mixed states since J(ρ) is a linear function. This completes the proof.  
Especially, when we use the complete sets of MUMs, that is, M =  d +  1, the inequality becomes

J
m
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21i
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∑ρ κ( ) ≤ + .
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What’s more, when the efficiencies of each set of MUMs are same, the right-hand side of the inequality 
becomes 1 +  κ, and the criterion in Ref. 36 is the special case of our criterion when m =  2. When m =  2 
and κ =  1, our criterion (of Theorem 1) reduces to the previous one in Ref. 34, which demonstrates that 
J(ρ) ≤  2 for all separable states ρ in  d d⊗ , if there exists a complete set of MUBs in d.

For two qudit systems, the criterion in Ref. 34 is shown to be powerful in detecting entanglement of 
particular states, but when d is not a prime power, the criterion in Ref. 34 becomes less effective, since 
the existence of a complete set of MUBs remains open for Hilbert spaces of nonprime power dimension. 
The authors of Ref. 36 showed that their criterion is more efficient than the criterion in Ref. 34 and 
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detects all the entangled isotropic states of arbitrary dimension d. As the special case of our criterion 
when m =  2, the criterion in Ref. 36 can only be used to d-dimensional bipartite systems and two sets of 
d +  1 MUMs on d with the same parameter κ, while our criterion of Theorem 1 can be used to arbitrary 
d-dimensional m-partite systems (m ≥  2) and m sets of M MUMs on d with different efficiencies κi, 
thus our criterion is of the advantages of more effective and wider application range.

For the bipartite system and multipartite system of subsystems with different dimensions, we have no 
idea how to detect the separability of states using complete sets of MUMs, but with incomplete sets of 
MUMs, we have the following conclusions.
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where the inequality (8) is used. This completes the proof.   
It is worthy to note that the criterion in Ref. 36 is the corollary of Theorem 2. In fact, if d1 =  d2 =  d, 

and  ( ) ={ }b
b
M

1 and ( ) ={ }b
b
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1 are any two sets of d +  1 MUMs on d with the same efficiency κ, then by 
Theorem 2 there is
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which is the desired result. Therefore, the criterion in Ref. 36 is the special case of our criterion of 
Theorem 2.

Just as noted in Ref. 36, the entanglement detection based on MUMs is more efficient than the one 
based on MUBs for some states. Our criteria (Theorems 1 and 2) and the criterion in Ref. 36 as the 
special case of Theorems 1 and 2, are both necessary and sufficient for the separability of the isotropic 
states, namely, they can detect all the entanglement of the isotropic states. It should be emphasized that, 
unlike the criterion based on MUBs in Ref. 34, our criteria work perfectly for any dimension d.

By using the Cauchy-Schwarz inequality, we can obtain stronger bound than that in Theorem 2.
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Theorem 3. Let ρ be a density matrix in  d d1 2⊗ , and  ( ) ={ }b
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The bound in Theorem 3 is lower than that in Theorem 2 since 
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The Proposition 6 in Ref. 37 is the special case d1 =  d2 =  d of Theorem 3. It detects all the entangle-
ment of isotropic states for arbitrary dimension d, so does Theorem 3.

Theorem 4. Suppose that ρ is a density matrix in   d d dm1 2⊗ ⊗ ⊗  and i
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which implies that inequality (34) holds. It is complete.  
Theorem 5. Suppose that ρ is a density matrix in   d d dm1 2⊗ ⊗ ⊗  and i
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where we have used the Cauchy-Schwarz inequality and the relation (8), there is
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which implies that inequality (34) holds. It is complete.  
For Theorems 4 and 5, we don’t require the subsystems with the same dimension, so we can use them 

straightforward to detect k-nonseparable states with respect to a fixed partition. For an N-partite state ρ 
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k-nonseparable in   d d dk1 2⊗ ⊗ ⊗ , that is, ρ can not be written as a convex combination of 
N-partite pure state each of which is k-separable in   d d dk1 2⊗ ⊗ ⊗ , where = , , ,d d d dmin{ }k1 2 , 
and i k1 2= , , , .

Our criteria are much better than the previous ones in Ref. 34,36,37. First, the criterion in Ref. 36, 
the Propositions 2 and 6 in Ref. 37, and inequality (8) in Ref. 34 are the special cases of our criteria for 
two-qudit systems. Second, the authors of Ref.  36,37 only provided separability criteria for a bipartite 
system of two d-dimensional subsystems, while we present separability criteria to detect entanglement of 
quantum states in d m( )⊗ ,  d d1 2⊗ , and   d d dm1 2⊗ ⊗ ⊗ , where m ≥  2, that is, the criteria in 
Ref. 36,37 are applied to bipartite systems of two subsystems with same dimension, while our separability 
can be used to not only bipartite systems of two subsystems with same dimension but also multipartite 
qudit systems and multipartite systems of subsystems with different dimensions. Third, unlike the crite-
rion Ref. 34 based on MUBs, our criteria and the criteria in Ref. 36,37 detect all the entangled isotropic 
states of arbitrary dimension d. The powerfulness of the criteria based on MUMs is due to the fact that 
there always exists a complete set of MUMs, which is not the case for MUBs when d is not a prime power. 
Last, our criteria can be applied to detect k-nonseparability of N-partite systems (N >  2, 2 <  k ≤  N), while 
the criteria in Ref. 34,36,37 can not.

Conclusion and Discussions
In summary we have investigated the entanglement detection using mutually unbiased measurements 
and presented separability criteria for multipartite systems composed of m d-dimensional subsystems, 
bipartite systems composed of a d1-dimensional subsystem and a d2-dimensional subsystem, and mul-
tipartite systems of m multi-level subsystems via mutually unbiased measurements, where m ≥  2. These 
criteria are of the advantages of more effective and wider application range than previous criteria. They 
provide experimental implementation in detecting entanglement of unknown quantum states, and are 
beneficial for experiments since they require only a few local measurements. One can flexibly use them 
in practice. For multipartite systems, the definition of separability is not unique. We can detect the 
k-nonseparability of N-partite and high dimensional systems. It would be interesting to study the sepa-
rability criterion of multipartite systems with different dimensions via complete set of MUMs.
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