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Generation of Subwavelength 
Plasmonic Nanovortices via 
Helically Corrugated Metallic 
Nanowires
Changming Huang1,2, Xianfeng Chen1,2, Abiola O. Oladipo3,4, Nicolae C. Panoiu3 & 
Fangwei Ye1,2

We demonstrate that plasmonic helical gratings consisting of metallic nanowires imprinted with 
helical grooves or ridges can be used efficiently to generate plasmonic vortices with radius much 
smaller than the operating wavelength. In our proposed approach, these helical surface gratings 
are designed so that plasmon modes with different azimuthal quantum numbers (topological 
charge) are phase-matched, thus allowing one to generate optical plasmonic vortices with arbitrary 
topological charge. The general principles for designing plasmonic helical gratings that facilitate 
efficient generation of such plasmonic vortices are derived and their applicability to the conversion 
of plasmonic vortices with zero angular momentum into plasmonic vortices with arbitrary angular 
momentum is illustrated in several particular cases. Our analysis, based both on the exact solutions 
for the electromagnetic field propagating in the helical plasmonic grating and a coupled-mode 
theory, suggests that even in the presence of metal losses the fundamental mode with topological 
charge m = 0 can be converted to plasmon vortex modes with topological charge m = 1 and m = 2 
with a conversion efficiency as large as 60%. The plasmonic nanovortices introduced in this study 
open new avenues for exciting applications of orbital angular momentum in the nanoworld.

Optical vortices are light beams characterized by a phase change of an integer multiple of 2π along 
a closed path around the center of the beam, where the phase of the beam is undetermined (phase 
singularity) and the field amplitude vanishes1–3. The interest in such optical structures has dramati-
cally increased since a connection between the Laguerre-Gaussian laser modes and the orbital angular 
momentum (OAM) of light has been established4. In particular, it has been demonstrated that these 
beams and other optical vortices carry an OAM of mħ per photon4, where m is the so-called topological 
charge of the optical vortex. This discovery has spurred intensive research interest as in addition to its 
impact at a more fundamental science level, it has been realized that OAM-carrying optical vortices 
could find a series of appealing applications to optical tweezers5,6, optical spectroscopy7, digital imaging8, 
and quantum information processing9,10. Importantly, significant advances in this field have been facili-
tated by the fact that vortex beams can be readily generated by using a multitude of experimental setups, 
including mode converters by astigmatic lenses11,12, computer-synthesized holograms10,13, spiral-phase 
plates14, angular gratings15, and twisted elliptical16 and photonic crystal fibers17,18. One drawback of these 
methods, which severely hinders the extension of the applications of optical vortices to the nanoscale, 
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is that the diffraction limited propagation of the vortical beams generated by these methods leads to 
spatially delocalized optical beams with size significantly larger than the operating wavelength.

A recently introduced, promising approach towards optical beam engineering at subwavelength scale, 
relies on plasmonic metasurfaces consisting of planar nanopatterned metallic structures. In particular, 
thin metallic films in which nanoapertures with various shapes were milled in19–22 or planar arrays of 
metallic nanoantennae23 were used to experimentally generate plasmonic vortices. Despite the fact that 
the phase of plasmonic vortices generated by these techniques can vary at subwavelength scale, their size, 
however, was still much larger than the operating wavelength. As an effective solution to this problem, 
in this report we demonstrate that one can generate subwavelength optical vortices by first confining 
the optical field to subwavelength scale using a metallic nanowire, the highly localized optical mode 
being then converted into an optical vortex by means of a helical grating imprinted on the surface of the 
nanowire. Importantly, the generation of subwavelength optical beams with zero angular momentum by 
using metallic nanowires has been investigated both theoretically24,25 and experimentally26, whereas the 
optical modes of helical gratings made of perfect conductors have been studied in a recent theoretical 
work27. Our theoretical and computational study presented in this paper suggests that these ideas can be 
extended to the generation of subwavelength optical vortices, namely one can employ plasmonic helical 
gratings to convert the fundamental plasmonic mode of a uniform metallic nanowire to an optical beam 
carrying OAM, the conversion efficiency being as large as 60% even in the presence of optical losses in 
the metal.

Results
Plasmonic helical grating. The plasmonic helical grating designed to convert optical modes of a 
uniform metallic nanowire is schematically depicted in Fig.  1. It consists of a metallic cylinder with 
constant radius, a, the surface of the cylinder being engraved with a helical periodic grating with period, 
Λ , and height, h a . Although it is a challenging feat, the nanofabrication of such plamsonic helices 
has been recently reported in several works28,29. In particular, rotating the ion beam of a focused-ion 

Figure 1. Schematic of a metallic (Ag) nanowire with a single and double helical surface grating. The 
helical surface gratings are designed to convert the fundamental mode with topological charge m =  0 to a 
plasmon vortex mode with topological charge m =  1 (a) and m =  2 (b).
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beam system at high speed while periodically changing the radius of beam rotation30 or using metal- 
assisted chemical etching31,32, helical nanostructures similar to those investigated in this work could be 
fabricated. We assume that the metallic nanowire is embedded in a dielectric medium, the choice of 
materials considered in this paper being silver and silicon, respectively. When a helical grating is 
imprinted on the nanowire, the fundamental plasmon mode, which can be excited by an incident 
TM-polarized Gaussian beam, can be converted into vortex modes provided that the wavevector mis-
match between the fundamental mode and the desired vortical mode is compensated by the properly 
designed grating.

Mode analysis of the uniform metallic nanowire. The physical characteristics of the mode con-
version process depend on the properties of the optical modes of the uniform (constant transverse sec-
tion) metallic nanowire as well as the geometrical and electromagnetic properties of the plasmonic helix. 
Regarding the optical modes of the nanowire, the main quantities that determine the mode conversion 
efficiency are the field distribution and the modal propagation constant. In the case of uniform metallic 
nanowires the optical modes can be readily obtained analytically in cylindrical coordinates, r, φ, and z 
(see Supporting Information). For convenience, we denote the optical modes as m eik zm0β , where βm is 
the effective refractive index of the mode and k0 =  ω/c is the wavenumber in vacuum at the carrier fre-
quency, ω. The quantum number, = , ± , ± , ...,m 0 1 2  also called topological charge, defines the order 
of the mode and also describes the dependence of the optical field on the azimuthal angle, via the expo-
nential factor eimφ.

The results of our mode analysis are presented in Fig. 2, where we plot the variation of effective mode 
refractive index vs. the radius of the metallic nanowire, a, as well as the modal amplitude and phase 
distributions, all determined for the first three modes, m =  0, 1, 2. In this work we use the convention 
that the sign of the topological charge is positive (negative) if the phase increases clockwise 

Figure 2. Dispersion and field profiles of optical modes of metallic nanowires. (a,b) Real and imaginary 
part of the effective mode index for the first three modes, respectively. (c) Spatial profile of the amplitude 
and phase of the modes with m =  0, m =  1, and m =  2. In all panels, λ =  1500 nm.
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(counterclockwise) around the phase singularity. Figure  2 shows that the fundamental mode does not 
have a cut-off frequency, namely it exists for any radius of the nanowire, whereas for a given frequency 
vortical modes can only be supported by a nanowire if its radius is larger than a certain critical value. 
Moreover, this cut-off radius increases as the topological charge of the vortex mode increases. Note that 
the cut-off radii of the nanowire corresponding to the vortices with charge m =  1 and m =  2 are still well 
within the subwavelength regime, which suggests that metallic nanowires could potentially be used to 
generate subwavelength optical vortices. Another important feature of the optical modes of the nanowire 
is revealed by Fig. 2(b), namely their propagation loss dispersion. Specifically, the propagation loss of the 
fundamental and vortical plasmon modes, which is proportional to mβ ″, has contrasting dependence on 
the nanowire radius: while in the case of the fundamental mode the propagation loss decreases sharply 
with the radius, in the case of vortical modes there is a steep increase with the radius near the mode 
cut-off, which is followed by a region in which the propagation loss decreases slowly with the radius. 
Here, z′  (z″ ) represents the real (imaginary) part of the complex number z. In particular, at λ =  1500 nm 
the figure of merit of plasmon modes, defined as m mβ β″/ ′ , is ~10–2 and ~10–3 for the fundamental mode 
and vortices, respectively.

Coupled-mode theory. The phase-matching condition for efficient mode conversion can be readily 
derived by using a vectorial coupled-mode theory (CMT). In the standard framework of CMT, the  
total electromagnetic field in the perturbed nanowire (helical grating) is expressed as linear super- 
position of the modes of the uniform nanowire, a z r eE r em m m

i k z m tm0( ) = ∑ ( ) ( ) β φ ω( + − ) and 
a z r eH r hm m m

i k z m tm0( ) = ∑ ( ) ( ) β φ ω( + − ), where em(r) and hm(r) are the electric and magnetic fields of the 
mode with topological charge, m, of the unperturbed nanowire, respectively. The main result provided 
by the CMT is the coupled-mode equations (CMEs), which govern the dependence of the mode ampli-
tudes, am(z), on the propagation distance (see Supporting Information for the derivation of these 
equations):
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In this equation Pi is the normalization power of mode i , the dielectric perturbation δε(r) is the 
difference between the dielectric constant of the uniform nanowire and helical grating, rε ( )⊥  and rε( )  are 
the dielectric constant of the uniform nanowire and helical grating, respectively, and the symbol “⊥” 
indicates the transverse component of a vector.

It can be clearly seen from Eq.  (1) that in order to achieve an efficient energy transfer between the 
modes m  and p , their longitudinal and transverse phase-mismatch must be simultaneously compen-
sated by a proper choice of the helical perturbation, δε(r). To be more specific, we assume that the die-
lectric constant of the plasmonic system can be expressed as follows:
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The parameters Δ  and κ represent the grating perturbation strength and the grating wave vector, 
respectively. Specifically, Eq.  (3) describes a helix imprinted onto the background region (chosen to be 
silicon in our case, εd =  12.25) within a cylindrical shell with thickness, h. Similarly, the helix can be 
imprinted into the metallic region (silver in our case, εm =  − 125 at λ =  1500) as well. We have investi-
gated both cases, the main conclusions being qualitatively similar.

As explained above, efficient mode conversion occurs provided that the grating wave vector, κ, and 
the helix order, σ, are chosen so as both the longitudinal and transverse phase difference between the 
two interacting modes are compensated. For example, in order to convert the fundamental mode (m =  0) 
into a vortex mode with charge m, the pitch of the helix must satisfy the relation 

k
2

m0 0
Λ = πσ

β β−
 and the 

order of the helix should be σ =  m. Importantly, the handedness of the helical grating determines the 
sign of the generated vortex. This can be easily understood by expanding the perturbation as 

z e e ir sin [ ] 2d d
i z i zδε ε σ φ κ ε( ) = Δ ( − ) = Δ − /σ φ κ σ φ κ( − ) − ( − ) . As the nanowire excitation mode is 
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e0 ik z0 0β , the only two vortices that could be excited via the helical grating described by Eq.  (3) are 
eik z0 0σ β σκ( − )  and eik z0 0σ− β σκ( + ) . However, the latter vortex, which has a negative charge, has a larger 

effective mode index as compared to that of the fundamental mode and therefore it is not phase-matched 
to the excitation mode. Therefore, it is expected that in this case only the vortex with positive charge, 
m =  σ, is generated. On the other hand, if the handedness of the helix is reversed, a negatively charged 
vortex would be generated.

A key quantity that characterizes the mode conversion process is the conversion length, L, which is 
defined as the distance over which the fundamental mode is completely converted into a vortex mode 
m . It can be easily shown that Eq.  (1) implies that the conversion length is given by L K2 m0π= / , 
which suggests that a larger optical coupling between the interacting modes should lead to a shorter 
conversion length. This conclusion is fully supported by the results presented in Fig. 3, where we plot the 
dependence of the coupling length on the grating perturbation strength, Δ , for the mode conversion 
processes 0 1→  and 0 2→ . This figure shows that the coupling length decreases when the grating 
strength, Δ , increases, which suggests that it could be possible to reach an operation regime in which 
the coupling length is smaller than the characteristic loss length of the interacting modes by simply 
increasing the grating strength. Moreover, it can be seen that the coupling length is larger when the 
grating is imprinted into the silicon background as compared to the case when it is engraved onto the 
metallic nanowire. This is an expected result as in the latter case there is a larger perturbation of the 
dielectric constant of the system, due to the fact that the dielectric constant of silver is significantly larger 
than that of silicon. In addition, for both types of helical gratings, the coupling length increases with the 
charge of the generated vortex, chiefly due to the fact that the overlap between the fundamental mode 
and the vortex modes decreases with the topological charge.

Rigorous numerical simulations. Encouraged by these results derived from the CMT, we sought 
to validate them by using rigorous electromagnetic numerical simulations based on the fully 3D exact 
solutions of the Maxwell equations. To this end, we determined first from the CMT the pitch, Λ , of the 
helical grating by imposing the condition that the two interacting optical modes are phase-matched. 
Then, we launched the fundamental mode (m =  0) at the input facet of a plasmonic helical grating 
designed to phase-match this mode and a specific vortical mode (m ≠ 0), the total 3D field distribution 
being determined by numerically solving the Maxwell equations33. As an alternative to this rigorous 
approach, we used Eq.  (1) to calculate the amplitudes of the interacting modes and, subsequently, the 
3D field distribution. As a result, this computational analysis would provide valuable insights into the 
regime in which the predictions of the CMT are valid.

We have followed the computational approach just described and studied the vortex generation pro-
cesses 0 1→  and 0 2→ , the corresponding field dynamics being presented in Fig. 4(a,b), respec-
tively. These field profiles clearly illustrate the formation of optical vortices. In addition, they show an 
important feature of the mode conversion process, namely, unlike the case of helical optical fibers, the 
length over which the fundamental mode is converted into a vortex mode is larger but comparable to 
the pitch of the helix, Λ .

Figure 3. Coupled-mode theory analysis of mode interaction. Coupling length between the fundamental 
mode and the vortex modes with charge m =  1 (blue lines) and m =  2 (red lines). The grating is imprinted 
into the Si background (solid lines) and onto the Ag nanowire (dashed lines). System parameters are 
λ =  1500 nm and h =  20 nm. Λ  =  5.03 μ m and a =  110 nm (Λ  =  5.09 μ m and a =  250 nm) for the 0 1→  

0 2( → ) mode conversion process.
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Mode conversions. Let us now analyze more closely the 0 1→  conversion process. The physical 
quantities most suitable for characterizing the efficiency of this process are the effective topological 
charge of the field, ω= /Q L Uz z, where the total orbital angular momentum of the mode, Lz, and its 
intensity, Uz, are given by

Figure 4. Field distributions obtained by solving the 3D Maxwell equations. The numerical simulations 
were performed for (a) a single- and (b) double-helix structure. The system parameters in the left (right) 
panel are Λ  =  5.03 μ m and a =  110 nm (Λ  =  5.09 μ m and a =  250 nm). In both cases λ =  1500 nm and 
h =  20 nm.

Figure 5. Generation of nanovortices with topological charge m =  1. Variation of mode weight, Cn
2, and 

effective topological charge, Q, vs. propagation distance, z, calculated for grating strength Δ  =  0.1 (top 
panels) and Δ  =  0.2 (middle panels). Results in panels (a,d) are found by solving the 3D Maxwell equations 
whereas those in panels (b,e) are calculated using the CMT. (g), The amplitude (left panels) and phase (right 
panels) structure of the plasmonic field, calculated at four distances, as shown in panels (a,d). Other 
parameters are: λ =  1500 nm, h =  20 nm, Λ  =  5.03 μ m, and a =  110 nm.
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which quantifies the relative amount of power flowing in the mode, m. The dependence of these physical 
quantities on the propagation distance, z, is presented in Fig. 5. We considered two helical gratings with 
values of the grating strength, namely Δ  =  0.1 (top panels) and Δ  =  0.2 (middle panels). As the figure 
shows, upon the propagation of the fundamental mode in the grating, its weight, C0 , gradually decreases 
with z, whereas the weight of the 1  vortex, C1 , increases until the maximum conversion is reached at 
a quarter of coupling length, z =  L/4. The maximum mode conversion corresponds to the point A (C) in 
Fig.  5(a) [Fig.  5(d)]. The corresponding intensity and phase distribution at these points are shown in 
Fig. 5(g). Because the mode interaction increases with the grating strength, the coupling length should 
decrease with Δ  [compare the location of points A and C in Fig. 5(a) and Fig. 5(d), respectively]. This 
is the expected dynamics of the plasmonic field indeed, as the grating was designed to phase match the 
interaction of the 0  and 1  modes. Beyond the maximum mode conversion point the power flow 
between the two modes is reversed. Note, however, one interesting idea revealed by Fig. 5(d): the sum 
of mode powers weakly increases whenever the transformation of the vortex mode into the fundamental 
mode occurs, indicating that some energy of the radiation modes is fed back into the nanostructure 
during the back-conversion.

Figure 6. Generation of nanovortices with topological charge m =  2. Variation of mode weight, Cn
2, and 

effective topological charge, Q, vs. propagation distance, z, calculated for grating strength Δ  =  0.2 (top 
panels) and Δ  =  0.3 (middle panels). Results in panels (a,d) are found by solving the 3D Maxwell equations 
whereas those in panels (b,e) are calculated using the CMT. (g), The amplitude (left panels) and phase (right 
panels) structure of the plasmonic field, calculated at four distances, as shown in panels (a,d). Other 
parameters are: λ =  1500 nm, h =  20 nm, Λ  =  5.09 μ m, and a =  250 nm.
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During the mode conversion, as expected, the effective topological charge of the total field, Q, displays 
the same evolution as C1 , approaching almost unit value at the coupling length [Fig. 5(c,f)]. Note that, 
due to its phase-mismatched with the fundamental or other modes, the mode 1− , namely the vortex 
with charge m =  − 1, is not excited. It should be noted that, however, due to the excitation of radiative 
modes and possibly other vortical modes with larger topological charge during the mode conversion, not 
all of the energy of the fundamental mode is transferred to the 1  vortex, thus both C 11

2 <  and Q <  1 
at z =  L. Despite this, a remarkably large conversion efficiency can be achieved, more than 80% of the 
energy of the fundamental mode being transferred to the 1  vortex. We also studied the plasmonic field 
evolution and the corresponding physical quantities that characterize its dynamics by using the CMT, 
the results being presented in Fig.  5(b,e). One can see that the predictions of the CMT regarding the 
coupling length are in very good agreement with the results of direct simulations. As expected, the con-
version efficiency calculated using the CMT agrees less with the simulation results, primarily because we 
included in the CMT calculations only the two interacting modes.

Our analysis shows that a single-helical metallic nanowire with length L can be viewed as a source of 
unit-charge nanovortices, the radius of the generated vortices being roughly equal to the radius of the 
nanowire. In the case of Fig. 5, vortices have a radius of about 110 nm, which is more than an order of 
magnitude smaller than the operating wavelength, λ =  1500 nm. Similarly, metallic nanowires with 
double-helix surface corrugation, that is σ =  2 in Eq. (3), could be used to generate optical vortices with 
topological charge equal to 2. This is clearly demonstrated by the plots presented in Fig. 6, which sum-
marize the results of our analysis of the field dynamics in a double-helix plasmonic grating designed to 
phase-match the fundamental mode and the 2  vortex. However, it should be mentioned that, the higher 
the order of the desired vortex is, the larger its cut-off value for a specific radius will be. This suggests 
that the size of the generated vortices increases with the order of the vortex. Despite this, the generated 

Figure 7. Generation of optical vortices with charge m =  1 (a) and m =  2 (b) in lossy metallic helical 
gratings. The upper (lower) panel corresponds to the case presented in the top panels of Fig. 5 (Fig. 6).
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doubly-charged vortex shown in Fig. 6 has a radius of 250 nm, which is still significantly smaller than 
the wavelength.

Finally, we considered the influence of the metal losses on the generation of nanovortices. Metallic 
losses can be particularly detrimental to the vortex generation process as the electromagnetic energy 
could be dissipated over an effective loss length that is smaller than the coupling length, so that no vor-
tices would be generated. Fortunately, one can decrease the coupling length by simply increasing the 
grating strength, Δ , or by increasing its height, h [see Fig.  3; also compare the coupling lengths in 
Fig. 5(a,d) or those in Fig. 6(a,d)], so that one can easily achieve significant mode conversion before the 
fundamental mode decays. The conversion of the fundamental mode into the 1  and 2  nanovortices, 
when metallic losses are fully incorporated in simulations, are shown in Fig.  7(a,b), respectively. This 
figure suggests that a surprisingly large mode conversion efficiency can be achieved, namely ~35.3% and 
~60.2% for the vortices with topological charge m =  1 and m =  2, respectively. The fact that lower effi-
ciency is achieved in the case of the vortex with m =  1 can be explained by noticing that the optical field 
of this vortex is more confined around the metallic nanowire and therefore the corresponding optical 
losses are larger.

Conclusions
In conclusion, in this study we have introduced a new type of sources of nanovortices, namely, metal-
lic cylinders with deep-subwavelength radius and helically corrugated surfaces. With a proper selec-
tion of the period of the helix, these helical gratings can be used to generate nanoscale vortices with 
various topological charge. A coupled-mode theory of mode conversion was developed, its predictions 
being in excellent agreement with the conclusions of direct simulations based on the full set of Maxwell 
 equations. The plasmonic nanovortices introduced in this study might extend a series of appealing appli-
cations of OAM-carrying light beams to the nanoworld, such as nanoscaled optical spanners5 and digital 
 imagining8, as well as the integrated quantum information processing9.
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