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Residual Defect Density in Random 
Disks Deposits
Nikola Topic1, Thorsten Pöschel1 & Jason A.C. Gallas1,2,3

We investigate the residual distribution of structural defects in very tall packings of disks deposited 
randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 109 
particles we find all deposits to consistently show a non-zero residual density of defects obeying 
a characteristic power-law as a function of the channel width. This remarkable finding corrects the 
widespread belief that the density of defects should vanish algebraically with growing height. A 
non-zero residual density of defects implies a type of long-range spatial order in the packing, as 
opposed to only local ordering. In addition, we find deposits of particles to involve considerably less 
randomness than generally presumed.

An enticing class of problems, familiar from real-life and from several scientific disciplines, is the class 
dealing with the so-called packing problems, namely with the generic optimization problem of packing 
as close as possible objects of variegated shapes, with or without spatial confinement1–6. Packing prob-
lems are of great academic interest and ubiquitous in practical applications, from packing goods into 
containers to the design of printed circuit boards for electronic devices. The problem is also related to 
jamming of dynamical granular systems, being subject of a large number of publications, e.g.7–10. Dense 
packings of particles lead to minimization of material porosity which is relevant, e.g., for sintering of 
nano-powders used in engineering new materials with superior mechanical properties11–13. In computer 
sciences, to find the optimal solution for a packing is generically NP complete14, meaning that practical 
algorithms must rely on heuristics.

The interest in packing problems can be traced easily back to ancient times. They already received 
significant attention by a number of eminent scientists, and are well-known to be notoriously difficult, 
even in the elementary case of spherical particles on an unbounded domain15,16. For instance, Kepler’s 
celebrated conjecture of 1611 concerning the densest sphere packing arrangement was only proved in 
2005 by Hales, following an approach suggested in 1953 by Tóth17. Greater challenges and surprises arise 
for packing problems in confined volumes. For instance, an unexpected and beautiful result is the dis-
covery that the optimal packing of oblate spheroids is different from the optimal fcc packing of spheres. 
Although oblate spheroids may be always packed in fcc scheme leading to the same packing fraction as 
the fcc packing of spheres, it was shown that fcc packing is not optimal for oblate spheroids18.

Here, we report a remarkable result obtained while investigating systematically the structure of very 
large deposits of particles formed by up to 50 ×  109 particles, namely for deposits much larger than the 
ones considered thus far. Our main result concerns the density of defects observed asymptotically in the 
deposit: Instead of converging to a defect-free packing as believed for quite some time19,20, we find that, 
in fact, the asymptotic density of defects invariably displays a nonzero remnant value. In the remainder 
of the paper we describe how our sedimentation experiments were done and the generic structural 
organization observed in the sediments.

Following a large corpus of literature, we study sediments of monodisperse frictionless hard disks. 
We simulate an experiment which consists of dropping one-by-one disks of diameter d into a vertical 
channel of width w measured in disk diameter d. As usual, we use periodic boundary conditions in 
the horizontal direction. Particles are dropped vertically from initial positions chosen randomly with 
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uniform probability distribution. The action of inertia is assumed to be absent or negligible during the 
sedimentation process, a situation that can be implemented experimentally, e.g., by working in the pres-
ence of an ambient viscous fluid. Absence of inertia allows us to use the familiar ballistic deposition 
algorithm of Visscher and Bolsterli21–25, described below, in Methods. This algorithm is of fundamental 
importance to be able to construct very large deposits. The algorithm is invaluable for obtaining specific 
but reliable results for very large systems, systems whose dynamics is computationally intractable with 
other techniques like, for instance, molecular dynamics.

Results
Figure 1 shows a typical example of the packing structure generally observed at the bottom of the chan-
nel, here for a width of w =  20 particle diameters. As indicated in the figure caption, the color of the 
particles encode their coordination number. The average coordination number of a two-dimensional 
stable packing is slightly above four, disregarding particles touching the ground and particles located 
at the free surface. This follows from the fact that each particle added to the sediment creates two new 
contacts, three in rare cases, when finding its stable position. Following common practice, any particle 
having other than four contacts is considered to be a defect. This definition is equivalent to other ones 
based on counting polygons made of neighboring bonds different from a rhombus20. Thus, all particles 
not in green represent defects of the sediment. The existence or not of contacts (and defects) depends of 
course of the ordering of the sequential dropping.

There are two sources of randomness acting in the formation of the deposit. First, the randomness 
enforced by the bottom layer, where particles are immobilized either after direct vertical fall to the 
ground or, after hitting a particle already at the bottom, by rolling over it until also hitting the ground, 
where both particles stay in contact. Since the dropping process is homogeneously distributed along the 
channel, particles on the bottom layer are not equally distributed. The bottom layer in Fig.  1 contains 
only 17 particles, out of 20 that could be fitted side-by-side in the channel. The pile grows essentially 
in a row-by-row manner, with the bottom layer reflecting the specific random sequence of the initial 
dropping process. The particular distribution of particles in the bottom layer is very important for the 
subsequent growth process since it defines the local minima which are available for the particles in all 
subsequent layers.

The second randomness in sediment formation arises from the specific ordering characteristic of the 
sequential dropping of successive layers. Although the local minima are all fixed by the bottom layer, 
the sequential order of the subsequent depositions is the key for shaping the final sediment. Its structure 
arises from the interplay of two mechanism: the initial definition of the local stability minima by the 
bottom layer combined with the sequential order in which such minima are filled by falling particles. 

Figure 1. A representative packing illustrating with colors the distribution of defects. The lateral vertical 
lines mark the limits of the periodic boundaries of the box. Particles with two contacts are shown in blue, 
with three in cyan, four in green, five in yellow, and six in red. Bonds between particles are shown as line 
segments connecting their centers. Bonds across opposite sides of the periodic domain are not drawn. Note 
the presence of voids (small white empty spaces).
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The infinite tree of possible minima available to form specific piles is fixed by the bottom layer but 
the specific pile effectively realized is selected step-by-step by the whole sequential deposition process. 
Minute changes in the initial creation and/or the subsequent selection of the chain of minima will dras-
tically change the structure of the final deposit. The selection of the minima is a finite and deterministic 
branching process.

Figure 2 shows some examples of the complete packing structure normally found along the channel. 
They illustrate the distribution of defects for small width channels, for better visibility. From these exam-
ples one sees that, essentially, the amount of defects decays rapidly with height. However, we consistently 
find the average density of defects to be non-zero for all deposits investigated. In other words, we find 
the remnant density of defects to be an integral part of the asymptotic periodic part of the packings.

We observed two basic types of remnant defect patterns. In the first, Fig. 2(a,b), the whole packing is 
periodic from the start, including the first layer. In the second, exemplified by Fig. 2(c–f), defects appear 
as isolated structures and the packing becomes periodic only after an initial transient growth that can be 
relatively long [Fig. 2(f)]. In this second type, we included a fraction of 2% to 3% of piles which display 
almost zero initial transients. Figure  2 shows defects to be regularly spread along the channel and to 
be traceable by performing simple translations along the channel. Asymptotically, the channel is tiled 
by periodic patterns, mosaics, which, except for some exceptional very symmetrical initial conditions, 
always contain defects embedded in them.

Figure 3 depicts the density of defects as a function of height for a moderately large sediment of width 
w =  1000. The counts at height h show the number of defective discs cut by a horizontal line at height h. 
The defect counts decay rapidly with height and show periodic repetitions after growing for about 1 to 

Figure 2. Typical residual defect distributions observed for six representative packings, illustrating 
the asymptotic periodic structures as well as the distinct transient phases preceding them. Here, the 
channel width is w =  10 particle diameters and the height h is about 10w. For small widths, transients can be 
rather small. The structure of voids (white empty spaces) is also visible. When not immediate, the onset of 
periodicity is indicated by a horizontal line.
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2 channel widths. In all three cases there is a remnant defect density. We have plotted the defect counts 
up to height of 20 channel widths, and the periodic patterns persisted. The defect counts vary strongly 
between runs. Figure 3(d,e) shows the spatial distribution of defects.

Figure  4 records the asymptotic density of defects measured for packings ranging from medium, 
= ,…,w 20 160, up to very large widths, = ,…, ×w 10 50 103 3, and heights. Here, the defect density is 

defined as ρ ( ) ≡ /( Δ )h N w hd d , where Nd is the number of defects found in the interval [h −  Δ h/2, 
h +  Δ h/2] (linear binning). Each curve in Fig. 4(a) results from an average over 5 ×  105 sediments. For 
the larger systems, Fig. 4(b), the level of averaging (given in the caption) is smaller leading to larger noise 
levels. Fitting a power law to ρd(h) =  ρd ~ hα in the range 5 ≤  ln h ≤  7 we obtain α =  − 1.86 ±  0.06. Using 
logarithmic binning (i.e., binning ln ρd as a function of ln h), we obtain α =  − 1.91 ±  0.09. The small 
oscillations of ρd(h) just before reaching the asymptotic level seen in Fig. 4 are Moiré-like artefacts pro-
duced by superposing (averaging) over a large number of periodic patterns with different period due to 
distinct asymptotic periodic structures of the sediments. Within the statistical error, our results agree well 
with the scaling found by Meakin and Jullien20, who found ρd ~ hα where α =  − 1.92 ±  0.10.

Figure 5 shows the asymptotic density of defects, ρ∞
d , plotted as a function of the channel width, w. 

The asymptotic density of defects is an average of defect densities between two heights inside of the 
plateau regions. As seen from this figure, it scales as w−2.3. Thus, we find that the density of defects for 
large height converges asymptotically to approximately constant values, ρ ( )∞ wd .

In the literature, there is a widespread belief that the asymptotic structure of depositions is defect-free, 
a result that we could trace back to an interesting paper by Meakin and Jullien20. They investigated widths 
up to w =  16384 and (when measuring defect density) heights up to ≡ . ×.

h e 1 8 10MJ
7 5 3 concluding 

that, in the limit of large height, the defect density ρd vanishes, a result conflicting with our present 
findings. For w =  16384 we observe the transient regime to extend up to heights of about h =  105. What 
is the origin of this discrepancy? First, we remark that h/hMJ ≈  56 and that, accordingly, their computa-
tions were done still during the transient regime. Second, from Fig. 3(a–c) we see that it is not uncom-
mon for large channels to show no defects over extended portions of the sediments, corresponding to 
(large) transients needed for the spatial re-arrangements to allow defects to recur periodically. Third, the 
absence of defects over relatively large portions of the sediment combined with the large investment of 
time then required may have induced one to stop simultations too early. Thus, it is possible that the 
discrepancy may be related to the sparse distribution of defects in large sediments.

From the statistical expressions obtained here for the width and height of the channel it is possible to 
estimate suitable height/width thresholds so as to avoid the aforementioned discrepancy for any experi-
ments involving large sediments. To this end, we equate ρ ρ( ) = ( )∞h wd d , where ρ ( ) = α−h Ahd  and 
ρ ( ) = β∞ −w Bwd . This gives h/w =  (A/B)1/αwβ/α−1 ≈  Cw0.2 where A, B, C are constants and where data 
from Fig. 4 was used for the exponents. Thus, the height/width discrepancy threshold depends not much 
on the channel width, being essentially constant between w =  103 and w =  20 ×  103. For w =  15000 we 
estimate h/w ≈  1. This means that hMJ/16384 ≈  0.11 while for the value used in our present simulations 
the corresponding ratio is 105/16384 =  6.10, safely above the h/w ≈  1 estimated threshold.

Discussion
The simulations reported here revealed that the residual distribution of structural defects in tall packings 
of disks deposited randomly in large channels consistently shows a non-zero residual density of defects 
obeying a characteristic power-law. This implies a type of long-range spatial order in the packing, as 
opposed to only local ordering. This type of effect might be detectable in a structure factor or pair 

Figure 3. (a–c) Number of defects (count) with height, h, for three packing realizations in a channel of 
width w =  1000. (d) Spatial distribution of defects for the packing from figure (a), for ∈ ( , )h 0 1000  
(bottom) and h =  (3000, 4000) (top). (e) Same as (d) except that packing corresponds to figure (c).
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correlation function calculation, where a pair correlation function would presumably decay with a power 
law tail rather than exponential.

Our systematic study of very large piles of particles provided new insight about the random pro-
cesses underlying the sequential deposition. Filling the basal plane is a random process, but all subse-
quent particle depositions are completely discrete and deterministic. Filling the basal plane of the pile 
automatically fixes a unique discrete tree of local minima that provides stable refuge for all subsequent 
incoming particles dropped onto the pile. Such local minima have wide basins of attraction, namely large 
dropping intervals from which particles are attracted to them, being thus virtually insensitive to residual 

Figure 4. Density of defects ρd as a function of height h for various channel widths, w. (a) For each 
channel width the average is over 5 ×  105 sediments. (b) The densities of defects are averages over 12000, 2400, 
120, 60 and 10 sediments, for channel widths w =  1000, 5000, 15000, 20000 and 50000, respectively. (c) The 
approach to the asymptotic density does not depend of the sample size used for averaging. Here, w =  80.

Figure 5. Asymptotic density of defects, ρ∞d  as a function of the channel width, w.
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imperfections of real-life random-number generators. Discrete trees remain robust even for non-perfect 
generators. After filling the basal plane, the only freedom still left is the freedom to select the specific 
ordering of filling the discrete set of local minima. In other words, the remaining freedom amounts to 
selecting the branching path into a tree of prescribed and well-defined minima, a process that involves 
a finite set of possibilities.

These findings imply the final packing to be ultimately quasi-periodic, i.e. any temporal behavior must 
be a discrete superposition of finitely or countably many Fourier components with discrete frequencies. 
In the ergodic theory of classical dynamical systems, this quasi-periodic dynamics corresponds to the 
limiting case of integrable or ordered motion while truly chaotic motion requires continuous Fourier 
spectrum26. Thus, piles of particles involve far less dynamic randomness27 than generally presumed. It 
should be interesting to compare our results with similar ones obtained by using different deposition 
algorithm. However, due to the exceptionally large sizes of our piles, such comparisons may be not 
completely trivial to perform.

Methods
The ballistic deposition algorithm of Visscher-Bolsterli is not complicated and works as follows21–25. 
Dropped particles move either straight down unimpeded to the basal plane or follow the trajectory of 
steepest descent if touching the surface of the sediment before they can reach the basal plane, or rest 
on two particles. Particles keep moving until they reach a local minimum, i.e. a stable position of equi-
librium. Upon reaching a stable position the particle is no longer allowed to move, being glued (per-
manently added) to the growing sediment. A new particle is only dropped when the previous one has 
finished its steepest descent motion. To characterize local equilibrium, the Visscher-Bolsterli algorithm 
uses a criterion to detect that particles are in contact. Here, we assume particles to be in contact when 
their surfaces are closer than ξ =  10−10 particle diameters. We verified that the final configurations remain 
unchanged for contact distances ξ in the interval 10−6 <  ξ <  10−12.
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