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STIM1 accelerates cell senescence 
in a remodeled microenvironment 
but enhances the epithelial-
to-mesenchymal transition in 
prostate cancer
Yingxi Xu1,7,*, Shu Zhang1,*, Haiying Niu2,*, Yujie Ye1, Fen Hu3, Si Chen1,‡, Xuefei Li4, 
Xiaohe Luo1, Shan Jiang1, Yanhua Liu1, Yanan Chen1, Junying Li2, Rong Xiang1,5,6 & Na Li1,5,6

The importance of store-operated Ca2+ entry (SOCE) and the role of its key molecular regulators, 
STIM1 and ORAI1, in the development of cancer are emerging. Here, we report an unexpected dual 
function of SOCE in prostate cancer progression by revealing a decrease in the expression of STIM1 
in human hyperplasia and tumor tissues of high histological grade and by demonstrating that STIM1 
and ORAI1 inhibit cell growth by arresting the G0/G1 phase and enhancing cell senescence in human 
prostate cancer cells. In addition, STIM1 and ORAI1 inhibited NF-κB signaling and remodeled the 
tumor microenvironment by reducing the formation of M2 phenotype macrophages, possibly creating 
an unfavorable tumor microenvironment and inhibiting cancer development. However, STIM1 also 
promoted cell migration and the epithelial-to-mesenchymal transition by activating TGF-β, Snail and 
Wnt/β-Catenin pathways. Thus, our study revealed novel regulatory effects and the mechanisms by 
which STIM1 affects cell senescence, tumor migration and the tumor microenvironment, revealing 
that STIM1 has multiple functions in prostate cancer cells.

The concept of store-operated Ca2+ entry (SOCE) was first proposed to describe the process whereby 
the depletion of intracellular Ca2+ stores causes the movement of extracellular Ca2+ into cells1. Recent 
studies have identified stromal interaction molecule 1 (STIM1) and CRAC modulator 1 (CRACM1, also 
known as ORAI1) as the key components of SOCE channels2–4; these proteins functionally interact with 
each other to mediate SOCE activity5.

Intracellular Ca2+ homeostasis is required for many physiological and pathophysiological process, 
including cell adhesion6, secretion7, exocytosis8, transcription9, cell division and cell death10,11. As a pri-
mary regulatory mechanism, SOCE plays a vital role in these processes. Previous studies revealed the 
overexpression of STIM1 and/or ORAI1 in various types of cells, such as early stage cervical cancer cells12 
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and hepatocellular carcinoma cells13. Up-regulation of SOCE has been reported to promote the prolifera-
tion in many types of cells, including normal cells, such as endothelial progenitor cells14,15, human aortic 
smooth muscle cells (hASMCs)16 and human umbilical endothelial cells17, as well as tumor cells, such as 
hepatic cell carcinoma18. These results provide evidence that SOCE may play an important role in tumor 
development, and the targeting of SOCE holds promise as a strategy for suppressing tumorigenesis and 
tumor proliferation19.

Recent studies have also demonstrated that SOCE contributes to migration in various types of cells, 
including mouse neutrophils20, hASMCs and cancer cells etc6,21. By promoting the entry of extracellular 
Ca2+ to the cytosol, SOCE activates Ca2+-dependent proteinases, such as calpain, focal adhesion kinase, 
and small GTPases, such as Rac, to promote the assembly and disassembly of focal adhesion, thereby 
accelerating migration6,22. Blocking SOCE activity by using a specific blocker or by applying siRNAs that 
target STIM1 and ORAI1 can inhibit the formation of focal adhesions, thus reducing the migration and 
invasion of tumor cells6,13. SOCE has also been shown to contribute to angiogenesis by up-regulating the 
expression of VEGFA12 and by affecting the growth and tubulogenesis activity of tumor endothelial pro-
genitor cells15. Thus, SOCE contributes to tumor development, suggesting that blocking SOCE activity 
represents a promising strategy to prevent metastasis.

However, SOCE has also been shown to contribute to apoptosis. Reduced SOCE activity was revealed 
to be closely correlated with anti-apoptosis properties in prostate cancer cells23,24. Further studies have 
shown that that SOCE functionally interacts with the pro-apoptotic protein during apoptosis25 and that 
the overexpression of STIM1 to increase SOCE activity can accelerate apoptosis26. In addition, enhanced 
SOCE signaling hinders tuberous sclerosis complex (TSC)-related tumor growth27. Consequently, block-
ing SOCE activity either by depleting STIM1 or by overexpressing dominant-negative Orai1 can accel-
erate the development of TSC-related tumors27. These findings support the theory that enhancing SOCE 
activity can be an effective method to increase the sensitivity of tumors to apoptotic stimuli and restrain 
tumor development.

These conclusions appear different to each other but indicate that SOCE may have distinct effects on 
regulating tumor progression. To elucidate this hypothesis, the expression levels of STIM1 and ORAI1 
were tested in human prostate cancer tissues. Although STIM1 levels were decreased in hyperplasia and 
tumor patients, this protein was expressed at significantly higher levels in tumors at low histological 
grade than in hyperplasia tissues. Further studies revealed that the ectopic expression of STIM1 and 
ORAI1 inhibits tumor cell growth and promotes cell senescence. In addition, STIM1 overexpression 
significantly promoted the epithelial-to-mesenchymal transition (EMT) and increased the migration of 
human prostate cancer cell lines in remodeled tumor microenvironments. These results support a dual 
role of SOCE in human prostate cancer progression and indicate that although targeting of SOCE is a 
promising strategy for treatment of prostate cancer, the details should depend on the individual situation.

Materials and Methods
Ethics statement. All methods including the animal experimentation were carried out in accordance 
with the approved guidelines of the Institute Research Ethics Committee at Nankai University, and all 
efforts were made to minimize animal suffering during the experiment.

Gene cloning. pCDH1-ORAI1-EF1α -puro and pCDH1-STIM1-YFP-EF1α -Bsd vectors were kindly 
provided by Dr. Xiangdong Tang (School of Medicine, Nankai University). cDNA of YFP was subcloned 
into the pCDH1-MCS-EF1α -puro vector between the BamHI and XbaI restriction sites.

Cell culture. Wild-type (Wt) DU145 and U937 cells were purchased from the Cell Resources Center 
of the Biological Sciences Institute in Shanghai of Chinese Academy of Sciences; BPH-1, PC3 and 
LNCaP cells were kindly provided by Dr. Ju Zhang (School of Life Science, Nankai University) and cul-
tured as described previously28. DU145-Wt and PC3-Wt cells were infected with lentivirus carrying the 
pCDH1-YFP-EF1α -puro or pCDH1-STIM1-YFP-EF1α -Bsd plasmid, followed by clonal selection using 
Puromycin or Blasticidin (Bsd, 8 μ g/mL for DU145 and 4 μ g/ml for PC3) to generate polyclones of DU145 
and PC3 cells that stably overexpress YFP and STIM1-YFP (DU145-YFP, DU145-STIM1-YFP, PC3-YFP 
and PC3-STIM1-YFP); DU145-Wt, DU145-STIM1-YFP, PC3-Wt and PC3-STIM1-YFP cells were 
infected with lentivirus carrying the pCDH1-ORAI1-EF1α -puro plasmid, followed by clonal selection 
using Puromycin (2 μ g/mL for DU145 and 4 μ g/mL for PC3) to generate polyclone cells that stably overex-
press ORAI1 (DU145-ORAI1, DU145-ORAI1-STIM1-YFP, PC3-ORAI1 and PC3-ORAI1-STIM1-YFP).

U937 cells were cultured in RPMI-1640 media supplemented with 10% fetal bovine serum (FBS) in 
the presence of 100 u/mL penicillin and 0.1 mg/mL streptomycin. In the stimulation experiments, the 
culture supernatant from DU145 or PC3 was added to the culture medium of U937 at a volume ratio of 
1:3. U937 cells then were collected after 48 hours (h) of treatment.

Immunohistochemistry. Immunohistochemical staining was performed on paraffin human prostate 
tissue arrays (Alenabio Company, Shanxi, China) and on the tumor xenograft tissues of NOD/SCID 
mice. The expression levels of ORAI1 and STIM1 were detected separately in these tissues using poly-
clonal rabbit antibodies raised against STIM1 or ORAI1 (ProSci Inc.) at a 1:100 dilution. The expression 
levels of ORAI1 or STIM1 in the tissue microarray were scored according to the percentage of ORAI1 
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or STIM1-positive cells in each whole area of prostate tissue and their staining intensity. Specifically, per-
centages ≤ 10%, 11%–30%, 31%–49% and ≥ 50% were scored as 1, 2, 3 and 4, respectively; non-significant 
brown, slight brown, moderate brown and deep brown staining intensities were scored as 1, 2, 3 and 4, 
respectively. The two scores were then added, and a score of 1–3 was considered weak, a score of 4–6 
was considered moderate, and a score of 7–8 was considered strong.

The expression levels of DcR2 and Vimentin in tumor xenografts were detected separately with poly-
clonal rabbit antibodies raised against DcR2 and Vimentin (Proteintech Group Inc.) at a 1:100 dilution. 
Images were recorded using an Olympus BX51 Epi-fluorescent microscope (Olympus Co.).

Western Blotting. Cell lysates from DU145 and PC3 cell lines were prepared using RIPA buffer in 
the presence of protease inhibitor cocktails and Phosphatase Inhibitor Cocktails 2 and 3 (Sigma-Aldrich) 
as described previously29. Proteins (40 μ g) were loaded onto 5–12% Tris-acrylamide gels and blotted 
with the following antibodies: anti-STIM1 and ORAI1 (ProSci Inc.), anti-N-cadherin, E-cadherin and 
Apoptosis I Sampler Kit (BD Biosciences), anti-β -catenin and Wnt-1 (Abcam Inc.), anti-β -actin (Santa 
Cruz Biotechnology Inc.), anti-cyclin D1, DcR2, and Vimentin (Proteintech Group Inc.), anti-p-Smad3 
(Epitomics Inc.), anti-claudin-1, Snail, p-Smad2 and Cell Cycle Regulation Antibody Sampler Kit II (Cell 
Signaling Technology Inc.), and horseradish peroxidase-conjugated secondary antibodies. The results 
were visualized using a chemiluminescent HRP substrate kit (Millipore) and analyzed using Image J 
software (National Institutes of Health, Baltimore, MD).The densitometry results were first normalized 
with that of β -actin and then compared with the control to obtain relative fold changes. The mean value 
for each blot was averaged from three independent experiments and indicated at the bottom of the blot.

Isolation of nuclear proteins. Nuclear proteins were isolated as described before30. Proteins (30 μ g) 
were loaded on 5–12% Tris-acrylamide gels and subjected to western blotting, and the proteins were 
detected using antibody raised against β -catenin (Abcam Inc.); lamin A was used as an equal nuclear 
protein loading control and was detected using an anti-lamin A antibody (Sigma-Aldrich).

Living cell growth curve. DU145 or PC3 cells (2 ×  105) were seeded evenly in each well of 6-well cul-
ture dishes; five regions around the center regions of each dish were selected and dynamically recorded 
under an objective from 12 h after the seeding. The numbers of cells in each image field were counted 
and averaged from three independent experiments, each recorded from five image fields.

β-Galactosidase staining. The cells were cultured in six-well plates until 90% confluence and 
then fixed and subjected to β -Galactosidase staining using a Senescence β -Galactosidase Staining Kit 
(KeyGEN Biotech, China) following the manufacturer’s instructions. After staining for 12 h, the cells 
were imaged under a 40 ×  objective. The numbers of cells in each image field were averaged from three 
independent experiments, each recorded from five image fields.

NF-κB activity assay. A Dual-Luciferase Reporter Assay System (Promega) was used to determine 
the activity of firefly luciferase (FL) versus that of renilla luciferase (RL). Briefly, cells were cultured in 
24-well plates at a density of 2 ×  105/well and transfected with a DNA mixture containing 300 ng of 
pGL4.32-Luc2-NFKB-RE plasmid (a kind gift from Dr. Tsung-Hsien Chuang, National Health Research 
Center, Taiwan) and 30 ng of pRL-TK plasmid. The cells were harvested after transfection for 30 h, and 
the NFκ B-RE activation was quantified as the ratio of FL/RL activity in each well following the manu-
facturer’s instructions.

Intracellular Ca2+ measurement. Fura-2 loaded prostate cell lines were placed in a balanced salt 
solution including 0 Ca2+ and 0.5 mM EGTA. Intracellular Ca2+ was first depleted by applying 1 μ M 
Thapsigargin (TG, Sigma-Aldrich) to the extracellular solution to deplete intracellular Ca2+ store thus 
trigger the opening of SOCE channels and activation of SOCE; then, CaCl2 was added to the extracellular 
solution to a final concentration of 2.5 mM after 300 seconds of TG treatment. The amount of Ca2+ enter-
ing into the cytosol through the SOCE channels was reflected by an increase in the fluorescent intensity 
ratio of fura-2 in each cell monitored at 340 nm and 380 nm. All measurements shown are averages 
measured for 13–67 cells from a minimum of two independent experiments.

Flow cytometry analysis of the cell cycle. After culturing DU145 and PC3 cells in the absence of 
FBS for 12 h, the cells were ‘pulsed’ with 10 μ M 5-bromo-2-deoxyuridine (BrdU, Sigma-Aldrich) for 24 h 
at 37 °C, and a cell cycle assay was performed using BD PharmingenTMBrdU Flow Kits (BD Biosciences) 
following the manufacturer’s instructions.

Real- time RT-PCR. Total mRNAs from U937, DU145 and PC3 cells were isolated using TRIzol rea-
gent (Invitrogen Inc.) and reverse-transcribed into cDNAs using MMLV reverse transcriptase (Promega). 
Following this, Real-time RT-PCR was performed on an Opticon instrument (Bio-Rad) in 20-μ l reac-
tion volumes using TransStart Green qPCR Super Mix Kit (TransGen Biotech, Beijing, China). Homo 
GAPDH was used as the internal control. The 2−ΔΔCt method was used to determine fold-changes in the 
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levels of mRNA expression. The results were statistically averaged from three independent experiments 
that were performed in triplicate. The primers used for the experiments are summarized in Table 1. The 
primers used for detection of STIM1 mRNA were described before28.

Wound healing assay. Cells (2 ×  105) were seeded in each well of a 24-well plate. At full confluence, 
a “wound” was made in the middle of culture plate using a 10-μ l pipette tip, and the concentration of 
serum in the tumor cell culture medium was changed from 10% to 1% to avoid the influence of cell 
growth rate on wound healing. Wound healing was recorded at 0 and 24 or 36 h after scratching under 
a 10 ×  objective. The rate of healing was quantified as the distance of wound recovered versus that of 
original wound, as described before29.

Transwell assay. Transwell chambers (polycarbonate filters with 8 μ m porosity, Millipore) were used 
in the test. The bottom chamber was filled with culture medium containing 10% FBS for the transwell 
assay of DU145 and PC3. For the transwell assay of U937, the bottom chamber was filled with culture 
supernatant from DU145 or PC3 cells. Cells (105) were suspended in serum-free medium and plated 
in the upper chamber. After incubation for certain time courses (24 h for DU145 and PC3 and 12 h for 
U937), the cells were removed from the upper chamber. Cells that had penetrated and attached to the 
bottom of the filter were fixed with 4% formaldehyde in PBS and then stained using 0.5% crystal violet; 
the cells were then imaged under a 20 ×  objective. The crystal violet was dissolved using 50% acetic acid, 
and the staining intensity was recorded as the absorbance measured at 560 nm.

Cytokine array. DU145-YFP and DU145-STIM1-YFP cells (2 ×  105) were cultured in six-well plates. 
After 48 h, 1 mL of supernatant was harvested from each cell line and then subjected to a cytokine 
array using the Human Cytokine Array Kit (R&D Systems) following the manufacturer’s instructions. 
Quantitative expression levels of each protein were analyzed using ImageJ software and normalized as 

homo MMP9 Forward primer: 5′ - ATGCGTGGAGAGTCGAAATC -3′ 

Backward primer: 5′ - TACACGCGAGTGAAGGTGAG -3′ 

homo VEGFA Forward primer: 5′ - TGCTCTACCTCCACCATGCCAAGT -3′ 

Backward primer:5′ - GCGCAGAGTCTCCTCTTCCTTCAT -3′ 

homo IL10 Forward primer: 5′ -GGTTGCCAAGCCTTGTCTGA -3′ 

Backward primer:5′ - AGGGAGTTCACATGCGCCT -3′ 

homo IL6 Forward primer: 5′ - CCTTCGGTCCAGTTGCCTTCT -3′ 

Backward primer:5′ - CAGTGCCTCTTTGCTGCTTTC -3′ 

homo CD163 Forward primer: 5′ - CGAGTTAACGCCAGTAAGG -3′ 

Backward primer:5′ - GAACATGTCACGCCAGC -3′ 

homo IL8 Forward primer: 5′ - ACACTGCGCCAACACAGAAATTA -3′ 

Backward primer:5′ - TTTGCTTGAAGTTTCACTGGTATC -3′ 

homo MIF Forward primer: 5′ - ACCAGCTCATGGCCTTCG -3′ 

Backward primer: 5′ - GAGTTGTTCCAGCCCACATT -3′ 

homo CD54 Forward primer: 5′ - GCCAGTGGGCAAGAACCT -3′ 

Backward primer: 5′ - TCAGTGCGGCACGAGAAA -3′ 

homo CXCL1 Forward primer: 5′ - CACTGCTGCTCCTGCTCCT -3′ 

Backward primer: 5′ - GGCTATGACTTCGGTTTGG -3′ 

homo IFNG Forward primer: 5′ - TGTCCAACGCAAAGCAATAC -3′ 

Backward primer:5′ - TCGACCTCGAAACAGCATCT -3′ 

homo IL23A Forward primer: 5′ - CTGTGGGCCAGCTTCATG -3′ 

Backward primer:5′ - GGAGGCTGCGAAGGATTT -3′ 

homo SERPINE1 Forward primer: 5′ - CAACTTGCTTGGGAAAGGAG -3′ 

Backward primer: 5′ -GGGCGTGGTGAACTCAGTAT -3′ 

homo GAPDH Forward primer: 5′ - CTCCGGGAAACTGTGGCGTGAT-3′ 

Backward primer: 5′ -GAGTGGGTGTCGCTGTTGAAGT-3′ 

Table 1.  The primers used for RT-PCR.
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described previously31. The results were averaged from two independent experiments, which were per-
formed in duplicate pots.

Tumor xenografts. Male NOD/SCID mice at 8–10 weeks of age were separated randomly into four 
groups. DU145 cells (DU145-YFP, DU145-STIM1-YFP, DU145-ORAI1, and DU145-ORAI1-STIM1-YFP) 
(3 ×  106) were inoculated subcutaneously into each mouse at the right axilla. The tumors were measured 
using calipers, and tumor volume (mm3) was calculated using the standard formula: length ×  width2/2. 
Each mouse was intraperitoneally injected with 1mg BrdU 24 h before death.

Immunofluorescent staining. The expression of E-cadherin in tumor xenografts was detected by 
using immuneofluorescent staining method as described before29.

Statistical Analysis. Values are expressed as the mean +  SEM. The significance of the results shown 
in Fig. 1 was determined according to the χ 2 test, and the significance of other results was determined 
according to t-test. A value of p <  0.05 was used as the criterion for statistical significance. *indicates 
significant difference with p <  0.05, **indicates significant difference with p <  0.01, and “n.s.” indicates 
no significance.

Results
Decreased expression of STIM1 and ORAI1 in human prostate tumor tissues. We first per-
formed an immunohistochemistry analysis of STIM1 and ORAI1 in prostate tissues removed from 
patients with or without adenocarcinoma cancer (Fig.  1A,C). The expression of STIM1 and ORAI1 in 
prostate tissues was summarized. As shown in Fig. 1B, STIM1 was detected to be expressed at signifi-
cantly lower levels in hyperplasia and tumor tissues at histological grade 3–4 than in normal tissues, indi-
cating that these molecules might have an inhibitory role in human prostate tumorigenesis. However, the 
expression of STIM1 was higher in tumors of histological grade 1–2 than in hyperplasia tissues (Fig. 1B), 
indicating the possible contribution of STIM1 to the malignant transformation of prostate cells. We also 
noticed that the averaged Gleason score reduced when STIM1 was expressed at higher levels in prostate 
cancer tissues (Fig.  1B), suggesting the inhibitory role of STIM1 to development of advanced tumor. 
These data imply that STIM1 might play a dual role in prostate cancer progression. At the same time, 
the expression of ORAI1 reduced in prostate cancer when compared with normal and hyperplasia tissues 
and when the cancer progressed from low to high Gleason scores (Fig. 1D), indicating the prohibitive 
effect of ORAI1 on development of prostate cancer.

Human prostate cancer cell lines exhibit higher SOCE activity and STIM1 expression than 
hyperplasia cells. Having identified the expression properties of STIM1 and ORAI1 in human pros-
tate tumor tissues, we next examined their expression level in four human prostate cell lines, i.e., BPH-1, 
LNCaP, DU145 and PC3; BPH-1 is a hyperplasia cell line, and the latter three are cancer cell lines with 
increasing propensity for metastasis32. We found that STIM1 expression is higher in the three prostate 
cancer cell lines than in BPH-1 (Fig. 2A), suggesting that STIM1 may play a significant role in the devel-
opment of human prostate cancer. Consistent with our observation in prostate tumor tissues with differ-
ent Gleason scores, we also noticed that STIM1 expression was significantly lower in the more malignant 
cell line-PC3 than in the DU145 cells. Because STIM1 is an important component of SOCE channels, we 
measured cellular SOCE activity using an InCyt dual-wavelength fluorescence imaging system. Although 
TG, a sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitor, induced endoplasmic reticulum 
(ER) Ca2+ store release was lower (Fig. S1A), SOCE activity was significantly greater in the prostate 
cancer cell lines than in the BPH-1 cells (Fig. 2B,C), which is consistent with the expression of STIM1 
in these cell lines. SOCE activity was also lower in PC3 than in LNCaP and DU145 cells, indicating that 
STIM1 has dynamic functions during prostate cancer progression.

Overexpression of STIM1 and ORAI1 in DU145 and PC3 cells inhibits cell growth by arrest-
ing the cell cycle in the G0/G1 phase and decreasing the percentage of cells in the G2/M 
phase. To further investigate the role of STIM1 and ORAI1 in prostate cancer, we established DU145 
and PC3 cell lines that stably overexpressed STIM1-YFP and/or ORAI1. Cells in which YFP was stably 
expressed (DU145-YFP or PC3-YFP) were used as corresponding controls. STIM1-YFP or/ and ORAI1 
overexpression was confirmed by western blotting (Fig.  2D). As shown in Fig.  2E,F, overexpression of 
STIM1-YFP alone significantly increased SOCE activity in DU145 cells, and this activity could be further 
enhanced by the co-expression of STIM1-YFP and ORAI1.The same phenomenon was also detected 
in PC3 cells (Fig.S1B and S1C). Next, we studied the growth of DU145 cells using a live cell growth 
curve assay. As shown in Fig. 3A, we observed a low growth rate in DU145-ORAI1, DU145-STIM-YFP 
and DU145-Orai-STIM1-YFP cells, indicating that STIM1 and ORAI1 have inhibitory effects on cell 
proliferation. A similar phenomenon was also observed in PC3 cells. To further reveal the function of 
these molecules in cell cycle regulation, DU145 and PC3 cells were serum starved for 12 h and then sub-
jected to cell cycle analysis. We found that DU145 and PC3 cells overexpressing STIM1-YFP, ORAI1 and 
ORAI1-STIM1-YFP were enriched in the G0/G1 phase and that the percentage of these cells in the G2/M 
phase was significantly reduced (Fig. 3B and Fig. S2). In addition, the percentage of these PC3 cells in the 
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Figure 1. Decreased expression of STIM1 and ORAI1 in human prostate cancer tissues when compared 
with normal tissues. A. Representative immunohistochemical staining of STIM1 (brown) in normal 
prostate tissue (1), hyperplasia tissue (2) and prostate tumor tissue with a Gleason score of 10 (3). B. Upper 
panel: The expression pattern of STIM1 in normal, hyperplasia and prostate tumor tissues with different 
histological grades. Low panel: The Gleason score of human prostate cancer tissues with different expression 
levels of STIM1. The mean value of Gleason score in each group was indicated by horizontal line. C. 
Representative immunohistochemistry staining of ORAI1 (brown) in normal prostate tissue (1), hyperplasia 
tissue (2) and prostate tumor tissues with a Gleason score of 10 (3). D. Upper panel: The expression pattern 
of ORAI1 in normal, hyperplasia and prostate tumor tissues with different histological grades. Low panel: 
The Gleason score of human prostate cancer tissues with different expression levels of ORAI1. The mean 
value of Gleason score in each group was indicated by horizontal line.
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Figure 2. Increased expression levels of STIM1 and SOCE activity in human prostate cancer cells 
when compared with hyperplasia cells. A. Western blotting analysis of STIM1 and ORAI1 in BPH-1, 
LNCaP, DU145 and PC3 cells. B. Comparison of SOCE activity in BPH-1, LNCaP, DU145 and PC3 cells. 
C. Statistical results of SOCE activities in human prostate cancer cells, represented as increases in the F340/
F380 ratio over baseline values (Δ F340/F380) after extracellular Ca2+ application. D. Western blotting was 
used to confirm overexpression of STIM1 and/or ORAI1 genes in DU145 and PC3 cells. E. SOCE activities 
in DU145 cells with STIM1-YFP and /or ORAI1 overexpression and the DU145-YFP control. F. Increased 
SOCE activity in DU145-STIM1-YFP and DU145 -ORAI1-STIM1-YFP cells and slightly increased SOCE 
activity in DU145-ORAI1 cells when compared with that of DU145-YFP control.
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S phase was also reduced (Fig. 3B and Fig. S2). Western blotting further revealed the overexpression of 
cyclin E2, which accelerates the G1 phase33, and the down-regulation of cyclin D1, which promotes the 
G1/S transition34, in DU145 cells with STIM1-YFP and ORAI1-STIM1-YFP overexpression. In addition, 
the expression levels of p-WEE1 (Ser642) and Myt1 (inhibitors of cyclin-dependent kinase 1 (Cdk1, 
also known as CDC235,36)) and p-CDC2 (Tyr15) (the inactivated form of Cdk1) were higher in DU145 
cells in which STIM1-YFP, ORAI1 and ORAI1-STIM1-YFP were overexpressed than in DU145-YFP 

Figure 3. Overexpression of STIM1 and/or ORAI1 slows cell growth and the cell cycle. A. Cell growth 
curves of DU145 and PC3 cells, n =  3. B. The overexpression of STIM1 and/or ORAI1 leads to an increased 
percentage of cells in the G0/G1 phase and a decreased percentage of cells in the G2/M phase in DU145 
and PC3 cells, n =  3. C. Western blotting analysis of cell cycle-related proteins in DU145 and PC3 cells upon 
STIM1 and/ or ORAI1 overexpression.
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control cells; this finding reveals the possible molecular mechanisms underlying the inhibition of cell 
growth rates in these three cell lines (Fig. 3C). Increased expression of cyclin E2, p-WEE1, p-CDC2 and 
Myt1 was also detected in PC3 cells in which STIM1-YFP and ORAI1-STIM1-YFP were overexpressed, 
and a reduction in the levels of cyclin D1 was detected in PC3 cells in which STIM1-YFP, ORAI1 and 
ORAI1-STIM1-YFP were overexpressed. In addition, the expression level of cyclin E2 was reduced in 
PC3-ORAI1 cells, possibly accounting for the lower growth rate of PC3-ORAI1 compared to those of 
PC3-STIM1-YFP and PC3-ORAI1-STIM1-YFP (Fig. 3A).

STIM1 and ORAI1 promote the senescence of prostate cancer cells. In addition to the slowed 
cell growth, we also observed large and long spindle shaped cells with low cell density at full confluence; 
these characteristics of cell senescence were observed in the DU145-STIM1-YFP, PC3-STIM1-YFP and 
PC3-ORAI1 cells (Fig. S3A). All these data suggest that the overexpression of STIM1 and/or ORAI1 may 
promote cell senescence in prostate cancer cells. To further test this hypothesis, we performed β -Gal 
staining (Fig. 4A) and examined several cell senescent and apoptotic biomarkers (Fig. 4C). As shown in 
Fig. 4B, the percentages of β -Gal staining (+ ) cells (senescent cells) were significantly higher in DU145 
and PC3 cells overexpressing STIM1-YFP, ORAI1 and ORAI1-STIM1-YFP than in the corresponding 
controls. In addition, western blotting revealed elevated protein expression levels of DcR2 in DU145 
and PC3 cells overexpressing STIM1-YFP, ORAI1 and ORAI1-STIM1-YFP and revealed less expression 
of anti-apoptotic proteins-X-linked inhibitor of apoptosis protein (XIAP) in DU145 and PC3 cells over-
expressing STIM1-YFP and ORAI1-STIM1-YFP. Moreover, the expression of Bcl-2 was much lower in 
DU145 and PC3 cells overexpressing STIM-YFP and in PC3-ORAI1-STIM1-YFP cells (Fig. 4C). These 
results revealed possible mechanisms underlying the promotion of senescence by STIM1 and ORAI1 in 
prostate cancer cells. Since STIM1 contributes significantly to the SOCE activity and overexpression of 
STIM1 was reported to activate other non-SOCE pathways37, to further confirm the regulatory effect of 
SOCE on cell senescence, we knocked down its expression by applying siRNA mixture to minimize the 
off-target effect of siSTIM138 (Table S1 and Fig. S3B). Reduced expression of DcR2 and increased Bcl-2 
and XIAP were observed in both DU145 and PC3 cells with STIM1 down-regulation (Fig. S3C). In 
addition, less senescence cells were detected in DU145 and PC3 cells with STIM1 knocking down when 
compared with their controls (Fig. S3D). These finding further confirm the contribution of SOCE on cell 
senescence in human prostate cancer cells.

STIM1 enhances migration by promoting EMT upon the activation of the Snail, TGF-β and 
Wnt/β-Catenin signal pathways. Because STIM1 and/or ORAI1 overexpression significantly 
altered the morphology of the DU145 and PC3 cells, we next tested the migration of these cells using 
transwell (Fig.  5A,B) and wound healing (Fig.  5C,D) assays. As shown in Fig.  5A,B, overexpression of 
STIM1 alone and/or ORAI1 significantly promoted cell migration in DU145 and PC3 cells. In addition, 
STIM1 increased the motility of DU145 and PC3 cells in the wound-healing assay, and ORAI1 alone or 
in combination with STIM1 also significantly promoted PC3 mobility (Fig.  5C,D). EMT is an impor-
tant cell program in which polarized and immotile epithelial cells lose their polarity and tight cell-cell 
contacts, and acquire motile mesenchymal characteristics39, as marked by the decreased expression of 
epithelial proteins, such as E-cadherin and claudins and by the increased expression of mesenchymal 
marker proteins, such as N-cadherin, Vimentin, α-smooth muscle actin and fibronectin etc. Our results 
showed clearly reduced claudin-1 and/or E-cadherin expression in DU145 and PC3 cell overexpressing 
STIM1-YFP and ORAI1-STIM1-YFP cells and increased expression of Vimentin or/and N-cadherin in 
DU145-STIM1-YFP and PC3 cells with STIM1-YFP and ORAI1-STIM1-YFP overexpression (Fig.5E, 
Fig. S4A and S4B), indicating that STIM1 promotes EMT. However, the effect of ORAI1 on EMT 
was not significant and was inconsistent between DU145 and PC3 cells because the expression level 
of E-cadherin, claudin-1 and Vimentin were all slightly increased in DU145-ORAI1 cells, whereas the 
expression of claudin-1 did not change, the expression of Vimentin increased, but that of N-cadherin 
decreased in PC3-ORAI1 cells (Fig.  5E and S4A). These results further demonstrated the important 
function of STIM1 in EMT and its contribution to tumor migration. The regulatory effect of STIM1 on 
EMT was also confirmed in DU145 and PC3 cells with STIM1 down-regulation as reflected by increased 
claudin-1, E-cadherin and decreased Vimentin expression in DU145-siSTIM1 cells and elevated claudin-1 
and reduced N-cadherin and Vimentin expression in PC3-siSTIM1 (Fig. S4C and S4D).To dig deeper 
into the underlying mechanism, EMT regulatory proteins were detected in DU145 and PC3 cells by west-
ern blotting (Fig. 5E,F, Fig. S4A). Interestingly, Snail, Wnt-1, nuclear β -catenin and p-Smad2, p-Smad3, 
which are the downstream molecules of TGF-β  signaling40 were all overexpressed in DU145-STIM1-YFP 
and DU145-ORAI1-STIM1-YFP cells, whereas the expression of p-Smad2 increased, but that of Wnt-1, 
Snail only marginally increased and the expression of nuclear β -catenin decreased in DU145-ORAI1 
cells. At the same time, β -catenin, Wnt-1, Snail, p-Smad2 and p-Smad3 overexpression was also observed 
in PC3-STIM1-YFP and PC3-ORAI1-STIM1-YFP cells. However, although p-Smad3 was overexpressed, 
the expression of Snail and p-Smad2 only slightly increased and that of β -catenin and Wnt-1 did not 
change in PC3-ORAI1 cells. These results suggest that STIM1 contributes more significantly to EMT 
than ORAI1 in human prostate cancer cells.
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Figure 4. Overexpression of STIM1 and/or ORAI1 promotes cell senescence. A. β -Gal staining of 
senescent cells in DU145 and PC3 cells, the positive cell was indicated by the arrow. B. Statistical analysis 
of the percentage of β -Gal staining positive cells (senescent cells) from DU145 and PC3 in each image field 
(n =  3). C. Western blotting analysis of senescence marker and apoptosis-related proteins in DU145 and PC3 
cells.
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Figure 5. Overexpression of STIM1 and/or ORAI1 promotes the migration of DU145 and PC3 cells. 
A. Representative crystal violet staining for DU145 and PC3 cells that migrated and attached to the bottom 
of transwell filters after 24 h of treatment. B. Statistical analysis of crystal violet staining intensity measured 
as the absorbance at 560 nm, (n =  3 for DU145 cells, n =  5 for PC3 cells). C. Wound-healing assays of cell 
motility in DU145 and PC3 cells, and representative images obtained at 0 and 24 or 36 h after scratching. 
The dashed line indicated the edge of the wound. D. Statistical analysis of the wound-healing rates of DU145 
and PC3 cells, (n =  5 for DU145 cells, n =  3 for PC3 cells). E. Western blotting analysis of E-cadherin, 
claudin-1, Vimentin, Wnt-1, Snail, p-Smad2 and p-Smad3 in DU145 cells. F. Western blotting analysis of 
nuclear β -catenin in DU145 cells.
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STIM1 and ORAI1 modulate the tumor microenvironment (TME) and inhibit the formation of 
tumor-associated macrophages. Stroma cells from the TME are essential for the growth, chemore-
sistance and metastasis of cancer cells; the transition of macrophages from the M1 to the M2 phenotype 
is a vital factor in modulating the TME, thus promoting tumorigenesis and metastasis41. To elucidate the 
function of SOCE in modulating the TME and tumor-associated macrophages (TAM, M2 phenotype), 
we tested the effect of STIM1 and ORAI1 on recruitment U937, a human leukemic monocyte mac-
rophage cell line, in both DU145 and PC3 cells. Our study found that the recruitment of U937 is inhib-
ited by the conditioned medium (CM) from DU145 and PC3 cells overexpressing either STIM1-YFP 
or ORAI1 or both genes (Fig. 6A,B) and increased recruitment of U937 was demonstrated by using the 
CM from DU145-siSTIM1 and PC3-siSTIM1 when compared with the control from transwell assay (Fig.
S5). In addition, real time RT-PCR showed reduced expression levels of IL10, IL6 and CD163 in U937 
cells after treatment with CM from DU145 and PC3 cells overexpressing STIM1-YFP and /or ORAI1 
(Fig. 6C), indicating that U937 cells experienced a transition from the M2 to the M1 phenotype and that 
the recruitment of these macrophages was inhibited by the TME of prostate cells possessing enhanced 
SOCE activity. In addition, the transcripts of VEGFA and MMP9 in U937 were also significantly reduced 
after treatment with the CM from DU145 or PC3 cells overexpressing STIM1-YFP and /or ORAI1, sug-
gesting that the TME of prostate cancer cells with enhanced SOCE activity may be unfavorable to tumor 
growth and metastasis. To test this hypothesis, we studied the possible effect of STIM1 on regulating the 
secretion of cytokines in prostate cancer cells using the cytokine array. The results showed that STIM1 
overexpression reduced the secretion of IL-8, macrophage migration inhibitory factor (MIF), CD54 (also 
known as intercellular adhesion molecule 1), and CXC ligand 1 (CXCL1) and increased the secretion 
of IFN-γ , IL-23 and Serpin E1 in DU145 cells (Fig. 6D). The screening results were further verified by 
real time RT-PCR in both DU145 and PC3 cells overexpressing STIM1 (Fig. 6E), except that the mRNA 
expression of IL23A decreased in DU145-STIM1-YFP and that of IFNG reduced in PC3-STIM1-YFP. It 
is reported that CXCL1 boosts tumor angiogenesis and development42. IL-8 contributes to tumor pro-
gression and metastasis43. MIF regulates innate immunity44 and promotes the metastasis of colorectal 
cancer45. CD54 promotes prostate tumor metastasis46. IL-23 enhances the production of IFN-γ 47. Serpin 
E1, a serine protease inhibitor, functions as the principal inhibitor of urokinase (uPA) and tissue plas-
minogen activator (tPA), thus playing an important role in regulating fibrinolysis. With the exceptions 
of the no significant change for the mRNA expression of IL8 and CD54 in DU145-ORAI1 and increase 
expression of these two genes in PC3 cells with ORAI1 overexpression and the decrease in the mRNA 
expression of SERPINE1 in DU145-ORAI1 cells, the effects of ORAI1 on regulating the expression of 
these cytokine genes are similar to the effects of STIM1 on the secretion of the corresponding proteins 
observed in DU145 cells (Fig. 6E). These findings support the hypothesis that STIM1 and ORAI1 over-
expression promote the formation of an unfavorable TME, which inhibits the development of advanced 
prostate cancer. In addition, a dual luciferase assay revealed that STIM1 and/or ORAI1 overexpression 
significantly inhibited the activation of response element (RE) for NFκ B (NFκ B-RE) (Fig. 6F); this might 
represent the mechanism that alters the production of cytokines as observed in both the DU145 and 
PC3 cells.

STIM1 regulates tumor cell proliferation and cell senescence in vivo. Next, we studied the 
roles of STIM1 and ORAI1 in prostate tumor progression in vivo. DU145 cells were inoculated into 
non-obese diabetic-severe combined immunodeficient (NOD/SCID) mice, and noticeable tumor masses 
were detected within 3 weeks of inoculation. As shown in Fig.  7A, although the tumor volume stead-
ily increased in all four xenograft groups, tumor growth was significantly retarded in mice injected 
with DU145-STIM1-YFP or DU145-ORAI1-STIM1-YFP compared with that in mice injected with 
DU145-YFP. The mice were killed 35 days after inoculation. Significantly reduced immunofluorescence 
staining of BrdU positive cells (Fig.  7B,C), and increased Immunohistochemical stainings of DcR2 
were found in DU145-STIM1-YFP, DU145-ORAI1 and DU145-STIM1-YFP-ORAI1 tumor xenografts 
(Fig. 7D); these findings support the idea that STIM1 and ORAI1 inhibit the tumor cell cycle and accel-
erate senescence. In addition, immunofluorescent staining of E-cadherin was decreased in tumor tissues 
that were removed from mice grafted with DU145-STIM1-YFP and DU145-STIM1-YFP-ORAI1, further 
demonstrating that STIM1 promotes the EMT in vivo (Fig. 7D).

Discussion
In this study, we explored the role of STIM1 and ORAI1 in tumor senescence, migration and microen-
vironment and demonstrated their dual functions during prostate cancer progression. Our data showed 
that the two genes can both accelerate cell senescence and promote an unfavorable TME and promote 
tumor migration and further revealed the molecular mechanisms underlying the effect of STIM1 on 
EMT regulation in human prostate cancer cells.

Previous study investigated the mRNA expression of STIM1 and ORAI1 in prostate tissues by using 
qRT-PCR and found no significant difference between normal and cancer tissues48, which was different 
with our immunohistochemistry results. These findings indicate the possible post-translational modifi-
cation for these two genes in prostate cancer cells.

Other isoforms of STIM and ORAI, such as STIM2, ORAI2 and ORAI3 and some transient recep-
tor potential (TRP) family members that involved in the regulation of SOCE activity might also be 
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Figure 6. Overexpression of STIM1 and/or ORAI1 in DU145 and PC3 cells remodels the tumor 
microenvironment. A. Transwell assay of the migration of U937 cells after incubation with the conditioned 
medium (CM) from DU145 and PC3 cells in the low chamber for 12 h; representative crystal violet staining 
of U937 cells that migrated and attached to the bottom of the transwell filter are shown. B. Statistical 
analysis of violet staining intensity, measured as the absorbance at 560 nm (n =  3). C. Real-time RT-PCR 
analysis of mRNA expression changes of MMP9, VEGFA, IL10, IL6 and CD163 in U937 cells after treatment 
with the CM of DU145 and PC3 for 48 h (n =  3). D. STIM1 regulates the expression of cytokines in DU145 
cells. Upper panel: representative results of cytokine arrays for DU145-YFP and DU145-STIM1-YFP. Lower 
panel: Statistical analysis of the relevant protein expression level of cytokines in DU145 cells. E. Real-time 
RT-PCR analysis of mRNA expression changes of IL8, MIF, CD54, CXCL1, IFNG, IL23A and SERPINE1 in 
DU145 and PC3 cells with STIM1-YFP and /or ORAI1 overexpression in comparison with those in control 
cells. F. Dual luciferase assay for NF-κ B-RE activation in DU145 and PC3 cells.
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Figure 7. STIM1 in DU145 cells compromise tumor growth with acceleration of the EMT and increased 
cell senescence in tumor xenografts in vivo. A. Tumor growth curves in NOD/SCID mice inoculated with 
DU145-YFP (n =  5), DU145-STIM1-YFP (n =  6), DU145-ORAI1 (n =  4), and DU145-ORAI1-STIM1-YFP 
(n =  4). B. Immunofluorescent image of BrdU in tumor xenograft tissues; the images represent one of 4–6 
mice from each group. C. Statistical analysis of BrdU-positive cell percentage from tumor xenograft tissues in 
each image field. D. Immunohistochemical staining of STIM1, ORAI1, DcR2 and Vimentin (all in brown) and 
immunofluorescence staining of E-cadherin (red) in different tumor xenograft tissues.
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differently expressed in prostate cancer cells, which may account for the phenomenon observed in 
Fig.  2A that although DU145 and PC3 showed more STIM1 expression and almost similar or slight 
increase of ORAI1 when compared with those of LNCaP, their SOCE activity obviously decreased. In 
addition, since different cancer cell lines have distinct gene background, other genes besides STIM1 that 
also impact EMT process may be differently expressed in these cells, which lead to the observation that 
although PC3 have more mesenchymal like characters than DU145, its STIM1 expression is lower than 
that of DU145. As observed from Fig.  5 and S4, the regulatory effect of ORAI1 on EMT was minor, 
which was consistent with the observation that PC3 cells show only slight increase of ORAI1 expression 
level when compared with that of LNCaP and DU145 in Fig.2A.

Studies have shown that STIM1 affects the cell cycle in various cell lines17,21, and STIM1 knockdown 
in cervical cancer cells inhibits cell growth by arresting the cells at the S and G2/M phases with increased 
protein expression level of p21 and decreased expression of Cdc25C and might inhibit Cdk1 activation, 
leading to cell cycle arrest12. However, our study showed that the overexpression of STIM1 slows the 
growth of DU145 and PC3 cells by reducing the percentage of cells at the G2/M phase and increasing 
the expression of Myt1, p-WEE1 and p-CDC2. This difference suggests that the effect of STIM1 on cell 
cycle regulation might be tissue- and cancer type- specific.

Interestingly, we found that STIM1 and ORAI1 promotes the senescence of human prostate cancer 
cells, as reflected by the aging morphology changes and β -Gal staining in both DU145 and PC3 cells with 
STIM1 or ORAI1 overexpression and by the overexpression of senescence–related genes, such as DcR2. 
Also of importance, STIM1 down-regulated the expression of anti-apoptotic proteins, including Bcl-2 
and XIAP, which in turn might render the prostate cancer cells more susceptible to apoptotic stimuli.

Recent studies have examined the significant role of STIM1 in the metastasis of various types of can-
cers. It has been suggested that STIM1-mediated SOCE promotes angiogenesis and actomyosin contrac-
tility in cervical cancer cells12,49 and enhances focal adhesion turnover in breast cancer cells6. Our data 
show that STIM1 promotes migration of human prostate cancer cells through its role in regulating EMT 
via activation of the TGF-β , snail and Wnt/β -catenin signal pathways; thus, this study provides a new 
understanding of the molecular mechanisms underlying the effect of STIM1 on promoting migration.

Most importantly, we found that both STIM1 and ORAI1 regulate the TME by inhibiting the recruit-
ment of macrophages and by inhibiting formation of TAM. The regulatory effect of SOCE on inflamma-
tion has been demonstrated, and an ORAI1 mutation has been reported to be the genetic cause of severe 
combined immune deficiency (SCID)4. In addition, using STIM1 and STIM2 conditional knock-out 
mice, the function of SOCE in CD8+ T cells has been shown to play a vital role in regulating the degran-
ulation of cytotoxic T lymphocytes (CTLs) as well as their expression of the Fas ligand and the produc-
tion of IFN-γ  and TNF-α ; thus, SOCE is required to prevent the development of melanoma and colon 
carcinoma cells50 . However, the modulation of the effect of SOCE on the surrounding microenvironment 
has not been investigated in tumor cells. Our study demonstrated altered protein secretion and mRNA 
expression levels of multiple cytokine genes, including IL8, CD54, CXCL1, IFNG, IL23A and SERPINE1, 
all of which are transcriptional target genes of NF-κ B51–56, in DU145 and/or PC3 cells in which STIM1 is 
overexpressed. In addition, we also observed decreased mRNA expression of MIF and CXCL1 and over-
expression of IFNG and IL23A in both cells with ORAI1 overexpression. Previous studies revealed the 
activation of NF-κ B by Ca2+ influx57 or Ca2+ oscillation58. Here, we observed that the activation of NF-κ B 
was inhibited in prostate cancer cells with increased SOCE activity. Thus, these findings revealed a novel 
molecular mechanism underlying the effects of both genes on the tumor immuno-microenvironment. 
Interestingly, although STIM1 has been reported to promote the expression of VEGFA in tumor cells, the 
treatment of macrophages with the culture media from DU145-STIM1-YFP and PC3-STIM1-YFP cells 
reduced their mRNA expression of VEGFA and MMP9; combined with the promotion of an unfavorable 
TME, these factors may therefore compromise the effect of STIM1 on angiogenesis and the metastasis 
of prostate cancer cells.

The mechanisms underlying the dual effects of STIM1 on prostate cancer are complex, and a recent 
study showed that some genes or signals, such as TGF-β 1, promote cell death and the EMT concurrently 
in the same types of cell line59. Heterogeneity in the cancer cell line or tumor is considered as a key rea-
son; some cells underwent senescence when STIM1 was overexpressed, but those that survived gained 
the ability to metastasize by undergoing the EMT. It was also suggested that different responses of cells 
to the same stimuli might also be determined by cell cycle stage and genetic background60.

In summary, our study revealed distinct but interrelated effects of SOCE in the progression of human 
prostate cancer and revealed that STIM1 and ORAI1 are expressed at lower levels in human prostate can-
cer cells than in normal tissues; in addition, the expression of these molecules is significantly decreased 
in tumor tissues that exhibit a low differentiation level. On the one hand, STIM1 overexpression pro-
motes the EMT and thereby enhances cell migration; on the other hand, STIM1 overexpression accel-
erates tumor cell senescence and modulates the tumor immuno-microenvironment. This study thus 
disclosed novel multiple effects of STIM1 on prostate cancer cells and present new insight into the 
regulatory mechanism of STIM1 on cell senescence, the EMT and TME; this insight might prove the 
fundamentality for understanding how different cell fates can be induced by STIM1, even in the same 
type of prostate cancer.
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