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Multiple scale model for cell 
migration in monolayers: Elastic 
mismatch between cells enhances 
motility
Benoit Palmieri1, Yony Bresler1, Denis Wirtz2,3 & Martin Grant1

We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. 
In the model, the two types of cells have identical properties except for their elasticity; cancer cells 
are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the 
migration potential of cancer cells in the absence of other contributions that are present in real 
cells. The methodology is based on a phase-field description where each cell is modeled as a highly-
deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One 
contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The 
simulation results demonstrate that elasticity mismatch alone is sufficient to increase the motility of 
the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed 
“bursts” where the cancer cell quickly relaxes from a largely deformed shape and consequently 
increases its translational motion. The increased motility and the amplitude and frequency of the 
bursts are in qualitative agreement with recent experiments.

In many physiological processes, cells migrate by moving through narrow channels defined by the sur-
rounding environment. One example is cancer metastasis, where a cancer cell squeezes through the 
endothelium to reach the blood stream and eventually forms a secondary tumor elsewhere in the body1–4. 
Over recent years, the study of cancer from a physical sciences point of view has drawn much atten-
tion3,5–10: Physical principles are believed to offer an alternative perspective of the disease and may help 
to optimize treatments11 and detection12. The model we present in this paper emphasizes the role of the 
elastic properties of cancer cells and surrounding normal cells on the metastatic potential of the former. 
Our simulations show that elasticity mismatch alone can reproduce features of cancer cell migration 
observed in experiments.

More precisely, we propose a multiple scale model to study the motility of individual cells in a larger 
cells-on-substrate assembly that comprises normal and cancer cells. We will focus on the nearly confluent 
scenario which describes monolayers. Understanding the behavior of cell monolayers is an important 
biological question that goes beyond the physics of cancer since epithelial tissues, which support the 
structure of embryos and organs, often have a monolayer structure13. Examples of cells-on-substrate 
experiments that are not directly related to cancer include studies of collective behavior14,15, wound 
healing9,16,17 and colony growth18.

Our work is motivated by recent experiments performed by Lee et al.9 which showed that the Young 
modulus of metastatic human breast carcinoma cells (MDA-MB-231) is about three times smaller than 
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the one of human breast epithelial cells (MCF10A). In the same study, the authors showed that the motil-
ity of a cancer cell embedded in a confluent monolayer of mostly normal cells was much larger than in 
the case where the layer is made of cancer cells only. This observation was partly attributed to the fact 
that short speed “bursts” decorate the trajectory of the cancer cell. These bursts typically occur when a 
cancer cell, highly deformed due to temporary crowding by the neighboring normal cells, rapidly relaxes 
to a less deformed shape as the cell escapes the crowded configuration. Hence, it was proposed that 
the elasticity mismatch between cancer cells and normal cells significantly contributes to the observed 
“bursty” migration behavior and the concomitantly larger motilities of the cancer cells.

In the experiments, the increased motility of the metastatic cancer cells is probably due to many fac-
tors where one is the cell mechanical properties. Additional differences between cancer and normal cells 
include inter cellular adhesions9 and protrusion activity19. Here, the model parameters will be chosen so 
that all cells in the monolayer have identical properties except for their elasticity: Cancer cell are softer, 
normal cells are stiffer. The main results of our simulation studies demonstrate that elasticity mismatch 
alone is sufficient to trigger bursty migration behavior and significantly increase the motility of the soft 
cell. Moreover, the simulated migratory behavior of cancer cells in a layer of mostly normal cells is in 
qualitative agreement with the experiments9.

The model that we use permits the description of very large cell shape deformations. We will show that 
this point is crucial to accurately describe bursty migration. The effect of deformability of cells and vesi-
cles has recently been studied in other contexts. Many of these studies were based on a beads-and-springs 
model for the cell shape and focused on red blood cells in capillaries20,21, bacteria in biofilms22,23 and 
tissue growth24. Such models complement recent Potts model studies of cell sorting25 and vertex model 
dynamical studies26,27 of soft tissues.

The phase-field model that we propose is more general than these other approaches. First, it can be 
easily extended to include more complexity (i.e., cell internal degree of freedom). Second, the inactive 
part of the dynamics is self-consistently derived from non-equilibrium thermodynamics principles. In 
that sense, our approach more closely resembles that used in Refs 6,7, which focused on tumor growth, 
and that used in Refs 28–33, which focused on single cell behavior. Our phase-field model approach is 
applied to an assembly of cells and it retains shape and motion details at the single cell level. Modelling 
the system behavior down to the single cell level is important to describe the cooperation between nor-
mal and cancer cells that leads to the bursty migration behavior and the increased motility of the latter.

The paper is organized as follows. The next section contains the Results. The first subsection gives a 
brief summary of our cell monolayer model. Simulations results are given in the next two  subsections. 
The second one reports the cell arrangement predicted by our model for monolayers of inactive 
(non-migrating) cells. These determine the initial conditions for the simulations of motile cells pre-
sented in the third subsection. There, the migratory behavior of a tagged cell in monolayers of varying 
cell mechanical properties is analyzed. Following is the Discussion. It contains a summary of our findings 
and discusses avenues to be explored. Finally, the Methods section gives extra details on the statics and 
dynamics aspects of the model and it gives a brief overview of the numerical procedure.

Results
We model monolayers that comprise normal and cancer cells using a phase-field approach similar to 
the one recently employed by Najem et al.30, who studied chemotropism in neural cells, by Löber et 
al.31, who studied cell crawling on soft substrate, and by Larazo et al.32,33, who studied the shape of red 
blood cells under flow in small channels. Here, we treat the monolayer as a 2D system. This is a good 
level of description since the cells dynamics are constrained in a region close to the plane defined by 
the substrate. In our model, it is assumed that cells do not grow nor divide. The idea is that each cell is 
described by a “field” which rapidly varies in the region of the cell boundary. Hence, we denote by φn(x,y; 
t) the field associated with cell n where x,y are the two spatial coordinates and t is the time. An example 
of a cell field is shown in Fig. 1A. The interior of each cell is defined by regions where φn =  1 while the 
exterior is defined by regions where φn =  0. At the cell boundary, φn interpolates rapidly between 0 and 
1. From now on, all monolayer images that we will present only show the boundary of each cell except 
for a tagged cell that will be highlighted with a color as in Fig. 1B.

Details of the model are presented in the Methods section and in the Supplementary Information. 
However, a brief overview is given in the next subsection.

Model outline. The most important advantages of our phase-field monolayer model are: 1) The cell 
boundary does not have to be tracked explicitly. 2) Extremely large deformations can be described. 3) 
The mechanical properties and the velocities of each cell can be modeled individually. The latter point is 
particularly important since one of our goals is to make connections with the experiments of Lee et al.9. 
Our approach differs from vertex models26,27 by allowing all types of cell deformations and any degree 
of cell coverage. The difference between our phase field model and an equivalent Cells Potts model25 is 
at the level of the dynamics since the former is the continuum limit of the latter.

The time dependent behavior of the monolayer is described by dynamical equations for the cell fields,
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where   is the monolayer free energy, vn is the translational velocity of cell number n and δ denotes a 
functional derivative. Note that this equation is written in terms of dimensionless units, which will be 
used throughout the paper. The relationships between dimensionless and real units are detailed in the 
Supplementary Information, briefly reviewed at the end of the Methods section. The right-hand side of 
Eq. (1) describes cell shape dynamics, which are determined by free energy changes. Details of the model 
free energy are given in the Methods section and in particular, by Eqs (7) and (10). The free energy 
contains several parameters and its minimum determines the prefered state of the system. Briefly, one 
parameter controls the elastic response of each cell to shape deformation (γn in Eq. (7)). Another controls 
the preferred radius of the cells (R in see Eq. (7)), which tend to be circular when they are not perturbed 
by other cells. Also, there is a parameter that controls the energy penalty for overlapping cells (κ in Eq. 
(10), which is chosen to be large). Note that the interactions between cells are strictly repulsive.

The velocity of each cell is the sum of two distinct contributions as described in Eq. (11): 1) The 
inactive part, vI, is due to the interaction force exerted by the other cells. Like the cell shape dynamics, 
the inactive part of the velocity is determined by free energy changes. 2) The active, or self-propulsion, 
part of the velocity, vA, is due to the cell engine. The relative strength of the two contributions to the 
velocity is determined by another parameter (ξ in Eq. (12)) which also controls the maximum cell shape 
deformation. The active part of the velocity is chosen so that the motion of isolated cells on the substrate 
is described by a persistent random walk34,35 where the characteristic cell speed and the reorientation 
statistics match the experimental observations9. Further, we assume that there is a large separation of 
time scales between the cell shape relaxation (fast) and the cell translation dynamics (slow). This approx-
imation is physical since 1 μm deep indentations on cells typically relax within seconds36 and the motile 
cells we model translate by 1 μm within minutes9.

To highlight the role of cell elasticity mismatch, we considered 2 types of cell monolayers assemblies: 
a single cancer cell in a layer of normal cells (hereafter referred as the “soft-in-normal” case) and normal 
cells only (hereafter referred as the “all-normal” case). We performed simulations at two packing frac-
tions, ρ =  0.85 and 0.9, describing nearly confluent monolayers, where,

ρ
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where AB is the area of the simulation box. Overall, we will present a total of 4 simulations, each of 
which contains Ncell =  72 cells. All model parameters are listed in Table 1 and explained in details in the 
Methods section and in the Supplementary Information. Our aim is to isolate the effect of the mechani-
cal properties of motile cells on their migratory behavior. Hence, all parameters will be identical for both 
types of cells with the exception of the parameter which controls the cell stiffness (we set γcancer/γnormal =  0.35, 

Figure 1. An example of a model monolayer comprising one soft cancer cell and normal cells. Each cell 
is described by a field, φ(x, y), that is defined to be 0 outside the cell and 1 inside. The field rapidly varies 
in the region of the cell boundary. A. The field of a single cancer cell. B. The monolayer is reconstructed by 
showing the boundary of all cells (Blue curves). A tagged cell, the cancer cell, is filled in Green with a Black 
boundary.
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as observed experimentally). That includes the sequence of random numbers which determines the ini-
tial positions of the cells and the reorientation events. Hence, in the absence of elasticity mismatch and 
at the same packing fraction, the soft-in-normal and all-normal simulations would give identical results.

Aging. In the first stage of all simulation, the cells are randomly placed in the simulation box at the 
appropriate packing fraction. All cells are initially circular with radius R given in Table 1. Any cell whose 
center is within a distance smaller than R to the center of a previously placed cell is randomly re-assigned 
to a new position. At a given packing fraction, the initial position of the cells for the soft-in-normal 
and all-normal cases are enforced to be the same. In the initial configuration, the monolayer is far from 
equilibrium since many cells overlap. Hence, we allow it to relax by numerically propagating Eq. (1) 
without the term that gives rise to self-propulsion, vn,A in Eq. (11). During this “aging” period, the system 
rearranges to minimize the free energy and the cells act as mutually immiscible “dead” droplets.

Figure  2 shows the final configuration of all 4 monolayers after aging and the net displacement of 
each cells. A tagged cell is highlighted with a black boundary and a colored filling. This cell always starts 
in the middle of the simulation box. This is the cancer cell in the soft-in-normal simulations. The soft 
cancer cell is colored in Green and normal cells in Blue. The arrows that report the displacement of the 
cells during aging are colored in the same way. The length of the arrows is equal to twice the cell dis-
placements magnitude. Movies of all 4 aging simulations are given in the Supplementary Information. 
Note that the cell displacements do not seem to correlate with the elasticity, but rather on the initial 
nearest-neighbor configuration of each cell. This is most easily seen in the Supplementary Movies. All 
supplementary movies are available at http://dx.doi.org/10.6084/m9.figshare.1439474. On the other hand, 
the deformation of the tagged soft cell in the soft-in-normal case is clearly larger than that of the other 
cells and that of the tagged normal cell in the all-normal case.

The distortion of each cell can be characterized by the length of their interface, or cell perimeter. 
With the cell field φn given by Eq. (S2), it is simple to show that the perimeter is proportional to the 
following measure,

∫π φ≡ ∇ , ( )L
R

dxdy1
2 3n n

which is equal to 1 for perfectly circular cells. Because the cell area is nearly conserved, the cells can only 
reduce their interactions energy by deforming their boundaries. The perimeter increases with increasing 
cell deformation. Figure 2 also shows the distribution of Ln values at the end of the 4 aging simulations 
for all 72 cells. Note that the value of the tagged cell has been singled out and it is indicated by an arrow. 
Comparing the two rows that correspond to the soft-in-normal and the all-normal cases clearly shows 
that the soft cell undergoes deformations that are significantly larger than the deformation of the sur-
rounding normal cells. At the end of the all-normal aging simulations, the system is probably close to 
a metastable state which differs from true equilibrium. In that latter case, the distribution of Ln values 
in the bottom row of Fig. 2 (all-normal simulations) would show a single peak since the minimum free 
energy state of the system has a hexagonal symmetry where all cells have the same perimeter. This equi-
librium state may not be attainable, even with long simulation times.

Motile cells. We now present the results obtained for motile cells simulations that correspond to the 
case where the velocity of each cell is given by Eq. (11) including the self-propulsion term, vn,A. The final 
configurations after aging shown in Fig. 2 are used as initial conditions for the motile cell simulations. 
Figure 3 summarizes the motile cell simulations and is the main result of our work. It clearly shows that 
cell elasticity mismatch plays a significant role on the cells dynamics.

Again, we will focus on the tagged cell. The color scheme is the same as before; the Green curves 
correspond to the soft cancer cell (soft-in-normal case) and the Blue curves correspond to the tagged 
normal cell (all-normal case). The path traced by the soft cancer cell embedded in the soft-in-normal 
simulations largely differs from the path traced by its normal cell counterpart in the all-normal simula-
tions. This is shown in the square boxes in Fig. 3A. In particular, the space explored by the soft cancer 
cell exceeds that of its normal counterparts.

Second, the soft cancer cell undergoes very large deformations (see the time evolution of L in Fig. 3A) 
compared to the tagged normal cell at the same packing fraction. More precisely, in the soft-in-normal 

Dimensionless 
parameter γn= λ= R= κ= μ= τ= vA= ξ=

numerical value 0.35 1 7 49 10 1 104 10−2 1.5 ×  103

Cell type cancer normal all

Table 1.  Numerical values used for the dimensionless model parameters. Normal and Cancer cells only 
differ in the parameter that controls their stiffness, γn.
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case, the perimeter of the soft cell reaches L =  1.5 which is 150% that of an undeformed cell. This con-
trasts the all-normal case where the same cell is normally stiff and its perimeter does not exceed L =  1.1.

Third, the instantaneous velocity of the soft cancer cell contains several spikes that correspond to 
short speed bursts. These are shown in the time evolution of v  in Fig. 3A. A comparison with the evo-
lution of L shows that these bursts occur simultaneously with a rapid decrease of the cell perimeter; as 
the cell rapidly relaxes to a lower energy, more circular, configuration. Bursts are clearly observed in the 
bottom part of Fig. 3A (and the corresponding Supplementary Movie) for the soft-in-normal case at the 
largest packing fraction. Note that, at the two packing fractions considered, the tagged cell does not 
display any speed bursts in the all-normal case. In this case, increasing the packing fraction simply 
reduces the mean instantaneous velocity of the normal cell.

These observations qualitatively reproduce many of the experimental features reported by Lee et al.9 
for confluent monolayers of live cells. Their experimental data is reported in Fig. 3B, with permission. In 
the experiment, 2 bursts where observed in a 16 hours time window. Converted back to real units (see 
Sec. 0.3), the simulation results shown in Fig. 3A corresponds to a ≈ 40 hours time window during which 
6–8 instantaneous velocity spikes (bursts) are observed. Of course, a statistically meaningful compari-
son between the simulation and experimental results cannot be done due to the small number if bursts 
observed experimentally and theoretically. However, Fig. 3A,B show that the simulations at ρ =  0.90 and 
the experiments are strikingly similar. One crucial point of our work is that the only difference between 
the cases considered, at fixed packing fraction, is in the cell elastic properties. Hence, our results support 
the hypothesis of Lee et al.9 that cell elasticity mismatch alone can enhance the motility of the softer cells.

Fig. 3C shows snapshots of the soft-in-normal simulation for ρ =  0.85 (top panels) and ρ =  0.90 (bot-
tom panels). The snapshots are reported at times labeled by the marks i, ii and iii in Fig.  3A, which 
respectively corresponds to a time before the soft cancer cell undergoes a speed burst, after the speed 
burst and at a later time when the soft cell is largely deformed for the ρ =  0.90 case. Note that, at any 
time shown for the lowest packing fraction snapshots, the soft cell does is not largely deformed and many 
“empty spaces” are seen in the simulation box.

To further investigate the mechanism that leads to bursty migration, we used the soft-in-normal sim-
ulation at the largest packing fraction to generate supplementary movies that show the soft cancer cell, 
its nearest neighbors and their respective instantaneous velocities. Figure 3D reports three frames; before, 
during and after the speed burst that occurs right after the time marked by iii in Fig. 3A. The Black arrow 
in Fig.  3D shows the instantaneous velocity of the cells. It turns Red when the velocity magnitude of 
the soft cancer cell is larger than the magnitude of the active part alone, which is the speed the soft cell 
would have if it was isolated. Further, the figure shows that the increase in velocity is in part due to the 
fact that two neighboring cells effectively pinch the rear part of the cell, which is opposite to its velocity, 
and thereby increase its forward motion. In fact, the two rear-end cells undergo a T1 topological swap; a 
processes which has been observed in cell rearrangement in tissues37 and in the relaxation of topological 
defects in 2D38.

Figure 2. Summary of the aging simulations. The results of the four aging simulations are shown as 
groups of three panels. The left panel in a group shows the monolayer configuration after aging. The tagged 
cell is filled in Green (Blue) when it is a soft cancer (normal) cell. All other cells are normal and their 
boundaries are shown in Blue. The middle panel shows the displacement of each cell relative to its initial 
position. The right panel shows the distribution of the cell perimeter, Ln (see Eq. (3)), after aging. The 
arrow points toward the tagged cell. The left and right groups of three panels respectively correspond to 
the packing fractions ρ =  0.85 & 0.9 and the top and bottom groups respectively correspond to the soft-in-
normal and all-normal cases.
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We next analyze in more details the behavior of the tagged cell for the simulations where the effect 
of the elasticity mismatch is more apparent (for ρ =  0.90). Simulations at that packing fraction were run 
for a much longer time (t =  2.0 ×  106 which corresponds to ≈ 200 hours in real time). These longer runs 
are used to perform a meaningful statistical analysis of the instantaneous velocity of the tagged cell. 
Figure 3E illustrates the correlation between cell perimeter change and instantaneous velocity. The long 
simulations are used to bin the perimeter change Δ L (between succesive times) according to the instan-
taneous velocity of the cell, v . The figure reports ΔL , the average perimeter change in each velocity 
bin. Hence, negative Δ L corresponds to a cell that relaxed by decreasing its perimeter. The tagged normal 
cell (Blue circles) does not achieve the largest velocities of the tagged cancer cell (Green triangles). More 

Figure 3. Summary of motile cells simulations. (A) The perimeter and instantaneous velocity, L and v , of 
the tagged cell as a function of dimensionless time. Green corresponds to the soft cancer cell (soft-in-normal 
simulations) and Blue corresponds to its normal counterpart (all-normal simulations). The top (bottom) two 
panels report the simulation results obtained with ρ =  0.85(0.90). The total simulation time corresponds to 
≈ 40 hours when converted back in real time (see the Methods section). The two boxes show the trajectories 
of the tagged cells at the two packing fractions. (B) Experimental results reproduced with permission from 
Ref. 9 for a monolayer that comprises very few cancer cells and mostly normal cells. The value of L is 
calculated from the deformation of the cell nucleus and the total observation time is 16 hours. (C) Snapshots 
of the motile soft-in-normal monolayer simulations at ρ =  0.85 (top) and ρ =  0.90 (bottom) that correspond 
to the times indicated by the labels i, ii and iii in part A. (D) Three snapshots of the soft-in-normal 
simulation at ρ =  0.90 are shown at times just before, during, and right after the speed burst right after the 
label iii in part A. Only the soft cancer cell (filled in Green) and its neighbors (Blue boundaries) are shown. 
The length of the Black arrow on top of each cell is proportional to its instantaneous velocity. When 
collective effects between cells induce a speed burst to the soft cancer cell (i.e., when its instantaneous 
velocity is larger than the active part), the arrow is shown in Red. (E) Average change in cell perimeter, Δ L, 
between succesive time steps binned according to the cell instantaneous velocity, v . Note that part A and D 
have accompanying supplementary movies.
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importantly, the largest velocities of the cancer cell correlate with a large decrease in cell perimeter, par-
ticularly at > .v 0 01, which is the magnitude of the self-propulsion speed.

Further, the long runs were used to calculate probability distributions for the x and y-components of 
the instantaneous velocity of the tagged cell in the soft-in-normal and all-normal cases. The results are 
shown in Fig. 4. The first panel of Fig. 4 shows the probability distribution (scaled such that a Gaussian 
distribution is a straight line) of the active part of the cell velocity which is the velocity the cell would 
have if it was alone on the substrate. The curve is the exact result,

π
( ) =

−
,

( )

P v dv
v

dv1

1 4

iso i

A
v
v

i
i

A

2

2

where i =  x or y and the marks are the numerical results. Note that the distribution of the active part of 
the velocity is extremely non-Gaussian. However, the second panel in Fig. 4 shows that, for the all-normal 
case, the self-averaging induced by the interactions with the other cells transform the instantaneous 
velocity distribution into a Gaussian one, PG(vi) where the standard deviation of the distribution, σG, is 
a fitting parameter.

On the other hand, the last panel in Fig. 4 shows that a Gaussian fit (Black line) cannot describe the 
instantaneous velocity distribution of the soft cancer cell in the soft-in-normal case (see the last panel in 
Fig. 4). Note that the simulation data has long tails (i.e., higher probability for large velocities) that are 
not accounted for by the Gaussian fit. We propose that the soft cancer cell is in one of two regimes. In the 
first and most probable one, it behaves like a normal cell and its velocity is described by a Gaussian. In 
the other, the cell undergoes bursty migration and the self-propulsion adds to the Gaussian contribution 
of the velocity. Mathematically, this is described by

∫ζ ζ( ) = ( − ) ( ) + ′ ( ′) ( − ′),
( )−

P v P v dv P v P v v1
5i G i

v

v
i iso i G i i2

A

A

where ζ represents the fraction of time that the soft cancer cell is bursty. The right panel of Fig. 4 shows 
the fit of the data with this 2-regimes model (Red curve) where the standard deviation of PG was obtained 
from the all-normal simulations and hence, ζ is the only fitting parameter which we found to be ζ =  0.038. 
This implies that the soft cell is in the bursty regime ≈ 3–4% of the time, in qualitative agreement with 
Fig.  3A. Note the point near vi ≈  0.015 in Fig.  3B is the only one that is significantly outside of the 
Gaussian distribution. In fact, this point is due to a single speed burst observed for the tagged normal cell 
at ρ =  0.9. In comparison, the soft tagged cell at the same packing fraction shows about 40 speed bursts.

Of course, other distributions with a longer than Gaussian tail can fit the soft-in-normal data in Fig. 4. 
In particular, the Student-t distribution39 with β =  7 degrees of freedom gives an equally good fit. The 
Student-t distribution arises when β +  1 samples are drawn from a Gaussian distribution of unknown 
variance. We find it intriguing that the number of degrees of freedom, β =  7, that fits our data is very 
close to the mean coordination number of each cell. We think that this may be due to the fact that the 

Figure 4. Velocity distribution of a tagged cell. The probability distribution of the x or y component of the 
instantaneous velocity of the tagged cell when the cell (soft or normal) is isolated on the substrate (left 
panel), in the all-normal case (middle panel) and in the soft-in-normal case (right panel). The distribution 
functions have been scaled such that a Gaussian distribution gives a straight line. For the Gaussian case, 
( ) = − ( )/ ( )G v P v Plog[ 0 ]i G i G . The markers show the simulation data. In the isolated case, the Black 

curve is the exact velocity distribution that arises from the active part of the velocity alone (see Eq. (4)). In 
the all-normal case, the velocity distribution of the tagged cell is well described by a Gaussian fit (Black line) 
with standard deviation σG =  0.0029. In the soft-in-normal case, the velocity distribution of the soft cancer 
cell is not well described by a Gaussian fit (Black line) with σG =  0.0028. It is better described by the 
distribution proposed in the main text, Eq. (5), which is shown here as the Red curve.
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soft cell in the soft-in-normal case only “feels” its immediate nearest neighbors whereas in the all-normal 
case, all cells feel each other.

The motilities of the tagged cells can be extracted from their trajectories. More precisely, the 
mean-squared displacement (see Eq. (14)) of any tagged cell can be used to calculate an effective diffu-
sion coefficient. Figure 5 shows the mean-squared displacement of the tagged cell for the long simula-
tions at ρ =  0.90 which was computed using a time averaging procedure,

∫ τ τ τ( ) − ( ) = ( + ) − ( ) , ( )


t d tx x 0 1 x x 6n n n n

2

0

2

where + t must be smaller than the total simulation time ( + < × t 2 106). The curves in Fig. 5 are 
smooth, which is due to the fact that the average is performed over a long time interval. The effective 
diffusion coefficients that are reported in the figure are obtained from the long-time part of the curves 
in Fig. 5. The tagged soft cancer cell in the soft-in-normal simulation has the larger diffusion coefficient, 
which is about a factor of 1.5 larger than the one of the tagged normal cell in the all-normal simulation. 
Also note that the inset of Fig. 5 compares the analytical prediction of the mean squared-displacement 
given by Eq. (14) with the one calculated from the trajectory that the tagged cell would have if it was 
alone on the substrate for the same simulation time. The analytical result gives Deff (iso-
lated) =  5.6 ×  10−14 m2/s which is about one order of magnitude larger than the effective diffusion coef-
ficient for the tagged soft cancer cell or normal cell in a dense monolayer. The comparison with the 
numerical calculation shows that the latter gives an effective diffusion coefficient which is about 10% 
smaller than the analytical prediction. This discrepancy is due to the finite sampling of reorientation 
events. Note that it is particularly difficult to sample the tail of the exponential distribution that governs 
the reorientation statistics (see. Eq. (13)). This issue probably also affects the calculated diffusion coeffi-
cients for the tagged cells in monolayers reported in Fig. 5 which may in fact have slightly larger values 
if the simulations were run much longer. However, the important point here is the relative values of Deff 
for the soft-in-normal and all-normal cases.

Discussion
In this paper, we proposed a multiple scale model to describe cell dynamics in monolayers with any 
degree of confluence. Results obtained with the model focused on a nearly confluent monolayer compris-
ing of cancer cells and normal cells. Our main goal was to assess the role of cell elasticity mismatch on 
the migration potential of the cells (i.e., the metastatic potential of the cancer cells), in light of the recent 
experimental studies of Lee et al.9 who observed that human breast carcinoma cells (MDA-MB-231) 
embedded in a monolayer of mostly normal human breast epithelial cells (MCF10A) displayed an 
increased motility in comparison to the case where they are alone on the substrate. This larger migration 
potential was partly attributed to the fact that the cancer cells, whose Young modulus is about 3 times 
smaller compared to the normal cells, can deform their shape easily and squeeze between neighboring 

Figure 5. Motility of motile cells in monolayers. The mean-squared displacement of the tagged soft cancer 
in the soft-in-normal simulation (Green curve) and of the normal tagged cell in the all-normal simulation 
(Blue curve) are reported at the largest packing fraction (ρ =  0.90). The effective diffusion coefficients that 
characterize the migration potential of the tagged cell were calculated from the long-time limit of the mean-
square displacement and converted back to real units. The inset shows the mean-squared displacement 
calculated from the simulation of a cell isolated on the substrate (full curve) and compares it with the 
analytical prediction (dashed curve) given by Eq. (14).
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normal cells leading to bursty migration. The simulation results obtained with the model treated cancer 
and normal cells identically, except for their elastic constant. This allowed us to quantify the role of 
elasticity mismatch alone. The most important results that we obtained are: 1) Our minimum energy 
model shows that the motility (quantified by an effective diffusion coefficient) of a soft cancer cell in a 
monolayer of normal cells can be 50% larger (see Fig. 5) as the one of a normal cell in the monolayer. 2) 
The trajectory of the soft cell in a layer of normal cells is decorated by speed bursts, where the velocity 
significantly deviates from its average value, in qualitative agreement with the experimental observations. 
3) The velocity distribution of the soft cell in a layer of normal cells shows longer tails that are inconsist-
ent with a Gaussian distribution. Of course, in our simulations, elasticity mismatch is solely responsible 
for these effects.

Several speed bursts are shown in the bottom two panels of Fig. 3A (Green curve). We have further 
observed that most bursts are induced by a T1 topological swap where two normal cells, initially sepa-
rated by the cancer cell, move toward each other and connect by pinching the rear-end of the cancer cell. 
This process gives a net push to the cancer cell (see Fig. 3D and the corresponding Supplementary Movie) 
which rapidly relaxes to a more circular shape. We observed 6–8 bursts in the soft-in-normal simulation 
at the highest packing fraction (ρ =  0.90) over a time scale that correspond to ≈ 40 hours in real time. 
Lee et al.9 reported 2 bursts over an observation period of 16 hours (see Fig. 3B). Of course, the small 
number of bursts prevents us to compare the frequency/amplitude of our bursts with the experimental 
ones in a statistically meaningful way. Nevertheless, the qualitative agreement between the experiments 
and our simulations at ρ =  0.90 is striking. Moreover, our simulations allows us to quantify the correla-
tion between the instantaneous velocity of the tagged cell and the instantaneous change in cell perimeter 
(see Fig. 3E). A calculation shown in Sec. S6 of the Supplementary Information further shows that most 
bursts can be described as short events were the tagged cell moves with the velocity it would have if it 
was alone on the substrate plus an extra contribution that arises from the cell displacement due to the 
rapid cell shape change (i.e., when a highly deformed tagged cell rapidly relaxes to a more circular shape).

To some degree, our results are sensitive on the choices of the model parameters. In particular, for the 
lowest packing fraction considered, the soft cancer cell does not show clean speed bursts. This observa-
tion seems to suggest that confluence is required for bursty migration. There is much more empty space 
between cells in the ρ =  0.85 simulations compared to the ρ =  0.90 (compare the top and bottom rows 
of Fig. 3C and the Supplementary Movies). Further note that ρ does not necessarily correspond to the 
cell packing fraction in the real system. The difference arises from the fact that in the model, the cell 
is an elastomer defined by a single elastic constant. On the other hand, the elastic restoring force that 
prevents real cells from migrating through narrow pathways primarily comes from the nucleus since 
the cytoplasm is much softer40. Future studies will be performed to quantify the role of packing fraction 
more precisely. If our results are sensitive to the choice of model parameters, they should not be sensitive 
to the choice of the model. In fact, we believe that our results could have been obtained using a Cell 
Potts description25.

One important difference between our work and the one of Lee et al.9 is the following. Recall that our 
goal was to isolate the role of cell elasticity. Hence, we set the active, self-propulsion, part of the velocity 
of all cells to be the same. However, in the experiment, that does not seem to be the case. In fact, the 
cancer cell appears to move much less by itself than the normal cells9. Hence, when it is embedded in a 
layer of normal cells, its motility may primarily be increased because it gets pushed around by the other, 
more motile cells. In our simulations, the strength of the self-propulsion of the cancer and normal cells 
is identical. Hence, when any type of cells are brought together in a dense monolayer, to first order, their 
motility decreases since the cells act as obstacles to each other. In the future, we want to study the effect 
of active velocity mismatch to understand how a soft cell that is embedded in a layer of normal cells 
(with a different active velocity magnitude) could cross over from the case where it is more (less) motile 
in the monolayer in comparison to the case where it is alone on the substrate.

Another difference between our simulation studies and the experiments of Lee et al. is that cell-cell 
adhesion and more importantly, how it varies with cell type, was neglected. In fact, the experiment 
showed that the magnitude of the bursts is largest when normal cells adhere with each other, but not 
with the soft cancer cell9. Cell-cell adhesion can be included in our phase field monolayer model, but 
this goes beyond the objective of the current work. We are planning to include it in future extensions 
of the model. Note that in real monolayers, the integrity of a cluster of cells is maintained through cell 
adhesion. In our model, the cells remain clustered due to the boundary conditions. Hence, our model 
includes adhesion in its simplest form.

One important advantage of the phase-field description for monolayers of motile cells that we propose 
is that it scales favorably with the number of fields one may want to add to each cells to include details 
that we left over for simplicity. A natural example are fields that describe the density of actin and myosin 
in the cytoplasm or focal adhesions on the cell surface which can generate protrusive forces, contractile 
forces and strain in the substrate41,42. Such cell internal degrees of freedom have been included in recent 
2D models of a single migrating cell28,29,31. Including new fields that describe such cell internal processes 
does not increase the computational effort significantly, as long as they do not require using a finer mesh. 
Generalizing our model to 3D may also help to understand why motile cells appear to migrate using 
drastically different mechanisms on 2D substrates compared to the case when they are embedded inside 
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a 3D collagen matrix35,44,45. Phase-field models can be extended from 2D to 3D, but the concomitant 
increase in numerical cost usually requires the use of more sophisticated numerical methods.

Methods
Model free energy. We treat each cell as a 2D soft body for which the equilibrium shape minimizes 
the following free-energy,
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where it is understood that, by φn, we mean φn(x,y; t). The form of Eq. (7) guarantees that the preferred 
values for the cell fields are φn =  0 and 1. The length over which φn varies from 0 to 1, λ, corresponds 
to the width of the boundary of any cell. In the model, non-interacting cells tend to be circular with a 
radius R. Energetic costs associated to changes in cell area are determined by μn. We next show that γn 
is the parameter that controls the elasticity of the cells.

We calculated the energy cost predicted by the model and that results from a sinusoidal deformation 
of the cell boundary (see Sec. S1 of the Supplementary Information). For a deformation wavelength equal 
to 2πR/k, where k is a wavenumber, and an amplitude equal to ε, the energetic cost is

πγ ε
λ

∆ =
( − )

, ( )
k

R
1

8def
n

2 2

where periodicity imposes that k is an integer larger than 1 and where we assume that ε/R ≪  1. For 
identical cell sizes, interface widths and deformations, Δ def  depends on cell type only through γn. 
Hence, γn is the parameter that controls the cell stiffness. Note that the energy cost due to shape defor-
mation can scale with the wavenumber, k, with a different power law if the curvature energy is taken into 
account46 (in which case it scales like k4) or if the cell interior is treated as an elastic medium47 (in which 
case it scales like k ). Here, these contributions are neglected since our focus is not on the details of the 
underlying restoring force.

We now comment on the last term in Eq. (7) which constrains the area of the cell. In the simula-
tions, μn will be chosen to be large enough so that the cells will prefer to deform when they are brought 
together rather than shrink. It is not crucial that the cell area be exactly conserved in our description 
of cell monolayers. In reality, it is the cell volume which should be conserved for cells that neither grow 
nor divide. In our 2D model, the cell area can be interpreted as the area of a 3D cell “projected” onto the 
substrate. This projected area can deviate from its preferred value as long as the cell thickness above the 
substrate is simultaneously adjusted such that the overall cell volume remains constant25,26.

The free energy given by Eq. (7) describes each cells individually. The total free energy of the mon-
olayer is,

= + , ( )   9int0
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describes the interaction between cells that prevents them from overlapping. Both φn and φm are non-zero 
in a region where cells n and m overlap and the resulting energy cost is controlled by κ (like μn, κ will be 
chosen sufficiently large so that cells will deform when they are brought together rather than overlap). In 
terms of φ, Eq. (10) is the lowest order term that gives the desired repulsion between cells. More details 
on the model parameters and their meaning are given in the Supplementary Information.

Dynamics. The motion of each cell within the monolayer is described by Eq. (1). The time-dependent 
cell velocity, vn, is chosen to be spatially uniform for simplicity. Our model fall into the category of 
“model A” in the classification scheme of Hohenberg and Halperin48 for dynamical critical phenomena, 
but with an extra convective term. The right-hand-side of Eq. (1) determines how rapidly a deformed 
cell returns to its circular, equilibrium shape. Such a relaxation time scale can be determined from cell 
viscosity measurements (for a recent example, see Ref. 36) or can be estimated by equating the shape 
relaxation rate with the viscous dissipation of the water inside the cell (see Ref. 49).

The velocity of each cell is divided in two parts,

= + , ( ), ,v v v 11n n I n A
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where vn,I and vn,A are the inactive and active (self-propulsion) parts of the velocity of cell n, respectively. 
The inactive part is due to forces exerted on cell n by the other cells while the self-propulsion part is 
due to internal processes that require energy consumption. The constitutive equations for vn,I can be 
determined from thermodynamic principles. With vn,A =  0, the free energy of the system, which is an 
assembly of dead deformable droplets, should be a strictly decreasing function of time. In Sec. S2 of the 
Supplementary Information, we use this condition to show that,
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φ φ φ= (∇ ) ,
( )
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dx dyv 60
12n I n n

m n
m2
2

where ξ is interpreted as the friction between the cells, the substrate and the surrounding water. Together 
with Eq. (1), the last equation guarantees that the monolayer will tend toward thermodynamic equilib-
rium in the absence of active forces. At this point the cells do not flow, vn,I =  0, and their boundaries do 
not move, δ δφ/ = 0n .

Of course, live cells never reach thermodynamic equilibrium. This is taken into account by ,vn A which 
is chosen such that the instantaneous velocity of isolated cells has a constant magnitude; =, ,vvn A n A. 
On the other hand, the time dependence of the cell motion is due to the orientation of ,vn A which we 
describe as a random process where the time interval between reorientation events, t r, follows an expo-
nential distribution given by,

τ
( ) = , ( )

τ− /P t dt e dt1
13r r

t
r

r

where τ is the average time between two reorientations. Hence, in our model, an isolated cell moves in a 
straight line with constant speed between two reorientation events. Eq. (13) can also be used to calculate 
the mean-squared displacement of cell n when it is isolated on the substrate,

τ τ( ) − ( ) = − ( − ) , ( )τ− /t v t ex x 0 2 [ 1 ] 14n n A
t2 2

where xn(t) is the center of cell n and …  implies an average over an ensemble of isolated cell trajectories 
or equivalently, a longer time average over a single isolated cell trajectory as given by Eq. (6). The long 
time behavior τ( )t  of the mean-squared displacement is linear in time and hence, isolated cells can 
be characterized by an “effective” diffusion coefficient in two dimensions, τ= /D v 2eff A

2 . Rather than 
depending on temperature, the effective diffusion coefficient depends on internal processes that require 
energy consumption and that determine vA and τ.

C. Model Parameters and Numerical Considerations. All model parameters are chosen to be 
identical for both types of cells with the exception of γn. The simulation will be performed by propagating 
Eq. (1) numerically on a uniform mesh. Table 1 summarizes the model parameters used in the simula-
tions. As stated in the Results section, the parameters are obtained from the experiments or by invoking 
physical approximations. Additional details are given in Sec. S4.

The determination of ξ requires further comments. Consider two cells that move toward each other 
in an “head on collision” manner so that they have a constant and opposite active force parallel to their 
separation vector, see Fig.  6. As the two cells start interacting/touching, a) they deform and b) they 
decelerate. Hence, the cells will reach a conformation where the force term due to interactions with the 
other cells exactly cancels the active force so that vI +  vA =  0. For increasing ξ, cells need to be increas-
ingly deformed for the interaction forces to decrease the velocities. Figure 6 reports the total velocity of 
one cell for the head-on collision just described with ξ = 1.5 ×  103 (as listed in Table 1). The long-time 
maximum deformation of the cells is in qualitative agreement with the largest cell deformation observed 
in monolayers. Note that the two cells end up in a metastable configuration from which they can escape 
at long time due to numerical error build-up.

Fig. 6 has an accompanying supplementary movie.
Simulations of the monolayer model are performed in a square simulation box of area AB =  Nmesh ×  Nmesh 

with Nmesh the number of mesh points along one axis of the box. Eq. (1) is integrated on a mesh, peri-
odic boundary conditions are used and additional details of the numerical procedure are given in the 
Supplementary Information.

Importantly, our simulation results can be converted back to real units using the following simple 
arguments. The cells we are modeling have a radius of the order of 10 μm and our cells have a radius of 
49 mesh points. Hence, the distance between mesh points in our simulations is ≈ 0.2 μm. In the experi-
ment, the average instantaneous velocity of normal cells in a confluent monolayer of mostly normal cells 
is ≈ 10 μm/hour (see Fig. 3B). Alone on the substrate, it should be larger since the motion of any given 
cell is not blocked by the others. Hence, we assume that vA =  20 μm/hour which means that t =  1 in our 
simulations is equivalent to 0.36 s in real time.
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