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Atom–Photon Coupling from 
Nitrogen-vacancy Centres 
Embedded in Tellurite 
Microspheres
Yinlan Ruan1, Brant C. Gibson2, Desmond W. M. Lau2, Andrew D. Greentree2, Hong Ji1, 
Heike Ebendorff-Heidepriem1, Brett C. Johnson3, Takeshi Ohshima4 & Tanya M. Monro1,5

We have developed a technique for creating high quality tellurite microspheres with embedded 
nanodiamonds (NDs) containing nitrogen-vacancy (NV) centres. This hybrid method allows 
fluorescence of the NVs in the NDs to be directly, rather than evanescently, coupled to the 
whispering gallery modes of the tellurite microspheres at room temperature. As a demonstration 
of its sensing potential, shifting of the resonance peaks is also demonstrated by coating a sphere 
surface with a liquid layer. This new approach is a robust way of creating cavities for use in quantum 
and sensing applications.

As quantum information science seeks to move from laboratory-based proof of concept experiments 
into practical implementations, there is a need for robust and scalable quantum platforms1. The 
negatively-charged nitrogen-vacancy (NV) centre, consisting of a substitutionally nitrogen atom and an 
adjacent vacancy, shows great promise for quantum applications as it is robust, room-temperature active2, 
and relatively cheap when it is in the diamond (ND) form. However the integration of the NDs contain-
ing NV centres with cavity quantum electro-dynamic structures is still challenging3. Here we demon-
strate a novel, robust and reproducible method to integrate NDs containing NV centres with a cavity 
by embedding NDs underneath the surface of the microspheres made of high refractive index tellurite 
glasses. We show the coupling of the emission from ensembles of NVs in the NDs to the Whispering 
gallery modes (WGMs) of the microspheres at room temperature. As a preliminary demonstration of 
the sensing potential, shifting of the resonance peaks is demonstrated by coating a sphere surface with 
a high refractive index liquid layer.

Since the report of single NV spin initialisation and readout2, the NV centre has become the most 
important solid-state, room-temperature compatible quantum platform. The ground state of the NV 
centre is an electronic spin triplet with a 2.88-GHz zero-field splitting between the magnetic sublevels4. 
With long coherence time, fast microwave manipulation, and optical preparation and detection, the NV 
electronic spin can be used to store quantum information and realize logic gates5. Spin dependent fluo-
rescence intensity enables quantum sensing of magnetic6 and electric fields7, temperature8 and quantum 
fluctuations9.

To utilize NVs in quantum applications, efficient and scalable optical coupling between NVs and 
photonic devices including waveguides and cavities is advantageous. Cavities can play several roles in 
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enhancing the operation of a NV-based sensor. They improve light collection, but perhaps more impor-
tantly, as the NV centre emission is extremely broad (> 100 nm), Purcell enhancement can force the NV 
centre to emit in a narrow spectral window10–13, boosting the photon spectral density.

Reports to date of coupling between NVs and a cavity can be divided in two main categories: (i) mon-
olithic all-diamond and (ii) hybrid approaches. All-diamond approaches are based on optical cavities fab-
ricated directly in single crystal diamond substrates3,14. However, it is still challenging to grow and etch 
diamond single crystal thin films12. Hybrid cavities are typically fabricated in non-diamond materials and 
the fluorescence of the NVs is evanescently coupled to the cavities. Examples in planar platforms include 
2D photonic crystal cavities in GaP substrates15,16, GaP microdisks on diamond substrate17, and 1D plas-
monic cavity on silver nanowires18. Three dimensional polymer disk cavities with NDs mixed provided 
a platform for direct coupling of the NV emission into the resonance modes19. WGMs based on free-
standing sphere cavities were also used for this purpose. Coupling between NV centres and silica20–24 or 
polystyrene25 microspheres has been demonstrated. In these hybrid sphere cavities, the NVs were either 
intrinsic to a subwavelength diamond substrate, which was positioned close to the spheres20, or within 
NDs which were coated or placed on the surface of the spheres21,25. In all cases, the emission of the NVs 
was coupled into the sphere cavities through the evanescent field of the WGMs. For the NVs embedded 
inside the subwavelength diamond substrate, the relatively large distance (order of tens of nanometres) 
between the NVs and the spheres resulted in a sub-optimal coupling efficiency20. The NDs placed on the 
surface by coating or nanomanipulation lead to additional scattering loss21,25. A further and even more 
significant drawback of this approach is the lack of mechanical stability of the NDs on the surface of the 
sphere, as the NDs can detach from the sphere, which leads to device failure.

To overcome this issue, we have developed a technique for creating high-Q tellurite microspheres 
with embedded NDs by simply heating the ND coated tellurite fibre tapers. This hybrid method allows 
the fluorescence emission of the NVs to be directly, rather than evanescently, coupled to the modes of 
the tellurite microspheres and creates an easy way to realize a robust cavity by embedding the NDs into 
the microspheres.

Results
Observation of the WGMs in the ND embedded tellurite spheres. The scanning electron micro-
scope (SEM) and scanning confocal images of one of our ND:tellurite spheres are shown in Fig. 1. We 
selected tellurite glasses as a host material for sphere fabrication since they are deformable at relatively 
low temperatures (400–700 °C). This temperature minimizes oxidation of the NDs while heating the 
glasses enabling fabrication of the spheres. Tellurite glasses transmit in the NV excitation and emission 
wavelength range of 500–800 nm, and have a high refractive index (n =  2.0), which better matches the 
refractive index of diamond (n =  2.4) than silica spheres (n =  1.45), and therefore reduces the scattering 
that occurs at the diamond/glass interface with ND:tellurite relative to ND:silica. Our previous work has 
shown coupling of the emission of the NVs into the ND doped tellurite fibres26–28. Here we demonstrate 
that the NV emission can also be directly coupled to the WGMs of the tellurite sphere cavities.

The ND:tellurite spheres were manufactured by dip coating tapered tellurite fibres into a solution 
containing NDs. The NDs were irradiated with a high-energy electron beam to increase their brightness28 
(see Methods). The combined fibre and ND system was heated in a Vytran splicer to embed the NDs 
within the glass. For details, see Methods. Figure 1a shows an SEM image of one of the tellurite spheres 
made by this method.

Under scanning confocal imaging (Fig.  1b), several bright spots were observed on the surface of 
the microsphere. Figure  1c shows the spectrum obtained from the ND identified by the cross-hairs in 
Fig. 1b, showing NV emission with WGM modulation of the spectrum. Figure 1d is a magnified region 
of the spectrum in Fig.  1c. The spectrum was detected using a 1200i grating with 29 pm resolution. 
Figure  1d shows the presence of two competing WGM resonances (azimuthal and latitudinal modes) 
that were both coupled to the NV emission, indicating the sphere had a slightly nonspherical shape. 
The free spectral ranges of the resonances were F1 =  2.8 nm and F2 =  150 pm. We identified F1 with 
azimuthal modes while F2 corresponded to latitudinal modes29. F1 corresponds to a sphere diameter of 
26 μ m, which agrees with the measured value of 28 μ m. F2 can be inferred from F1 by the ellipticity of 
the sphere, using F2 =  F1(a-b)/b, where a and b are the semi-axes of the spheroid29. The inferred ellipticity, 
(a-b)/b, is approximately 5%, which is close to that obtained by measurement of the sphere from its SEM 
images in Fig. 1a (<9%).

A relatively high Q value of 10,400 was achieved for the excited latitudinal resonances, and several 
microspheres with similar Q values were fabricated. Q was determined from the measured spectra by 
Q =  λ /δ λ , where λ  is the central wavelength of the resonance peak and δ λ  is relevant full width half 
maximum of the resonance peak. This Q value is of the same order as those achieved in Er-doped tel-
lurite spheres (Q =  40,000)30. Reducing the surface density of NDs should minimise scattering from the 
ND and hence improve the Q of our microspheres further.

The NV spontaneous emission rate depends on local environment and can be enhanced by cavities. 
The enhancement can be quantified by the Purcell factor3



www.nature.com/scientificreports/

3Scientific RepoRts | 5:11486 | DOi: 10.1038/srep11486

P
n

Q
V

3
4 12

3

π
λ

=











 ( )

where λ  is the wavelength and V is the mode volume. Note that this formula is only valid for an emitter 
located at the maximum of the electric field of the cavity mode with its dipole aligned with the local 
electric field31. In practice, the Purcell factor must be scaled down by E ENV mρ = / , the relative strength 
of the electric field intensity at the NV location(ENV) compared to the mode maximum intensity (Em)31. 
The mode intensity distribution of the spheres can be solved by 2D finite element simulations30. For a 
15 μ m diameter tellurite sphere, our calculations show that the maximum electric field of the fundamen-
tal TM modes is located at the depth of 230 nm from the sphere surface. We can quantify the effect of 
depth on Purcell factor. For a 15 μ m diameter tellurite sphere with a Q factor of 10,000, an NV centre 
just below the surface will have a Purcell factor of 0.43. Whereas, an NV centre at the electric field max-
imum will have a Purcell factor of 1.6. At present, we are unable to provide the exact depth of the NV 
centres. In addition, our microsphere-diamond system was in the bad-emitter regime, which has been 

Figure 1. WGM excitation of one tellurite sphere embedded with NDs. (a) SEM and (b) scanning 
confocal images of a tellurite sphere with 28 μ m diameter, respectively. (c) is the WGM modulated NV 
fluorescence when the spot marked on (b) was excited. (d) is a magnification of part of the spectra from (c), 
showing subpeaks of the main resonances. Also highlighted are the free spectral ranges of the WGM modes 
of F1 =  2.8 nm and F2 =  150 pm.
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explored recently in the context of semiconductor quantum dots in microcavities. In the bad-emitter 
regime, small mode volumes are necessary to show strong atom-photon coupling32.

Q dependence on density of the embedded NDs. In Fig.  2a we show a SEM micrograph of a 
41 μ m diameter ND:tellurite microsphere, with a magnified region shown in Fig. 2b. Comparing these 
images to those of the tapers coated with unembedded NDs (not shown here), we can understand that 
the bright spots in Fig. 2b, for example Regions 3, 4 and 5, are resolved as unembedded NDs. The darker 
regions such as Region 1 arise due to NDs coated by the tellurite glass that is within the sampling depth 
of the SEM (in this case 100 nm for 20 KeV electron beam). Energy-dispersive X-ray spectroscopy (EDX) 
measurements of two regions from Fig. 2b are shown in Fig. 2c. Region 1 shows enhanced carbon signal 
and reduced signals of other glass elements compared to the background (Region 2), confirming the 
presence of the NDs.

Figure 2d–f show magnified surface areas for other three microsphere samples. The coated ND den-
sity (the number of NDs per unit area) on the taper tip prior to melting was determined by counting the 

Figure 2. Q dependence on density of the embedded NDs. (a) SEM image of a tellurite sphere with 41 μ m 
diameter and embedded NDs. (b) Magnified area of the sphere surface indicated by dashed lines. Five regions 
were identified as indicated. Element compositions of Regions 1 and 2 were analysed by EDX, and Regions 3 
to 5 bright spots corresponding to unembedded NDs. Its measured ND surface density was 11/μ m2. (c) EDX 
spectra showing the measured element compositions of region 1 and background region 2 in (b). (d)-(f) SEM 
images of magnified sphere surfaces for three other spheres with measured ND surface densities of 104/μ m2, 
14/μ m2, and 3/μ m2, respectively.
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NDs on the taper surface using their SEM images, and was 104/μ m2, 14/μ m2, and 3/μ m2, respectively. As 
observed from their SEM images (Fig. 2d–f), after microsphere formation, some NDs were completely 
embedded under the surface with some of them only partly embedded. Our results indicate that lower 
ND density leads to a larger ratio of the embedded NDs compared with the total NDs on the sphere sur-
face, and hence microspheres with higher Q. A dependence of Q on ND surface coverage was discovered 
for four spheres. Their Q values were not limited by radiation losses, which are negligible for tellurite 
spheres with diameter larger than 15 μ m. Their ND densities were 0.06/μ m2, 0.2/μ m2 (sphere shown in 
Fig. 1), 5.16/μ m2 and 7.16/μ m2, respectively, with corresponding Q values of 10,000, 10,600, 5,000, and 
7,000 respectively. This indicated a lower ND coating density led to a sphere with higher Q.

Resonance shift with a coated liquid layer. As a preliminary demonstration of the sensing poten-
tial, we also showed that the NV+ WGM resonances could be shifted as shown in Fig.  3. This was 
achieved by applying a thin liquid film of index matching fluid (siloxane and aliphatic/alicyclic hydrocar-
bons with refractive index of 1.4 at 589 nm33) on the surface of a 17 μ m diameter sphere with Q =  6,000 
(linewidth =  110 pm) at λ  ≈  668 nm. Since the sphere diameter is ≈  3 times larger than that of the taper 
region connected to the sphere, and the sphere was suspended in the air during optical characterisation, 
it was necessary to determine the effect of environmental fluctuations on the spectra. Prior to coating, we 
determined that the variation of the resonance peak positions within 20 mins was less than the resolution 
of the spectrometer. After the liquid layer was coated, the WGM spectrum was monitored for one hour 
to observe the peak position shift of the WGMs with time due to liquid evaporating.

Figure 3 shows the monitored resonance spectra after the liquid layer was formed. Noticeably, there 
was an initial drop in the fluorescence spectrum with the addition of the liquid, which can be identified 
with the liquid Q-spoiling the cavity. As the liquid evaporated, the WGM resonances re-established 
themselves at slightly red-shifted values, which relaxed to the original WGM spectrum and increased 
in contrast. These results are consistent with predictions of resonant Mie scattering theory for a fluid 
with refractive index lower than that of the microsphere34. We attribute the non-perfect recovery of the 
spectrum with un-evaporated residue from the index matching fluid.

Discussions
In conclusion, we have demonstrated direct coupling of quantum NV emitters to high-Q high-index 
tellurite glass sphere cavities by embedding NDs underneath the sphere surface and optical excitation. 
These systems have the potential to be used as a robust and relatively simple platform for sensing and 
cavity-QED experiments.

For experiments at room temperature, the highest Purcell enhancement of all the spheres investi-
gated here was calculated to be of 1.6 for a 15 μ m diameter tellurite sphere with a measured Q factor of 
10,000 when we assume the excited NVs located at the point with the maximum excitation electric field. 
Fabrication of tellurite spheres with smaller diameters, lower fractions of the embedded NDs and no 
contaminants should enhance the Purcell factor even further due to reduced mode volume and improved 
quality factors. Compared to other sphere cavities with the NV emission evanescently coupled to the res-
onance modes20–25, our tellurite spheres with NDs embedded have the potential to achieve the maximum 
Purcell factor if the NVs can be placed at the maximum mode electric field. For the same 15 μ m diameter 
tellurite sphere with NDs embedded, the maximum Purcell factor is over 400 times larger than that of 

Figure 3. Monitored spectra as a function of time for a 17 μm diameter sphere coated with the 
liquid layer. The resonance intensity reduced after liquid coating. The intensity gradually increased as the 
resonance peaks shifted back toward to their original positions with time due to the liquid evaporating.
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the same sphere with NDs located on the sphere surface, which could be realized by developing new 
processes to control the embedding depth of the NVs. For the spheres with NVs evanescently coupled 
to the WGM modes, their Purcell factor is always smaller than their maximum values31.

We also demonstrated a preliminary sensing geometry where a microsphere was immersed in index 
matching fluid, and the recovery of the resonances observed as a function of the evaporation of the 
fluid. The thickness of the liquid layers on the sphere surfaces was in the range of 2–12 nm, which was 
determined by observing the resonance shifts caused by these liquid layers.

Our experiments utilised high-brightness irradiation NDs. Whilst this helped signal to noise, it meant 
that we were unable to observe single photon emission from single colour centres. Future work will use 
these techniques to observe emission from isolated colour centres, and also correlate the effect of the 
dipole alignment of the emitter relative to the whispering gallery modes.

Methods
Fabrication of the ND doped tellurite spheres. TZN tellurite glass (TeO2-ZnO-Na2O) was used 
and fabricated in-house using the melt-quench technique in a gold crucible35. It has a glass transition 
temperature of 293 °C. The number of the gold ions dissolved from the crucible was minimised by using 
a melting temperature of 690 °C, which also avoided burning of the NDs28. The glass was extruded into 
a rod, which was drawn into an unstructured fibre with a diameter of 160 μ m. The loss of the undoped 
tellurite fibres was measured to be 0.5 dB/m in the spectral range of 500–800 nm corresponding to the 
spectral range of NV absorption and emission28. The tellurite spheres were fabricated from the tellurite 
fibre using a Vytran splicer with an “Ω ” shape iridium filament30.

We used  2 MeV electron-beam irradiated NDs28, which resulted in higher brightness than as-received 
commercial material. To obtain uniformly dispersed ND solutions for coating, the ND material (NaBond) 
was processed using strong acid reflux and ultrasonication36. The resulting supernatant in ethanol con-
sisted of individual NDs with a mean size of 70 nm, and maximum size of 200 nm measured by dynamic 
light scattering. We used two different ND concentrations (0.1 and 0.5 mg/ml) for our experiments. The 
NDs were deposited onto the taper tips by time-controlled dip coating (less than 30 mins depending on 
the ND concentration). The fibre/taper length coated with the NDs was at least 2 cm.

Experimental characterisation. Microspheres were imaged using SEM equipped with EDX for ele-
ment analysis. The tapers and spheres were coated with a 3 nm thick platinum film for SEM imaging.

Our optical characterization system consisted of an in-house scanning fluorescence confocal micro-
scope using a 100X objective (NA =  0.9) with low background fluorescence for excitation and signal 
collection, and diffraction-limited spatial resolution (~300 nm). A 532 nm diode laser was used for 
excitation of the NV centres within the individual NDs. The excitation power was 7 mW. The fluores-
cence signal was collected through a 532 nm notch filter and > 560 nm long-pass filter and coupled into 
a multimode fibre for spectral analysis by a commercial spectrometer.
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