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Discrimination of Transgenic Rice 
containing the Cry1Ab Protein 
using Terahertz Spectroscopy and 
Chemometrics
Wendao Xu1,*, Lijuan Xie1,*, Zunzhong Ye1, Weilu Gao2, Yang Yao1, Min Chen1, Jianyuan Qin1 
& Yibin Ying1

Spectroscopic techniques combined with chemometrics methods have proven to be effective 
tools for the discrimination of objects with similar properties. In this work, terahertz time-domain 
spectroscopy (THz-TDS) combined with discriminate analysis (DA) and principal component analysis 
(PCA) with derivative pretreatments was performed to differentiate transgenic rice (Hua Hui 1, 
containing the Cry1Ab protein) from its parent (Ming Hui 63). Both rice samples and the Cry1Ab 
protein were ground and pressed into pellets for terahertz (THz) measurements. The resulting time-
domain spectra were transformed into frequency-domain spectra, and then, the transmittances 
of the rice and Cry1Ab protein were calculated. By applying the first derivative of the THz spectra 
in conjunction with the DA model, the discrimination of transgenic from non-transgenic rice 
was possible with accuracies up to 89.4% and 85.0% for the calibration set and validation set, 
respectively. The results indicated that THz spectroscopic techniques and chemometrics methods 
could be new feasible ways to differentiate transgenic rice.

Rice is a very important part of the worldwide agricultural crop family. However, rice producers suffer 
large economic losses due to the damage caused by insects. Although the utilization of chemical pesti-
cides can alleviate the damage to some extent, it increases the cost of production and leaves pesticide 
residues. Planting insect-resistant transgenic plants may be an optional solution. The first transgenic 
plant was formed in 1993 by inserting the Bacillus thuringiensis (Bt) gene. This transgenic plant could 
express the Cry1Ab protein, which protects against pests1. Although genetically modified organisms 
(GMOs) contribute to rice production to a certain extent, the influences of GMOs have not been com-
pletely investigated. Controversies over GMOs occur because of their potential negative effects on human 
beings and other non-target creatures, such as butterflies, wasps and bees2,3. Therefore, the production 
and marketing of Bt crop products are strictly regulated by the European Union, as well as many other 
countries and regions4,5. Therefore, affordable and effective methods for rapid identification of GMOs 
are of crucial importance.

A variety of methods, including the polymerase chain reaction (PCR)6, enzyme-linked immune 
sorbent assay (ELISA)7, biosensors8, microarrays9, chips10, electrophoresis11 and mass spectrometry12, 
have been proven effective in detecting GMOs. However, their shortcomings, such as high costs, large 
time-consumption and difficult operations, cannot be ignored13. As non-destructive tools, spectroscopic 
techniques are fast and easy to operate without complicated sample preparations. Near infrared (NIR), 
visible near infrared (VIS-NIR) and Raman spectroscopic techniques combined with chemometrics 
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methods have shown their success in the rapid identification of GMOs14–18. Although many of the spec-
troscopic techniques mentioned above have been used to identify GMOs, little attention has been paid 
to the use of terahertz (THz) spectroscopy for the detection of GMOs. In 2014, Liu et al.19 showed that 
THz spectroscopy combined with a learning affinity propagation clustering algorithm (ALAP) and sup-
port vector machine (SVM) could be utilized for the identification of different transgenic cottons with 
accuracy of up to 97.794%.

The THz region of the electromagnetic spectrum, lying between millimeter radio waves and far infra-
red light waves (from 0.1 THz to 10 THz), exhibits properties of both sides of the electromagnetic spec-
trum20–22. The absorption of THz waves by molecular and biomolecular systems are dominated by the 
excitation of intramolecular and intermolecular vibrations23. Due to its potential applications, such as 
security detection22,24, medical science detection25, biological detection26,27 and agricultural detection23, 
THz spectroscopy has become one of the most dynamic fields of scientific research. However, until now, 
there have been no studies focusing on transgenic food detection using terahertz spectroscopy with 
chemometrics methods.

In this work, transgenic rice (Hua Hui 1), which contains the Cry1Ab protein, its parent plant (Ming 
Hui 63) and the Cry1Ab protein were selected as subjects for terahertz time-domain spectroscopy 
(THz-TDS) identification of GMOs. Chemometrics methods, such as principal component analysis28 
(PCA), discriminate analysis (DA)17 and partial least squares (PLS) regression29 in conjunction with 
derivative pretreatments, were used to test the performance of THz-TDS in the detection of GMOs.

Results
Spectra analysis. Time-domain spectra of the Cry1Ab protein and rice samples were collected with 
three replicates and each of them was averaged. Figure 1 presents the transmitted THz amplitude spectra, 
obtained through Fourier transform of the time-domain signals.

The inset of Fig. 1a shows the average amplitudes of transgenic rice (red square) and non-transgenic 
rice (black circle) in time domain. We could find that the averages of the amplitudes of transgenic rice 

Figure 1. Transmitted THz amplitude spectra, obtained via Fourier transform of time-domain signals. 
(a) Transmitted THz amplitude of transgenic rice, non-transgenic rice and air. The inset shows their time-
domain signals; (b) average transmittance of transgenic samples and non-transgenic samples.
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and non-transgenic rice overlapped and were hard to differ from each other. Compared with the aver-
age amplitude of air (reference), the average amplitudes of transgenic rice and non-transgenic rice are 
much smaller. This result is due to the rice pellet’s absorbance and refraction, and is also reflected in the 
frequency-domain region, indicating that the frequency-domain amplitude of the rice samples is much 
smaller than that of air. High-frequency THz waves are strongly absorbed by the rice samples, and the 
amplitude decreases to ~0 above 1.2 THz as shown in Fig. 1a.

Two average transmittance curves of rice according to their genotype are shown in Fig.  1b. The 
transmittance curves are lower than 40% and overlap above 0.5 THz. We can see that the average trans-
mittance of the transgenic samples is higher than the non-transgenic samples in the region from 0.2 to 
0.4 THz, with the most obvious difference at 0.4 THz. The peaks from 0.2 to 0.4 THz may be caused by 
the rice starch because the starches from different agro-products show different properties in the THz 
region30. However, the spectra of the transgenic and non-transgenic rice varied (data not shown), and the 
average transmittances of the transgenic ones are not always higher than those of their parents from 0.2 
to 0.4 THz. That is, it is difficult to discriminate transgenic samples from non-transgenic samples based 
on their frequency-domain curves only. Chemometrics methods can highlight the chemical differences 
between samples and reduce the variation due to physical effects. Therefore, chemometrics methods were 
used to build a qualitative model for transgenic rice and its parent’s discrimination.

Since transgenic rice contains Cry1Ab protein, we conducted the experiment for pellets of Cry1Ab 
protein and PE with different mixing ratios. The plots of the time-domain spectra, principle scores and 
difference transmittance of the Cry1Ab protein pellets are shown in Fig. 2. Figure 2a shows that there 
is no significant time delay between the time-domain spectra of PE (with a 0.0% concentration of the 
Cry1Ab protein) and the Cry1Ab pellets. However, the peak amplitude of the average spectrum of the PE 
pellet is higher than that of the Cry1Ab pellet. The peak amplitude generally decreases as the concentra-
tion level increases. However, the peak amplitude of Cry1Ab pellet with a 1% concentration is lower than 
that of the Cry1Ab pellets with 2% and 5% concentrations. This result may be due to the non-uniform 
distribution of the Cry1Ab protein in the Cry1Ab protein pellet and the PE complex.

The three-dimensional (3D) principal component score plot of the transmittance spectra of the 
Cry1Ab pellets is shown in Fig. 2b. The first three principal components (PCs) contain the most spectral 
variations 97.870% (93.396%, 2.654%, 1.821% for PC1, PC2, PC3, respectively). Based on this figure, the 
samples are clearly divided into six different groups according to their Cry1Ab contents. The PC1 value 
for the PE pellets is the biggest. In addition, the PC1 value generally decreases with an increase in the 
Cry1Ab protein content. Figure 2b shows the discriminating ability of PCA and indicates that transmit-
tances of the Cry1Ab pellets could be differentiated based on the concentration of the Cry1Ab protein. 
This agrees with Xie’s result17.

To increase the difference between the Cry1Ab pellet samples, the difference transmittance method is 
used and the results are shown in Fig. 2c. The difference transmittance is defined as

∆ = − ( )( %) ( )T T T 10 sample

where T(0%) is the transmittance of the PE pellet and T(sample) is the transmittance of a Cry1Ab pellet 
sample. Strong peaks at 1.20, 1.40, 1.70, 2.05 and 2.20 THz appeared, as shown in the difference transmit-
tance spectra in Fig. 3c. Because L-glutamic acid shows absorption peaks at 1.20 and 2.05 THz, L-cysteine 
shows absorption peaks at 1.40 and 1.70 THz, and L-histidine shows an absorption peak at 2.20 THz27, 
these peaks may be assigned to amino acids. Because the Cry1Ab protein is mainly composed of different 
types of amino acids, these characteristic peaks of the Cry1Ab protein may be caused by its amino acids. 
These spectra overlapped each other, and no clear correlation between the difference transmittance and 
the concentration was shown, except for the 1.30–1.60 THz and 1.75–2.00 THz bands. The inset of Fig. 2c 
shows the transmittance spectra of the Cry1Ab pellet samples in the range of 1.75–2.00 THz. In the 
region of 1.75–2.00 THz, the waveforms of the difference transmittance spectra could be distinguished 
from each other, and the amplitude increased with the concentration of the Cry1Ab protein. That is, the 
difference transmittance shape changed with the Cry1Ab protein concentration and the PE mixing ratio 
and could be separated in the 1.30–1.60 THz and 1.75–2.00 THz bands.

PLS analysis of Cry1Ab pellets. Multiple regression methods, such as PLS, have been successfully 
applied to the quantitative analysis of THz spectra and allow for the correlation of the THz spectra 
with the concentration31,32. In our study, 0.1–2.6 THz was chosen to build the calibration models using 
the PLS algorithms and validated by cross-validation. The correlation coefficients (r) of the calibration 
and cross validation (rc and rcv), the root-mean-squared errors of the calibration set (RMSEC) and the 
root-mean-squared errors of the cross validation (RMSECV) were used to assess the models. First and 
second derivative methods were the pretreatment methods. The results are shown in Table  1. Table  1 
shows that the correlation coefficient rc of the raw spectra is 0.9696. The use of the derivative process 
could remove an additive baseline, correcting for baseline shifts18. Using derivative pretreatment could 
decrease the noise and may produce a better result. This table demonstrates that the best model with high 
rc (0.9725) and rcv (0.8926) is obtained from spectra using the first derivative pretreatment. When using 
spectra pretreated with the second derivative method, the correlation coefficients are good with rc equal 
to 0.9715 and rcv equal to 0.8912. Considering that a good model should have low RMSEC and RMSECV 
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values33, the modeling result using the first derivative obtained the lowest RMSEC (0.83%) and RMSECV 
(1.61%) values and is better than the other two algorithms. The result showed that different concentra-
tion of Cry1Ab protein could be differed from each other with the lowest concentration reaching to 1%. 
However, the amount of Cry1Ab protein in transgenic rice is much less than 1%. In our study, chemo-
metrics methods were used to highlight the chemical differences between transgenic rice and its parent.

Figure 2. Results from the Cry1Ab pellets with different concentrations. (a) THz time-domain waveforms 
of the Cry1Ab pellets with different concentrations; (b) three-dimensional score plot of the first three 
principle components for the Cry1Ab pellets with different concentrations; (c) the difference transmittance 
of the Cry1Ab pellets with different concentrations.
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Spectral range selection. All of the transmittance spectra of the rice samples were analyzed using 
the DA method (linear discriminant analysis). To obtain the best spectral range for calibration, spectrum 
range selection is needed. Because the frequency amplitudes of the rice samples were ~0 above 1.2 THz, 
the waveband above 1.2 THz was not chosen to build a model. In this study, the discrimination accura-
cies of the DA model were calculated from the spectral range starting at 0.1 THz and ending between 
0.2 and 1.2 THz with an interval of 0.1 THz because the transmittances of the samples decrease to 0 
above 1.2 THz. All of the spectra were analyzed without any data pretreatments. The results are shown 
in Table 2.

Table  2 indicates the highest discrimination accuracy of 85.3% in the regions of 0.1–0.6 THz, 0.1–
1.0 THz, 0.1–1.1 THz and 0.1–1.2 THz. In Fig. 1b, the transmitted THz amplitude spectra of the trans-
genic and non-transgenic samples overlap above 0.6 THz. Because the analysis based on the region from 
0.1 to 0.6 THz shows the best accuracy with the least spectra data, it is selected for the DA analy-
sis. Compared with the best accuracy in Table  2 (85.3%), PCR6, ELISA7, biosensor8, electrophoresis11 
and mass spectrometry12 methods could achieve better detection results. However, they generally need 
high cost and professional operators. Moreover, spectroscopic techniques are fast and easy to operate. 
Therefore, we built calibration and validation models using terahertz spectroscopy to search for a fast 
and easy method and hope that it can be used for large numbers of samples.

Figure 3. Three-dimensional score plot of the first three principle components for the transgenic and 
non-transgenic rice samples. 

Data 
pretreatment rc rcv

RMSEC 
(%)

RMSECV 
(%)

no 0.9696 0.8824 0.87 1.73

1st derivative 0.9725 0.8926 0.83 1.61

2st derivative 0.9715 0.8912 0.84 1.63

Table 1.  The partial least square results of the Cry1Ab pellets.

Range 
(THz) Accuracy (%)

Range 
(THz) Accuracy (%)

0.1–0.2 72.4 0.1–0.8 84.0

0.1–0.3 80.4 0.1–0.9 84.7

0.1–0.4 77.3 0.1–1.0 85.3

0.1–0.5 83.4 0.1–1.1 85.3

0.1–0.6 85.3 0.1–1.2 85.3

0.1–0.7 84.0

Table 2.  The statistic results of the discriminating rice samples using discriminate analysis at different 
bands.
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PCA was applied to all of the transgenic and non-transgenic sample spectra to determine more about 
the discrimination trend. According to the results of the range selection (Table 2), only the range from 
0.1 to 0.6 THz was used for analysis. Figure 3 shows the 3D principal component score plot of the first 
three score vectors. The initial three factors, which were derived from the first derivative spectra and 
account for most (97.561%) of the spectral variations (94.055%, 2.535%, and 0.971% for the first three 
principal components, PC1, PC2, and PC3, respectively), were used to make the differences more clear. 
Based on this figure, the samples cannot be clearly divided into two groups due to the overlap of some 
samples. Figure  3 also shows that the transgenic samples and their parents have positive PC2 scores 
with few exceptions (three non-transgenic samples and one transgenic sample). Compared with the 
non-transgenic samples, more transgenic samples had positive PC 1 and PC 3 scores. However, it is 
hard to find significant clustering trends in Fig.  3. PCA fits a subspace with respect to the optimized 
maximum variance of the data structure17. Therefore, discriminant analysis was applied to improve the 
separation of the groups.

DA analysis. DA was performed on the first 10 PCs because the first 10 PCs contain more than 99.5% 
of the variation in the raw data. Table 3 shows the results of the DA model using the raw THz spectra 
and the spectra with different pretreatments (first derivative and second derivative).

The results indicate that THz spectroscopy shows good potential for the discrimination of rice with 
different genotypes in the region from 0.1 to 0.6 THz. The accuracies of the DA calibration model and 
validation model reach 85.4% and 85.0%, respectively. Compared with the discrimination result from the 
model using the raw spectra, the one using the spectra with the first derivative pretreatment achieves a 
better discrimination accuracy than the calibration set. However, the discrimination accuracy of the val-
idation set is the same as that of the raw spectra. The model using the spectra with the second derivative 
pretreatment produces better results than that using the raw spectra, and 20 samples are misclassified; 
for raw spectra, 24 samples are misclassified. The results from the derivative spectrum achieved better 
accuracies than that of the raw spectrum, which agrees with Xie’s result17. This may due to the derivative 
process, which increases the signal.

Figure 4 shows a plot of the Mahalanobis distance of the THz spectroscopy of the rice samples with 
the first derivative pretreatment. This plot shows transgenic rice and non-transgenic rice divided into 

Data 
pretreatment

Numbers of 
misclassified 

transgenic rice 
and its parent in 

calibration set

Numbers of 
misclassified 

transgenic rice 
and its parent in 

validation set

Accuracy in 
calibration set 

(%)

Accuracy in 
validation set 

(%)

no 11, 7 4, 2 85.4 85.0

1st derivative 9, 4 4, 2 89.4 85.0

2st derivative 9, 4 4, 3 89.4 82.5

Table 3.  The statistic results of THz spectra without and with derivative pretreatments by using 
discriminate analysis.

Figure 4. Discrimination results for the transgenic and non-transgenic rice samples using the DA 
method and the THz spectra with the first derivate pretreatment. 
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two groups with a few samples overlapping each other. Therefore, the DA method demonstrates good 
capability for differentiating the rice with different genotypes.

By applying derivative pretreatments to THz spectroscopy in conjunction with the DA model, iden-
tifying transgenic and non-transgenic rice is available with accuracies up to 89.4% and 85.0% for the 
calibration and validation models, respectively. On the other hand, we build a discriminate model using 
partial least squares discriminant analysis (PLSDA) method (an application based on PLS method), find-
ing that PLSDA could not discriminate transgenic rice and its parent well with the best discriminate 
accuracy only reach to 65.0% (data not shown). This may be because the calculation of Mahalanobis 
distance was more suitable for discriminating transgenic rice and its parent.

Discussion
This study focuses on classifying transgenic and non-transgenic rice based on THz spectroscopy com-
bined with the PCA and DA models and derivative pretreatments. THz spectroscopy is a relatively pow-
erful tool for differentiating transgenic rice and their parents with accuracies reaching 89.4% and 85.0% 
for the calibration and validation models, respectively. Spectroscopic techniques offer the benefits of 
avoiding time-consuming recalibration work for each sample and costly chemical and sensory analyses. 
Determining transgenic samples using spectroscopic techniques is valuable, and this study shows the 
potential of THz spectroscopy for transgenic agro-products discrimination. Further studies are needed 
to build more valuable and robust models to discriminate other rice varieties.

Methods
Samples. Two sets of rice, transgenic samples (Hua Hui 1) and its parental line (Ming Hui 63), were 
grown in separate fields under the same climate conditions and fertility and were harvested at the same 
time. Hua Hui 1 has a certificate of security with the transgenic Bt gene. The storage conditions are the 
same in Ref. [18]. The concentration of transgenic protein is less than 2.5 μ g g−1 in transgenic rice and 
is too low to be detected in its parent34,35. Each of the rice samples was shelled, ground into a powder 
(DFT-50, Dade, Zhejiang, China), meshed (100 mesh sieve) and dried overnight (50 °C). Then, the pow-
der was pressed into pellets under 15 to 20 MPa. Only the pellets with smooth surfaces and without any 
cracks were suitable for measurement. Each pellet weighted approximately 200 mg and was 1.2 ±  0.1 mm 
thick and 13 mm in diameter. A total of 163 samples (81 Hua Hui 1 and 82 Ming Hui 63) with different 
ripeness and plumpness degrees were measured by THz-TDS (room temperature 23 ±  1 °C, less than 1% 
relatively humidity in a nitrogen atmosphere). All of the samples were measured three times.

The Cry1Ab protein (salt free, M. P. Carey CWRU, Cleveland, Ohio, USA) was uniformly mixed with 
dried polyethylene (PE, Sigma-Aldrich, St. Louis, MO.) and pressed into a pellet under a pressure of 
15-20 MPa and measured using THz-TDS. A total of 18 samples with six different Cry1Ab concentra-
tions (0, 1%, 2%, 5%, 6.8%, and 9.8%) were measured using THz-TDS. Each pellet was measured three 
times repeatedly with thicknesses approximately 1 mm.

Approximately 3/4 of the rice samples were randomly selected to build a calibration set, and the other 
1/4 were used to build the validation set in this work. Therefore, there were 123 samples in the calibration 
set and 40 samples in the validation set, respectively.

Equipment. THz time-domain spectra of all of the samples, including rice, Cry1Ab protein and PE 
pellets, were collected using by a Z-3 terahertz time-domain spectrometer system (Zomega Corporation, 
East Greenbush, NY, USA) with a low-temperature (LT) GaAs photoconductive antenna as the THz 
emitter and a ZnTe electro-optical crystal as the THz detector. The spectral range was 0.1–2.6 THz with 
a frequency resolution of 10 GHz and a signal noise ratio (SNR) of more than 3000. The humidity is less 
than 1% after nitrogen purging.

The sample pellets were measured using THz transmittance mode. Before sample collection, a spec-
trum of air was collected as the reference spectrum. All of the spectra were collected after the spectros-
copy system warmed up for half an hour to reach a stable state.

Spectral Data Pretreatment and Chemometrics Methods. For each pellet, the three repeatedly 
acquired time-domain spectra were averaged and then transformed into the frequency-domain using the 
Fourier transform. The transmittance was defined as

T E E 2s r
2= / ( )

where Es and Er were the complex THz signals in the frequency-domain after fast Fourier transform 
(FFT) of the time-domain spectra of the sample and reference, respectively36. In this paper, derivative 
processes, including the first and second derivative, were selected as spectrum pretreatment methods17.

Chemometrics methods can highlight the chemical differences between samples and reduce the var-
iation due to physical effects. PCA, DA and PLS methods have been proven to be effective in many 
applications14,16,17, and were therefore selected as the chemometrics methods in present study.

PCA was applied to obtain an overview of the data by extracting the main information from the 
THz spectra of the rice samples, reducing the number of variables and expressing the total variation in 
the data set in only a few PCs. Each spectrum will have its own unique set of scores, and therefore, a 
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spectrum can be represented by its PCA scores in factor space instead of its intensities in wavelength 
space28. Because the PCs are orthogonal, by plotting the PCs, we can view the relationships between the 
different variables. Using either the pure spectral data or the pre-treated data, PCA can provide very 
important information about the potential capability of differentiating the samples15–18.

The DA method, which could be used to analyze samples with similar properties, is based on calcu-
lating the Mahalanobis distance of a sample from the centers of gravity of the considered groups17. If a 
sample is close to the center of gravity of its group, it is classified correctly. In the case where the distance 
to the center of gravity of another group is closer than that of its group, it is misclassified. In this work, 
the samples were divided into two groups: the transgenic group and the non-transgenic group.

PLS regression, a particular type of multivariate analysis that uses the two-block predictive PLS model 
to model the relationship between two matrices, could analyze data with strongly collinear (correlated), 
noisy, and numerous X-variables18. The PLS method could be appropriately used to enrich existing meth-
odological approaches for strategic management research37.

In this study, chemometrics methods were employed to classify transgenic rice and their parents. The 
aim of this THz-TDS technique was to predict the membership of an individual to a qualitative group 
defined previously38.

All of the chemometrics calculations were performed using TQ Analyst V6.2.1 (Thermo Nicolet 
Corporation, Madison, WI, USA).
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