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Pathway-based gene signatures 
predicting clinical outcome of lung 
adenocarcinoma
Ya-Hsuan Chang1, Chung-Ming Chen1, Hsuan-Yu Chen2 & Pan-Chyr Yang3

Lung adenocarcinoma is often diagnosed at an advanced stage with poor prognosis. Patients 
with different clinical outcomes may have similar clinico-pathological characteristics. The results 
of previous studies for biomarkers for lung adenocarcinoma have generally been inconsistent 
and limited in clinical application. In this study, we used inverse-variance weighting to combine 
the hazard ratios for the four datasets and performed pathway analysis to identify prognosis-
associated gene signatures. A total of 2,418 genes were found to be significantly associated with 
overall survival. Of these, a 21-gene signature in the HMGB1/RAGE signalling pathway and a 31-
gene signature in the clathrin-coated vesicle cycle pathway were significantly associated with 
prognosis of lung adenocarcinoma across all four datasets (all p-values <  0.05, log-rank test). We 
combined the scores for the three pathways to derive a combined pathway-based risk (CPBR) 
score. Three pathway-based signatures and CPBR score also had more predictive power than single 
genes. Finally, the CPBR score was validated in two independent cohorts (GSE14814 and GSE13213 
in the GEO database) and had significant adjusted hazard ratios 2.72 (p-value <  0.0001) and 1.71 
(p-value <  0.0001), respectively. These results could provide a more complete picture of the lung 
cancer pathogenesis.

Lung cancer, especially non-small cell lung cancer (NSCLC), is the most common cause of cancer-associated 
mortality worldwide1. Adenocarcinoma, a major subtype of NSCLC, is often diagnosed at an advanced 
stage and generally has a poor clinical outcome2 and a relatively poor overall 5-year survival3.

The current clinico-pathological staging system is not adequate4. Even if lung adenocarcinoma 
patients have similar clinical characteristics and have tumours at a similar stage, they may experience dif-
ferent clinical outcomes2. Due to tumour molecular heterogeneity, some patients will develop metastasis 
early and some will not2. Since high-throughput technology, including microarray and next-generation 
sequencing, can simultaneously measure the expression of tens of thousands of genes, it can be used to 
study heterogeneity of the gene expression profile in lung adenocarcinoma5,6. However, the results of 
gene expression studies in lung adenocarcinoma have usually been inconsistent due to differences in 
study design, sample size and analysis strategy7. To date, only molecular tests for genomic mutation of 
EGFR and KRAS and gene fusion detection of ALK have been widely used in clinical practice8.

Although previous gene expression microarray studies have shown a statistically significant asso-
ciation of the expression of many individual genes with disease, the findings usually lack biological 
meaning9, which makes it difficult for investigators to interpret their findings10. In order to increase the 
power to detect differentially expressed genes and reduce the difficulty in biological interpretation, gene 
class-based tests, such as gene set analysis, which combine biological knowledge and gene expression 
levels, have become widely used11. In addition, these methods focus on sets of related genes, rather than 
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on individual genes, as individual functionally associated genes that often show only moderate differen-
tial expression can act co-ordinately in the cell, thus magnifying the effect12,13. From a statistical point 
of view, this gene class-based method reduces the number of dimensions and increases statistical power, 
while, from a biological point of view, it should help scientists better understand biological mechanisms 
within the cell12.

Classification of patient risk using a single biomarker that is strongly associated with disease outcome 
might not be a good strategy, as a dysregulated gene that may not show any obvious association with 
disease on its own may interact with others in the same pathway, resulting in carcinogenesis or drug 
resistance14–16. It is therefore worth identifying particular sets of genes showing unusual expression that 
act in the same cancer-associated pathway. In this study, using data from the public gene expression and 
clinical data on the caArray database of the National Cancer Institute7, cancer-associated pathway-based 
approaches were used to identify pathway-based gene signatures, which may have potential for prognosis 
prediction and therapeutic target identification in lung adenocarcinoma.

Results
Identification of genes with a significant hazard ratio (HR) and their associated path-
ways. The study population consisted of 443 patients with lung adenocarcinoma from the University 
of Michigan Cancer Center (UM) (n =  178), the Moffitt Cancer Center (HLM) (n =  79), the Memorial 
Sloan-Kettering Cancer Center (MSK) (n =  104) and the Dana-Farber Cancer Institute (CAN/DF) 
(n =  82)7. Multivariate Cox proportional hazards regression analysis showed that 2155, 1437, 1164 or 
2003 genes in the CAN/DF, HLM, UM or MSK dataset, respectively, were significantly associated with 
overall survival (data not shown). There were only two genes (CSNK1A1 and MYST4) had significant 
HRs in all four datasets. After combining the results for the four datasets, a total of 2418 genes showed 
a significant HR (data not shown). When pathway mapping was used to identify survival-associated 
biological pathways based on these 2418 genes, 15 pathways in which these genes were enriched were 
identified (Table 1).

Pathway-based risk score analysis identifies three pathways that are associated with overall 
survival in lung adenocarcinoma in all four datasets. To evaluate the impact of signatures in a 
given pathway on survival, a pathway-based risk score was calculated for this pathway and used, together 
with survival analysis, to evaluate prognostic ability. Survival analysis showed that three pathways were 

Pathway P value

Number 
ofsignificant 
genes (total 

gene number)

Significantly 
associated with 
survival in all 
four datasets

Significantly 
associated with 

survival in 
three datasets

Significantly 
associated with 
survival in two 

datasets

Immune response_HMGB1/RAGE signalling 
pathway 9.73E-08 21 (65) V

Development_Beta-adrenergic receptor regulation 
of ERK 8.92E-06 22(70) V

Transport_Clathrin-coated vesicle cycle 4.81E-06 31(107) V

Transport_RAN regulation pathway 2.44E-06 16(47) V

Cell cycle_Role of Nek in cell cycle regulation 1.34E-07 19(61) V

Development_Glucocorticoid receptor signalling 8.63E-06 12(41) V

Immune response_IL-6 signalling pathway 6.25E-07 13(33) V

Development_WNT signalling pathway. Part 2 2.56E-06 19(84) V

Cell cycle_Chromosome condensation in 
prometaphase 7.34E-10 14(33) V

Cell cycle_Role of APC in cell cycle regulation 1.23E-11 27(54) V

Development_WNT signalling pathway. Part 1. 
Degradation of beta-catenin in the absence of 
WNT signalling 4.67E-06 11(29) V

Cell cycle_Spindle assembly and chromosome 
separation 3.06E-09 29(94) V

Cell cycle_Transition and termination of DNA 
replication 1.27E-07 20(37) V

Cell cycle_Start of DNA replication in early S 
phase 1.01E-06 16(43) V

Cell cycle_The metaphase checkpoint 5.48E-06 14(36) V

Table 1.  Possible clinical outcome-related pathways in lung adenocarcinoma. The symbol “V” denotes 
that this pathway-based risk score was significantly associated with survival.
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significantly associated with survival in all four datasets (Table 1). Twenty-one genes significantly associ-
ated with survival (11 risk genes and 10 protective genes) were involved in the high-mobility group box 
1 (HMGB1)/ receptor for advanced glycation end products (RAGE) signalling pathway (Supplementary 
Table S2 and Fig. S2 online), 22 (10 risk genes and 12 protective genes) were involved in the beta-adrenergic 
receptor regulation of the extracellular signal-regulated kinase (ERK) pathway (Supplementary Table S3 
and Fig. S3 online) and 31 (11 risk genes and 20 protective genes) were involved in the clathrin-coated 
vesicle cycle pathway (Supplementary Table S4 and Fig. S4 online).

Pathway-based signatures of the HMGB1 / RAGE signalling pathway, the beta-adrenergic 
receptor regulation of the ERK pathway and the clathrin-coated vesicle cycle pathway are 
significantly associated with clinical outcome of lung adenocarcinoma. As shown in Fig.  1, 
using the HMGB1/RAGE signalling pathway-based signature containing 21 differentially expressed 
genes and defining high-risk patients as those with a pathway-based risk score higher than the median, 
high-risk patients had a significantly shorter median survival than low-risk patients in the CAN/DF 
dataset (high-risk group 71 months, low-risk group not reached median survival; p =  0.0197), the HLM 
dataset (high-risk group less than 30 months, low-risk group more than 70 months; p =  0.0003), the 
UM dataset (high-risk group 42 months, low-risk group 130 months; p <  0.0001) and the MSK dataset 
(high-risk group 51 months, low-risk group 114 months; p =  0.0003).

Similar results were obtained using the beta-adrenergic receptor regulation of the ERK pathway-based 
signature (Fig.  2) or the clathrin-coated vesicle cycle pathway-based signature (Fig.  3). Using the ERK 
pathway-based signature, the median survival of the high-risk group in the CAN/DF, HLM, UM and 
MSK datasets was 38, 26, 45 and 52 months, respectively, significantly shorter than that in the low-risk 
group (not reached median survival, 48 months, 130 months and not reached median survival) (Fig. 2; 
p <  0.0001, p =  0.0149, p <  0.0001 and p =  0.0014, respectively), while, using the clathrin-coated vesicle 
cycle pathway-based signature, the median survival of the high-risk groups in the CAN/DF, HLM, UM 
and MSK datasets were 37, 21, 48 and 57 months, significantly shorter than that of the low-risk group 
(not reached median survival, 57 months, 96 months and 114 months) (Fig. 3; p =  0.0012, p =  0.0002, 
p =  0.0011 and p =  0.0089, respectively).

The survival pattern for patients with each of the three pathway-based signatures in the different 
datasets was interesting. In the CAN/DF dataset, the high-risk group, based, respectively, on the HMGB1 
/ RAGE signaling pathway, beta-adrenergic receptor regulation of ERK pathway and clathrin-coated vesi-
cle cycle pathway, had a median survival of 71, 38 and 37 months, while the low-risk group did not reach 
median survival. In the HLM dataset, the high-risk group had a median survival of about 20 months (26, 
26 and 21 months), while that of the low-risk group was greater than 45 months (73, 48 and 57 months). 
In the UM dataset, the median survival for the high-risk group was 42, 45 and 48 months, almost 3 times 
lower than that in the low-risk group (130, 130 and 96 months). In the MSK dataset, the median survival 
for the high-risk group was around 50 months (51, 52 and 57 months), while the low-risk group survived 
longer (114 months, not reach median survival and 114 months).

A combined pathway-based risk (CPBR) score based on the combined risk scores for the 
three individual pathways gives a better prediction of clinical outcome in lung adenocarci-
noma. To evaluate the prognostic effect of the combined risk scores for these three pathway-based 
signatures, a CPBR score was computed by linear summation of each of the three pathway-based sig-
nature scores multiplied by the weighting coefficient for that pathway obtained by Cox proportional 
hazards regression. Patients in the high-risk group (risk score higher than the median) had a significantly 
shorter median survival than those in the low-risk group in all four datasets (CAN/DF p =  0.0005, HLM 
p =  0.0002, UM p <  0.0001, and MSK p <  0.0001) (Fig. 4a–d).

Prognostic factors of lung adenocarcinoma. Results of multivariate Cox proportional hazards 
regression showed that stage effect had significant adjusted HR in each dataset and can be mentioned 
as an independent prognostic factor (Table 2). After effects of age, sex, and stage were controlled in the 
multivariate Cox proportional hazards regression model, each pathway-based signature or combined 
pathway-based risk (CPBR) score was still significant and it was also an independent prognostic factor 
(Table 2). Particularly, the HRs based on the CPBR score were higher than those obtained using the risk 
score for any single pathway signature.

Comparisons of the single biomarker and pathway-based signatures. Multivariate Cox pro-
portional hazards regression was used to examine the predictive power of 2418 genes selected from the 
inverse-variance weighting method. Numbers of significant genes in four datasets are 820, 574, 429, and 
622, respectively. Range of significant HRs was from 0.05 to 11.3 and had high variation between four 
datasets (Supplementary Table S5). Considering p values and HRs, three pathway-based signatures and 
CPBR score had more statistical significant than 2418 genes across four datasets (Supplementary Fig. S5). 
In addition, these pathway-based signatures showed the consistent results in four datasets and portend 
the better prediction power for prognosis.
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Validation of three pathway-based signatures and the CPBR score in two independent 
cohorts. Three pathway-based signatures and the CPBR score were validated in two independent 
cohorts (GSE14814 and GSE13213). Patients with high risk identified from the HMGB1 / RAGE signal-
ling pathway, the beta-adrenergic receptor regulation of the ERK pathway, the clathrin-coated vesicle cycle 

Figure 1. Using HMGB1/RAGE signalling pathway-based signatures as prognosis predictor, Kaplan-
Meier survival analysis of patients with lung adenocarcinoma were performed in all four training 
datasets (CAN/DF, HLM, UK, MSK) and in the two validation cohorts (GSE14814 and GSE1321). 
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Figure 2. Using pathway-based signatures of beta-adrenergic receptor regulation of the ERK pathway 
as prognosis predictor, Kaplan-Meier survival analysis of patients with lung adenocarcinoma were 
performed in all four training datasets (CAN/DF, HLM, UK, and MSK) and in the two validation 
cohorts (GSE14814 and GSE1321). 
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Figure 3. Using pathway-based signatures of clathrin-coated vesicle cycle pathway as prognosis 
predictor, Kaplan-Meier survival analysis of patients with lung adenocarcinoma were performed in all 
four training datasets (CAN/DF, HLM, UK, and MSK) and in the two validation cohorts (GSE14814 and 
GSE1321). 
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pathway, or CPBR score had significant shorter overall survival (Fig. 1e, p =  0.0120; Fig. 2e, p <  0.0001; 
Fig. 3e, p =  0.0006; Fig. 4e, p <  0.0001 ) in the GSE14814 cohort and in the GSE13213 cohort (Fig. 1f, 
p =  0.0077; Figure2f, p =  0.0002; Fig. 3f, p <  0.0001; Fig. 4f, p <  0.0001), respectively.

Figure 4. Using combined pathway-based risk (CPBR) score as prognosis predictor, based on the 
combined risk scores for the three individual pathways, results of survival analysis were shown that 
overall survival was significantly different between high-risk group and low-risk group in (a) the CAN/
DF dataset, (b) the HLM dataset, (c) the UM dataset, (d) the MSK dataset and (e) the validation cohort 
of GSE14814 (f) the validation cohort of GSE1321, respectively. 
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Variable CAN/DF HLM UM MSK

HR (95% CI)a P valuea HR (95% CI) a P valuea
HR (95% 

CI) a P value a HR (95% CI) a P value a

HMGB1/RAGE signalling pathway

 Gene signature 1.31(1.15-1.49) < 0.0001 1.60(1.35-1.90) < 0.0001 1.59(1.36-
1.85) < 0.0001 1.52(1.29-1.78) < 0.0001

 Age 1.07(1.03-1.12) 0.0016 1.03(1.00-1.06) 0.0622 1.02(1.00-
1.04) 0.1319 1.00(0.96-1.04) 0.9490

 Sex 1.20(0.59-2.47) 0.6111 0.58(0.33-1.01) 0.0537 1.66(1.07-
2.57) 0.0224 1.41(0.71-2.82) 0.3280

 Stage

  I 1.00 1.00 1.00 1.00

  II 2.64(1.33-5.25) 0.0056 2.86(1.45-5.63) 0.0024 2.26(1.37-
3.72) 0.0014 2.49(0.96-6.44) 0.0610

  III 5.19(2.57-10.49) < 0.0001 4.28(2.61-
7.01) < 0.0001 6.55(2.92-14.68) < 0.00001

Beta-adrenergic receptor regulation of ERK pathway

 Gene signature 1.37(1.21-1.56) < 0.0001 1.46(1.27-1.68) < 0.0001 1.62(1.32-
2.00) < 0.0001 1.36(1.19-1.56) < 0.0001

 Age 1.11(1.05-1.17) 0.0001 1.03(1.00-1.06) 0.0394 1.02(1.00-
1.04) 0.1153 1.00(0.97-1.05) 0.7060

 Sex 1.10(0.54-2.26) 0.7858 0.76(0.45-1.28) 0.3028 1.64(1.06-
2.53) 0.0263 1.07(0.53-2.13) 0.8560

 Stage

  I 1.00 1.00 1.00 1.00

  II 2.05(1.03-4.10) 0.0418 4.50(2.19-9.25) < 0.0001 2.62(1.58-
4.36) 0.0002 2.07(0.81-5.32) 0.1300

  III 7.73(3.73-16.02) < 0.0001 4.30(2.62-
7.03) < 0.0001 5.65(2.56-12.46) < 0.0001

Clathrin-coated vesicle cycle pathway

 Gene signature 1.18(1.11-1.26) < 0.0001 1.18(1.10-1.27) < 0.0001 1.35(1.19-
1.54) < 0.0001 1.23(1.12-1.34) < 0.0001

 Age 1.09(1.04-1.14) 0.0006 1.03(1.00-1.06) 0.0670 1.01(0.99-
1.03) 0.2585 1.00(0.96-1.04) 0.9640

 Sex 1.20(0.58-2.49) 0.6320 0.85(0.50-1.43) 0.5421 1.71(1.11-
2.63) 0.0148 0.96(0.47-1.95) 0.9010

 Stage

  I 1.00 1.00 1.00 1.00

  II 2.88(1.45-5.74) 0.0026 3.05(1.55-6.00) 0.0012 2.00(1.21-
3.30) 0.0071 1.59(0.62-4.08) 0.3320

  III 5.60(2.80-11.22) < 0.0001 4.64(2.83-
7.61) < 0.0001 6.40(2.86-14.35) < 0.0001

Combined pathway-based risk (CPBR)

 score 2.72(1.89-3.90) < 0.0001 2.72(1.93-3.83) < 0.0001 2.72(1.98-
3.74) < 0.0001 2.72(1.88-3.93) < 0.0001

 Age 1.10(1.04-1.15) 0.0003 1.03(1.00-1.06) 0.0782 1.02(0.99-
1.04) 0.1509 1.00(0.96-1.04) 0.8940

 Sex 1.17(0.57-2.43) 0.6674 0.59(0.34-1.02) 0.0569 1.69(1.10-
2.62) 0.0178 1.23(0.61-2.47) 0.5520

 Stage

  I 1.00 1.00 1.00 1.00

  II 2.54(1.28-5.04) 0.0079 3.78(1.87-7.63) 0.0002 2.38(1.44-
3.93) 0.0007 2.17(0.84-5.61) 0.1090

  III 6.80(3.31-13.98) < 0.0001 4.29(2.61-
7.05) < 0.0001 6.67(2.94-15.16) < 0.0001

Table 2.  Adjusted hazard ratios of the different pathway-based signatures in four training datasets. HR: 
hazard ratio; 95% CI: 95% confidence interval. aAdjusted by covariates.
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In the first validation cohort (GSE14814), age, three pathway-based signatures, and CPBR score had 
significant HRs. Adjusted HR of CPBR score was 2.72 (95%CI =  1.80 to 4.11 and p <  0.0001). In addi-
tion, stage, three pathway-based signatures, and CPBR score had significant HRs in the second valida-
tion cohort (GSE13213). Adjusted HR of CPBR score was 1.71(95%CI =  1.45 to 2.03 and p <  0.0001) 
(Table 3).

Discussion
In this study, multivariate Cox proportional regression analysis was used to identify potential 
survival-associated genes in each of the 4 National Cancer Institute datasets, then inverse-variance 
weighting method was used to combine the results from the four datasets. The use of this method 
increases the statistical power and provides more robust results17. Biological function or pathway analysis 
was then used to reveal potential biological mechanisms involved in lung cancer, allowing more precise 
biological interpretation.

In the Cox regression analysis, only two genes, CSNK1A1 and MYST4, were found to be significantly 
associated with survival in all four datasets. Since the results for the four datasets were not very consist-
ent, we used inverse-variance weighting method to combine the four sets of results to increase statistical 
power. After pathway analysis, pathway-based risk scores were computed using the level of expression 

GSE14814 GSE13213

Variable HR (95% CI) a P valuea HR (95% CI) a P valuea

HMGB1/RAGE signalling pathway-based risk score

 Gene Signature 1.64(1.24-2.18) 0.0005 2.56(1.65-3.97) < 0.0001

 Age 1.08(1.02-1.13) 0.0033 1.01(0.98-1.03) 0.6500

 Sex 2.12(1.00-4.49) 0.0503 1.30(0.71-2.38) 0.3910

 Stage

  I 1.00 1.00

  II 1.61(0.78-3.30) 0.1950 1.83(0.74-4.55) 0.1920

  III 4.75(2.51-8.97) < 0.0001

Beta-adrenergic receptor regulation of ERK pathway

 Gene Signature 2.21(1.53-3.17) < 0.0001 1.70(1.39-2.07) < 0.0001

 Age 1.07(1.01-1.12) 0.014 1.01(0.98-1.04) 0.3964

 Sex 1.62(0.76-3.44) 0.2080 1.80(0.97-3.33) 0.0603

 Stage

  I 1.00 1.00

  II 1.36(0.66-2.81) 0.4080 1.73(0.70-4.26) 0.2371

  III 4.92(2.58-9.38) < 0.0001

Clathrin-coated vesicle cycle pathway

 Gene Signature 1.49(1.21-1.84) 0.0002 1.56(1.33-1.84) < 0.0001

 Age 1.07(1.02-1.13) 0.0094 1.01(0.98-1.04) 0.5290

 Sex 2.18(1.01-4.71) 0.0468 1.25(0.68-2.30) 0.4730

 Stage

  I 1.00 1.00

  II 1.18(0.56-2.50) 0.6571 1.06(0.42-2.67) 0.8960

  III 3.60(1.92-6.76) < 0.0001

Combined pathway-based risk (CPBR)

 Gene Signature 2.72(1.80-4.11) < 0.0001 1.71(1.45-2.03) < 0.0001

 Age 1.07(1.01-1.13) 0.0163 1.01(0.98-1.04) 0.4970

 Sex 1.81(0.85-3.84) 0.1225 1.41(0.76-2.61) 0.2820

 Stage

  I 1.00 1.00

  II 1.35(0.64-2.85) 0.4323 1.21(0.47-3.14) 0.6920

  III 5.04(2.65-9.55) < 0.0001

Table 3.  Adjusted hazard ratios of the different pathway-based signatures in two validation cohorts. 
HR: hazard ratio; 95% CI: 95% confidence interval. aAdjusted by covariates.
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of genes in the same pathway weighted by regression coefficients. Each of the pathway-based scores was 
found to be a good predictor of clinical outcome. Subjects with a higher pathway-based risk score for a 
given pathway were classified into the high-risk group based on that pathway. The results showed that 21 
of the 65 genes in the HMGB1 / RAGE signalling pathway, 22 of the 70 in the beta-adrenergic receptor 
regulation of ERK pathway and 31 of the 107 in the clathrin-coated vesicle cycle pathway were signifi-
cantly associated with clinical outcome of lung cancer. The high-risk group defined using the risk score 
based on any one of the three individual pathways had a shorter overall survival than the low-risk group.

We then developed a simplified CPBR score to combine the effects of these three signatures, and the 
results showed that the high-risk group had even shorter overall survival than the low-risk group and 
that the CPBR score gave a better outcome prediction of outcome of lung adenocarcinoma patients. 
These results showed that differentially expressed genes in the same pathway might interact with each 
other and contribute to a worse prognosis.

Some studies have reported that cellular pathway signatures can be useful for treatment development, 
prognosis prediction and subtype classification in lung cancer14,18,19 and that the identification of impor-
tant biological pathways containing potential survival-associated genes would help in disease prevention 
or treatment strategy16,20. The HMGB1 signalling pathway plays the principal role in the tumorigenesis 
and progression of many malignant cancers21. HMGB1 is a nuclear protein that influences transcription 
and other nuclear functions and is associated with hallmarks of cancer, including unlimited replication, 
angiogenesis, apoptosis, self-sufficiency in growth signals, growth inhibitor insensitivity, inflammation, 
invasion and metastasis22,23. HMGB1 and its receptor, RAGE, are highly expressed in various malignant 
tumours, including colorectal and breast cribriform carcinoma24. The HMGB1 signalling pathway is also 
reported to be associated with growth and metastasis of liver cancer and to be a potential therapeutic 
target for this cancer21. In this study, we found that a signature in the HMBG1/RAGE pathway was 
associated with overall survival, and this might provide insight into the pathogenesis of this cancer. As 
regards the beta-adrenergic receptor regulation of ERK pathway, psychological distress is a predictor of 
cancer mortality, especially in lung cancer25, and the stress hormone norepinephrine is a potent inducer 
of migratory activity in lung carcinoma cells and cell migration is mediated by the adrenergic receptor 
pathway26. It has also been reported that beta-blocker therapy can reduce cancer distant metastases, 
recurrence and mortality rate in breast cancer patients26. Clathrin-mediated endocytosis is a regulator of 
cellular function, and abnormal endocytosis plays a key role in many diseases27. The clathrin regulation 
pathway has been reported to be relevant to Alzheimer’s disease27,28. These results and our own show that 
these 3 pathways are important for disease development and that deregulated genes in these pathways 
might contribute to a worse prognosis. These findings could provide a research direction for further 
exploration of the mechanism involved in progression of lung adenocarcinoma.

In studies using the same strategy and similar clinical and pathological features and treatment proto-
col, not all patients with lung cancer show the same clinical outcome and sensitivity to treatment because 
of the extreme heterogeneity of tumours2. Due to the tumor heterogeneity, the multiple genes or path-
way based approaches showed the better performance than single marker approach29. The development 
of gene expression profiling should help in demonstrating the heterogeneity of the same tumour type 
and improve the accuracy of lung cancer risk assessment, clinical prognosis and outcome prediction. 
Furthermore, it should allow the design of individual targeted therapies for patients30.

The limitation of the gene expression profiling or pathway based approach is applications in the clin-
ical practice. The IHC method or FISH method with convenient and low cost of assays is well used in 
the clinical practice. However, it can be only applied in testing few genes. Several technologies including 
the multiplexed quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) or digital PCR 
may provide solutions for the clinical practice of the pathway based signatures. However, it still needs to 
be evaluated in the future study.

Gene-expression profiling has been used to explore biomarkers associated with subtypes of lung can-
cer, overall survival and recurrence of cancer30,31, particular in lung adenocarcinoma6,32–34. Although 
signatures associated with lung adenocarcinoma have been reported by several groups, these have tended 
to be different in different studies; however, the genes in the individual pathways may interact and con-
tribute to cancer pathogenesis or progression16,18.

Through risk assessment by pathway-based signatures, patients had high risk estimated from path-
way based signatures may need to receive different treatments. For example, patients with completely 
resected stage I NSCLC was recommend for no adjuvant chemotherapy35. However, up to 10–20% of 
above patients will recur or die within 5 years36 and may need to receive different clinical treatments. 
Patients with early recurrence or death are high risk population in the stage I lung cancer and it is still 
lack of the efficient methods for high risk identification of stage I lung cancer. Hence, the pathway based 
signature may be benefit to identify high risk group of lung cancer. In addition, pathway based signatures 
provide systematic point of view for prognosis and the inhibitions of connections between genes within 
the same pathway may have potential to be therapeutic targets in the future work.

Several limitations of the microarray data are also needed to be considered. First, the high variations 
of gene expression data were obtained from different microarray platforms due to different probe designs 
or signal detection methods. Hence, the comparisons between different microarray platforms have to be 
concerned. Second, the stromal cell contamination varies among dataset and samples, which would give 
variations in micro array-based analyses.
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A potential limitation of this study is that the public datasets used in this study did not provide the 
information of treatment response and major genomic abnormalities such as EGFR, KRAS, and ALK 
fusion. It is difficult to estimate the effect of the CPBR in patients with major genomic abnormalities. 
Additionally, the MetaCore software used enrichment analysis to find the overrepresented pathways and 
pathways with the smaller size of the gene set might have more chance to reach significance. It is the 
weakness of the enrichment analysis. Because the false positive may be introduced from the limitation 
of the MetaCore software, several steps were used to reduce the bias. In the first step, the Bonferroni 
correction method was applied to reduce potential false positive. There were more than 1000 pathways 
in the database of the MetaCore. The significant level was corrected from 0.05 to 10-5. In the second step, 
gene-signatures of significant pathways were evaluated in four training datasets. Pathways had significant 
associations with survival were kept. Finally, candidate pathway-based signatures were validated in two 
independent cohorts.

Our analysis method of gene expression profiling identified pathway-based signatures closely corre-
lated with clinical outcome of lung adenocarcinoma. We have derived a simple CPBR score which may 
improve the accuracy of outcome prediction for lung adenocarcinoma, as the CPBR score showed a 
higher correlation with clinical outcome than gene- or individual pathway-based scores. These results 
provide a more complete picture of the pathogenesis of lung carcinoma and provide direction for future 
studies. The CPBR signature may be useful in stratifying subpopulations of lung adenocarcinoma for 
clinical outcome prediction and individualized therapies for lung adenocarcinoma patients.

Materials and Methods
Study population and gene expression data. The study population consisted of 443 patients 
with lung adenocarcinoma from the University of Michigan Cancer Center (UM) (n =  178), the Moffitt 
Cancer Center (HLM) (n =  79), the Memorial Sloan-Kettering Cancer Center (MSK) (n =  104) and the 
Dana-Farber Cancer Institute (CAN/DF) (n =  82)7. The clinical characteristics of all subjects are briefly 
summarized in Supplementary Table S1 online. In all 4 studies, gene expression profiles were measured 
using Affymetrix HG-U133A microarrays and the same experimental protocols were used. The gene 
expression and clinical data for these 4 groups were obtained from https://array.nci.nih.gov/caarray/
project/details.action? project.id=  182.

An additional published dataset (n =  71) from the University of Toronto (accession number GSE14814 
in the GEO database, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE14814) and dataset 
(n =  117) from the Nagoya University in Japan (accession number GSE13213 in the GEO database, 
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE%2013213) were used to validate our findings.

Data preprocessing. The intensity values for gene expression in the four datasets were preprocessed 
independently to eliminate experimental noise before data analysis. To reduce variation among microar-
rays in a given data set, the intensity values for each sample were normalized using the quantile-normalized 
method37. Finally, each intensity value underwent base 2 logarithm transformation. The flowchart for the 
analysis is shown in Supplementary Fig. S1 online.

Identification of genes showing statistically significant differential expression using multivar-
iate Cox proportional hazards regression. In order to determine whether genes were significantly 
associated with overall survival, multivariate Cox proportional hazards regression using the clinical 
covariates of age, sex and stage was performed on each of the 4 datasets. Each gene in a given dataset 
was assigned a hazard ratio (HR), and the corresponding p value was estimated by Cox regression anal-
ysis, giving 4 HR and 4 p values for each gene, then the inverse-variance weighting method was used to 
combine the HRs from the four datasets38. The advantages of combining the results from the different 
datasets were an increase in statistical power and the identification of more robust cancer signatures17. If 
the confidence interval for the combined HR for a given gene did not overlap with that for the baseline 
risk (HR =  1), the gene was considered a potential marker that was significantly associated with survival. 
The HRs were then used to evaluate correlations between overall survival and the level of expression of 
genes; if the HR for a given gene was > 1, it was defined as a potential risk gene, if not, it was defined 
as a potential protective gene.

Pathway analysis and risk score calculation. Genes that were differentially expressed and asso-
ciated with survival were further analysed for biological function or involvement in different pathways 
using pathway maps of the MetaCoreTM version 6.13 (Thomson Reuters, New York, NY). Because more 
than 1000 pathways are included in the MetaCore database, the Bonferroni correction was used to avoid 
multiple testing issues. For each of the 15 pathways found to contain differentially expressed genes, a 
pathway-based risk score was calculated for each subject in each data set to determine the impact of the 
pathway on the prognosis. The risk score was a linear combination of the values for the expression of 
each gene in the pathway multiplied by a weighting value for each gene estimated using Cox proportional 
hazards regression. Using this approach, we found signatures in three pathways that were significantly 
associated with survival in lung adenocarcinoma. A combined pathway-based risk (CPBR) score was 
then derived by linear combination of the pathway-based risk score for each of the three pathways 

http://array.nci.nih.gov/caarray/project/details.action? project.id= 182
http://array.nci.nih.gov/caarray/project/details.action? project.id= 182
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14814
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE%2013213
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multiplied by a weighting value for that pathway estimated using Cox proportional hazards regression. 
We then verified this CPBR score using an independent cohort.

Survival analysis. In the pathway-based study, the pathway-based median risk score was taken as the 
cut-off point for high or low-risk group classification, while, in the CPBR score study, the median of the 
CPBR score was used as the cut-off. The Kaplan-Meier method was used to generate survival curves and 
the difference between survival curves was evaluated using the log-rank test. All tests were two-tailed, 
and p values less than 0.05 were considered to be significant.

CPBR score validated in another independent cohort. Both survival analysis and calculation 
method of pathway-based scores for three selected pathways and the CPBR score were the same as 
previous section described. HR of the CPBR score was estimated from multivariate Cox proportional 
hazards regression with the clinical covariates of age, sex, stage, and treatment method after operation.
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