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Skyrmion Superfluidity in Two-
Dimensional Interacting Fermionic 
Systems
Giandomenico Palumbo1 & Mauro Cirio2

In this article we describe a multi-layered honeycomb lattice model of interacting fermions which 
supports a new kind of parity-preserving skyrmion superfluidity. We derive the low-energy field 
theory describing a non-BCS fermionic superfluid phase by means of functional fermionization. Such 
effective theory is a new kind of non-linear sigma model, which we call double skyrmion model. In 
the bi-layer case, the quasiparticles of the system (skyrmions) have bosonic statistics and replace 
the Cooper-pairs role. Moreover, we show that the model is also equivalent to a Maxwell-BF theory, 
which naturally establishes an effective Meissner effect without requiring a breaking of the gauge 
symmetry. Finally, we map effective superfluidity effects to identities among fermionic observables 
for the lattice model. This provides a signature of our theoretical skyrmion superfluidy that can be 
detected in a possible implementation of the lattice model in a real quantum system.

Quantum field theory (QFT) plays a fundamental role in the description of strongly correlated systems 
and topological phases of matter. For example, free and self-interacting relativistic fermions emerging in 
condensed matter systems can be described by Dirac and Thirring theories respectively1–5. At the same 
time, the ground states of fractional quantum Hall states, topological insulators and superconductors are 
opportunely described by bosonic topological QFTs like Chern-Simons and BF theories6–9. Another class 
of bosonic QFT contains the non-linear sigma models (NLSM) which describe the physics of Heisenberg 
antiferromagnets10, Quantum Hall ferromagnets11 and symmetry protected topological phases12,13. The 
addiction of a topological term in the theory (Hopf term)14 allows for the skyrmions (the quasiparticles 
present in the model) to acquire fermionic, bosonic or anyonic statistics depending on the value of the 
coefficient in front of the Hopf term and the value of their topological charge15,16. Importantly, bosonic 
QFTs reveal several features which characterize the physics of superconductivity. In particular, skyr-
mions appear as topological defects in three-band superconductors17, in Bose-Einstein condensations18 
and have been used to define and describe a parity-breaking two-dimensional non-BCS superconduc-
tivity19–21, while BF theory is a candidate as the effective theory for some strongly correlated fermionic 
systems5, graphene22 and spin Hall states20,23. BF theory naturally describe the Meissner effect9,24,25, which 
represents the smoking-gun evidence of superconducting phase. These non-BCS superconducting mech-
anisms could be used to get insights on the physics of high-temperature superconductors24,26.

The goal of this this letter is to provide a new fermionic (multi-layered) honeycomb lattice model that 
combines characteristics of both skyrmions and BF theory in an unified way. This allows us to prove the 
existence of a parity-preserving non-BCS superfluid phase (analog neutral version of superconducting 
phase). More specifically, as a consequence of a detailed field theory derivation, we prove that our model 
supports the emergence of both an effective Meissner effect and the formation of Cooper-like pairs. This 
is the ground on which we build the other main result of this work. In fact, as the proposed tight-binding 
model is plausible enough to allow for future experimental investigations, we rigorously prove a map 
between physical fermionic observables and effective bosonic ones. We show that these observables have 
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to satisfy explicit relations, consistently with both the emergent properties of the model. In this way our 
model prepares the way for an experimental probe of its emergent superconducting properties.

The logical structure of the article is sketched in Fig.  1. Specifically, the system is described by a 
fermionic Hubbard-like model which gives rise, in the low-energy limit, to a (2 +  1)-dimensional 
chiral-invariant Thirring model27 supporting self-interacting Dirac particles. By using functional fermi-
onization techniques26,28, we show that this theory is equivalent to a new kind of skyrmion model which 
is invariant under parity and time-reversal transformations. We call it double skyrmion model (DSM). 
Interestingly, the statistics of the skyrmions can depend on the number of layers. For bi-layer systems 
skyrmions behave as (neutral) bosons and represent the natural Cooper-like pairs in the (fermionic) 
superfluid phase. In addiction, we show that the system can also be described by a double(Maxwell)-BF 
(M2BF) theory which is a particular instance of a topologically massive gauge theory (TMGT). This 
equivalence can be shown either by integration of the scalar skyrmionic field or directly from the fer-
mionic Thirring model by means of functional bosonization29. In the TMGT theory, effective photons 
acquire a mass as a consequence of topological interactions. This naturally leads to the London equations 
of superconductivity (fermion superfluidity)24 which effectively combine Meissner effect and infinite con-
ductivity. We finally show how physical fermionic observables can probe the skyrmion superfluid mech-
anism described by the model.

Lattice Model
We consider n two-dimensional layers of spinful fermions stacked on the top of each other (Fig.  2). 
Within each layer fermions are localized on a honeycomb lattice. In the case n =  1 the fermion hopping 
is described by the following graphene-like (spin s =  ↑, ↓ dependent) Hamiltonian.

Figure 1. Sketch of the logical structure among the effective field theories describing the model and the 
corresponding physical properties associated to fermionic superfluidity. 
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Here, the overall sign depends on the orientation of the spin and ar and br are the fermion operators at 
position ∈ Λr  where Λ = +v vn n1 1 2 2 is the lattice of unit cells of the model (n n1 2 , ∈  and 
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. This Hamiltonian describes hopping terms along the links of the 
honeycomb lattice with a real tunneling coefficient c and a staggered chemical potential (with energy 
scale mc2) and it can be exactly solved. The spectrum becomes gapless at two independent points P± in 
momentum space. The low energy physics around these points is effectively described by a standard 
massive Dirac Hamiltonian
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where the matrices α and β belong to an euclidean Clifford algebra and where, for clarity, the energy 
scales c and mc2 have been renormalized (for details, see appendix). The spinors Ψ ± depend on the 
momentum space coordinate k as a k b k a k b k

T
( )Ψ = ( ) ( ) ( ) ( )± ±
↑ ±

±
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±
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±
↓ ±  where a± are the Fourier 

transformed fermion operators evaluated at the Fermi points P± respectively and where k+ =  (kx,ky) and 
k− =  (−kx,ky). Note that it is possible to induce the same mass term in the above Hamiltonian by replac-
ing the staggered chemical potential in (1) with a standard Haldane term30.

We now consider the general case of n such layers (we will be mainly interested in the case n =  2) and 
label their free Hamiltonians by j =  1,…, n so that H H j

0 0→ . To connect the layers we add current-current 
interactions to the free model
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μ μ , where μ =  0,1,2, where the spinor and the currents are, respectively, 
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5 5γ γ= Ψ Ψμ μ , and where the γs are Dirac gamma 
matrices. In the case of a single layer, we have that

H g a b a b a b a b3 [ ] 4I
2 2 2= ( + ) + ( − ) . ( )↑ ↑ ↓ ↓ ↑ ↓ ↓ ↑

The less compact, but similar, expression for the case n =  2 can be found in the Supplemental Material. 
Around each Fermi point P± the low-energy effective physics is described by the following partition 
function D D �∫ Ψ Ψ=ZF ej j

Si
F, where SF =  S0 +  SI with

Figure 2. Tight binding for n =  2. Fermions hop along the edges of two honeycomb lattice layers as 
described by the Hamiltonian in Eq. (1). For each spin species and each layer the unit cell contains 
two fermions: a (orange) and b (blue). Fermions in different layers but in unit cells with same in-layer 
coordinates interact through current-current interactions (wavy line) as described by the Hamiltonian in Eq. 
(3).
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This model is nothing but a (generalized) chiral-invariant Thirring model27. In the following we will work 
in units such that c 1= =  and without losing of generality we will consider the physics only around 
one Fermi point.

Double skyrmion model and functional fermionization. We now introduce a double skyrmion 
model (DSM) which is a double O(3)-Hopf non-linear sigma model
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where n coincides with the number of layers, the fields ∈± m 3 satisfy the non-linear constraint 
=±m 12  and the two Hopf terms Ht are topological invariants14. Due to the different sign in front of 

the Hopf terms, this theory describes independent skyrmions and anti-skyrmions which have opposite 
values of the topological charges =−+ −Q QT T  which assume only integer values (see Supplemental 
Material). Each (anti-)skyrmion has a spin S given by31

S n Q2 7T
2= ( / ) . ( )±

This shows that, depending on the number of layers and value of topological charge, the statistics of the 
skyrmions can be either bosonic or fermionic. In particular, for a bi-layer system, (anti-)skyrmions 
behave like bosons for any value of QT

± and in our context take the role Cooper-like pairs.
Following26, we now use functional fermionization to show the equivalence between the partition 

function of this bosonic theory and the one describing a chiral-invariant Thirring model. Let us start 
by defining the equivalent CP form7 of the O(3) NLSM in Eq. (6) in which the Hopf terms are recast as 
Chern-Simons terms. We will refer to it as a double CP-Chern-Simons (CP-CS)2 model
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± ± ±⁎ . We now proceed with the fermionization (see Supplemental Material). The fer-

mions appear quite naturally. In fact, we begin by noticing that, by changing variables to A A A1
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now be “linearized” by introducing24 n fermion species χj leading to the following intermediate partition 
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For each value of the sign, the variable z± can be thought as specifying a coordinate system in a SU(2) 
algebra via the identification z ei j

j
→ ξ σ± ±

, where σ j are the Pauli matrices and jξ
± are scalar fields, see 

Supplemental Material. Moreover, the gaussian integral over the fields A and B can be easily computed. 
This cause the fields jξ

± to effectively decouple. A change of fermionic variables j jχ → ΘΨ  with a suit-
able phase Θ  (see Supplemental Material) leads directly to
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which is in fact the original chiral-invariant Thirring model introduced in the previous section. As a 
final comment, we note that, alternatively, it is possible to bosonize the fermionic model in Eq. (11) to 
the (CP-CS)2 model, see Supplemental Material.

London action. In this section we show that the effective theory described in Eq. (8) is equivalent to 
the London action, which effectively describes the physics of superconductivity.

In24,32 it is proven that (at low energy) a CP model is equivalent to a Maxwell theory. We can use this 
to map the effective theory in Eq. (8) to a (double Maxwell)-BF theory (M2BF)9,24 with action

∫ π
ε=







∂ − ( ) ( )− ( ) ( )





,

( )
λμν

λ μ ν μν
μν

μν
μν

−S d x n B A
e

F A F A
e

F B F BBF 1
4

1
4 12M

3
2 2

2

where Fμv is the field strength tensor and the two scales g0 and e can be explicitly related, see Supplemental 
Material. We now follow Ref. 24 (Supplemental Material) which show that this theory is equivalent to 
the London partition function:
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We can see that the (2 +  2) degrees of freedom of the massless fields A and B are mapped to the 
(3 +  1) degrees of freedom of a massive bosonic field A and a massless scalar field is ϕ which, in this 
sense, represents a kind of Goldstone boson. The present mechanism, however, does not have any local 
order parameter like in ordinary BCS theory. The charge and currents associated with the field A are
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where φ is the Lagrangian density associated with Zϕ. The effective magnetic and electric fields inside 
the material are simply given by
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where i = x,y. The effective physics described by the massive field A, implies both a Meissner and infinite 
conductivity effects. In fact, the (effective) magnetic field intensity decays exponentially inside the mate-
rial (Meissner effect) due to the presence of superficial dissipationless screening currents. In particular 
we have that

B 0 16mag = ( )

in the bulk of the material. As shown in the literature24,33 a zero voltage can be defined in the presence 
of steady currents. These screening currents flow within a penetration depth λ ∝  sg2 (see Supplemental 
Material) from the boundary of the material. In this sense, the system has infinite conductivity σ and 
follows the perfect conductivity relation E = σJem.

Fermionization rules and physical observables. The aim of this section is to map the effective 
superfluidity physics that describes the model to fermionic observables. To this end, we introduce a 
minimal coupling interaction with two external fields Aext and Bext to the fermionic Lagrangian density 
inside Eq. (11) via a minimal coupling J A J Bj

j
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terms only cause a shift in the Dirac operator ( , ) = ( , )ZF A B Z BF A Bext ext CP ext ext2  which leads to the 
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By taking derivatives of the partition functions with respect to the external fields (see Supplemental 
Material) this allows us to prove the following “fermionization” rules.
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where the expectation values 〈〉F and BFCP2  are calculated with respect to the ground state of the fer-
mionic and bosonic theory respectively.
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Similarly, we can map observables for the London theory to observables for the double(Maxwell)-BF 
by adding and tracking source terms F A J Aε( )μν

μνλ
λ  and F B J Bε( )μν

μνλ
λ  to the latter theory (see 

Supplemental Material) so that Z Z J JA B
M BF M BF2 2→ ( , ).

We can use these correspondences to relate the current (ρ,Jem) and the fields (Bmag,E) defined in Eqs. 
(14) and (15) to fermionic observables. Inspection of Eq. (14) and the expression of Zϕ(JA,JB) immediately 
leads (see Supplemental Material) to 
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we implicitly imposed JA,B =  0, after the derivative is taken).
Finally, using the fermionization rules in Eq. (17) and the equivalences among London, (double 

Maxwell)-BF and (double CP)-BF theories we find (see Supplemental Material) the promised relation
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A parallel procedure can be applied to the electric and magnetic fields to get  E Ji Z
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Electromagnetic Quantities Fermionic Observables
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This table allows us to write the effective Meissner effect in Eq. (16) in terms of fermionic observables 
as

∑ = . ( )J F 0 19j
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5

The validity of such a prediction is confirmed by the skyrmionic interpretation of the model. In fact, 
Eq. (19) can be derived from an alternative dual point of view. We first notice that the expectation value 
of the skyrmion currents (see Supplemental Material) J AS

1
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consistently with Eq. (19).
At the same time, as mentioned above, the system supports steady state currents within a penetration 

depth λ ∝  g2 distance from the boundary. By tuning the parameter g to allow the fermionization rules 
to hold, the Drude relation E =  σJem maps (see Supplemental Material) to the fermionic constraint 

J Jj
j

j
j5 σ∑ = ∑  where σ → ∞.

Conclusions
In this article we proposed a fermionic tight-binding model which naturally supports the two main 
ingredients of fermionic superconductivity: Cooper-like pair formation and Meissner effect. In order to 
prove these effects, we employed functional fermionization to show the equivalence between the effective 
fermionic theory describing the lattice system (a chiral-invariant Thirring model) and a double skyr-
mion model. This model supports skyrmions with bosonic statistics (Cooper-like pairs) in the bi-layer 
case and it is formally equivalent to a double Maxwell-BF theory which describes an effective Meissner 
effect. Moreover, we rigorously mapped (fermionic) physical observables to effective (bosonic) ones. In 
this way, we found explicit identities among the physical observables which appear as a direct conse-
quence of both the presence of Cooper-like pairs and the Meissner effect. These relations are crucial to 
detect a signature of the effective physics in a possible implementation of the lattice model in a real (or 
simulated34–36) quantum system. This could lead to the interesting possibility to experimentally probe 
superfluidity properties in an highly controlled physical setting (like cold atoms) opening the road to 
new possible applications and explorations of this physics.

A straightforward generalization of our model to the (charged) superconducting case can be obtained 
once neutral fermions are replaced with charged ones and an external electromagnetic field coupled with 
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them is taken into account. Finally, an open question related to this work concerns the possible existence 
of Abrikosov-like vortices and the presence of Majorana states localized at their cores37–39. We leave the 
study of these important aspects to future works.
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