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Gross primary production of 
global forest ecosystems has been 
overestimated
Jianyong Ma, Xiaodong Yan, Wenjie Dong & Jieming Chou

Coverage rate, a critical variable for gridded forest area, has been neglected by previous studies in 
estimating the annual gross primary production (GPP) of global forest ecosystems. In this study, 
we investigated to what extent the coverage rate could impact forest GPP estimates from 1982 to 
2011. Here we show that the traditional calculation without considering the coverage rate globally 
overestimated the forest gross carbon dioxide uptake by approximately 8.7%, with a value of 
5.12 ±  0.23 Pg C yr−1, which is equivalent to 48% of the annual emissions from anthropogenic activities 
in 2012. Actually, the global annual GPP of forest ecosystems is approximately 53.71 ±  4.83 Pg C yr−1 
for the past 30 years by taking the coverage rate into account. Accordingly, we argue that forest 
annual GPP calculated by previous studies has been overestimated due to the exaggerated forest 
area, and therefore, coverage rate may be a required factor to further quantify the global carbon 
cycle.

Vegetation gross primary production (GPP) is the largest CO2 flux of the carbon cycle in terrestrial eco-
systems and impacts all of the carbon cycle variables1. Forest ecosystems, as important components of the 
terrestrial carbon cycle, always store much larger amounts of carbon than other terrestrial ecosystems2. 
Therefore, accurate quantification of GPP in forest ecosystems on a global scale would provide scientific 
foundations for predicting future changes in atmospheric carbon dioxide and climate, and for defining 
management options for the global carbon cycle3.

Quantifying global-scale GPP has been difficult because there are no direct measures at scales greater 
than the leaf level4. Currently, the traditional methods for estimating spatial-temporal variations in forest 
ecosystem production mainly include existing forest inventory, satellite remote sensing databases, inverse 
modeling using atmospheric transport models and atmospheric CO2 observations, and process-based 
carbon cycle model simulations. Because of the structural discrepancies5,6, estimates differ substantially 
in terms of magnitude and spatial distribution on regional and global scales using different methods6,7. 
In general, the uncertainty caused by method structural differences is inevitable during the estimation 
process. Note, however, that other external factors which may potentially impact the estimations cannot 
be neglected regardless of method. For example, forest coverage rate (%), a critical variable for grid-
ded forest area, is always neglected by calculations related to global annual carbon fluxes. In previous 
GPP research, for the gridded forest area, it was simply assumed that each grid was 100% covered by a 
given forest type, rather than taking the realistic coverage rate into consideration1,8,9. This inappropriate 
hypothesis would directly exaggerate the forest area and therefore overestimate the global annual GPP of 
forest ecosystems to a certain extent; in addition, it is true that some grids not categorized as forest on 
remote sensing land cover maps might also have a certain amount of forest area, however, these parts of 
GPP was completely not included in previous studies due to directly neglecting the lower forest coverage 
rate. Similarly, this kind of hypothesis would diminish the forest area to a certain degree and therefore 
underestimate the annual GPP of forest ecosystems.

In this study, based on forest ecosystem carbon budget model for china (FORCCHN), we reevaluated 
the global annual GPP (Pg C yr−1) of forest ecosystems by incorporating forest coverage rate of forest 
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grids (Fig.  1b) and non-forest grids (Fig.  1c) into calculation, and further investigated the extent to 
which forest coverage rate could impact the global annual GPP at a grid resolution of 0.5° ×  0.5° over 
the period of 1982− 2011.

Results
We simply compared the global GPP(g C m−2 yr−1) generated by FORCCHN with other studies related 
to seven light use efficiency(LUE) models’ outputs of five forest types during 2000− 2010 (ref. 9) and 
seven estimations of forest ecosystem during 1993− 2006 (ref. 1). Our model yielded comparable GPP 
per unit area as other methods on a global scale(Fig. 2). For example, FORCCHN generated a GPP of 
841.4 and 2748.7 g C m−2 yr−1 for evergreen needleleaf forest (ENF) and evergreen broadleaf forest (EBF), 
which is ~12% and ~11% higher, respectively, than the average value of the seven LUE models (750.4 
and 2479.1 g C m−2 yr−1). Meanwhile, the smallest discrepancy between our result and ref. 9 occurred in 
mixed forest (MIF) with GPP values of 1140.4 and 1144.3 g C m−2 yr−1, respectively, and a corresponding 
difference of only − 3.9 g C m−2 yr−1. In terms of forest ecosystem GPP, there were no particularly obvious 
discrepancies among the seven estimations, with a range varying from 1156.7 g C m−2 yr−1 for the LUE 
method to 1484.7 g C m−2 yr−1 for the MIAMI method. Meanwhile, the GPP generated by FORCCHN 
for the period of 1993− 2006 was 1329.1 g C m−2 yr−1, which is much closer to the average value of the 
seven estimations (1305.4 g C m−2 yr−1).

To further investigate the rationality of applying the FORCCHN model to evaluate the GPP per unit 
area of forest ecosystem on a global scale, a comparison concerning the global spatial distributions of 
averaged GPP (g C m−2 yr−1) derived from FORCCHN and ref. 8 over the 1982− 2011 period is shown 
in Fig.  3. Here, we extracted and recalculated the 30-year averaged GPP from ref. 8 at a resolution of 
0.5° latitude by 0.5° longitude to match the forest distribution of IGBP-DIS classification (Fig. 1a). Fig. 3 
shows that both of the spatial distributions of GPP are similar with regard to the largest values occurring 
in the equatorial tropics followed by monsoonal subtropical regions (e.g. south and east Asia), and humid 

Figure 1. Global spatial distribution of forest at a grid resolution of 0.5° ×  0.5°. a, IGBP-DIS forest 
classification. b,Forest coverage rate of forest grids(%).c,Forest coverage rate of non-forest grids(%).DNF, 
ENF, MIF, DBF and EBF represent deciduous needleleaf forest, evergreen needleleaf forest, mixed forest, 
deciduous broadleaf forest and evergreen broadleaf forest, respectively.The figure was produced using 
ArcGIS 10.1.
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temperate regions in eastern North America and western Europe. Boreal forests show a clear longitudinal 
gradient in northern Eurasia where GPP in boreal zone decreases toward the east, where the main forest 
type is deciduous needleleaf forest (DNF). Note, however, that GPP derived from FORCCHN in tropical 
rain forest (20 °S− 20 °N) was generally ~300 g C m−2 yr−1 smaller than that of ref. 8, except for parts of 
Africa. Conversely, compared with FORCCHN outputs, ref. 8 captured an obviously lower estimate in 
south-central Africa with a difference of approximately − 900 g C m−2 yr−1; presumably in response to the 
reclassification of tropical savanna into C3, C4 and C3/C4 types in ref. 8.

As analyzed above, our model generated comparable GPP per unit area as other related studies on a 
global scale; thus, it is convincing enough to detect the impacts of coverage rate on global annual GPP 
of forest ecosystems using the FORCCHN model. Here, we computed two GPP results based on two 
circumstances of forest coverage rate. Calculation I, termed ‘100% coverage’, is a traditional assumption 
that each grid is 100% covered by a given forest type and is generally adopted by most carbon flux stud-
ies at regional or global levels. Calculation II, termed ‘realistic coverage’, is a new strategy that takes the 
IGBP-DIS coverage rate into account to reflect the actual forest area of each grid. Because some land 
cover grids not categorized as forest might also have a certain amount of forest area, both realistic forest 
coverage of forest grids (Fig. 1b, 4) and non-forest grids (Figs. 1c,4) are taken into account in Calculation 
II.

Figure 2. Comparison GPP per unit area (g C m−2 yr−1) derived from FORCCHN with other 
related researches for globally different forest types. a, ENF. b, EBF. c, DNF. d, DBF. e, MIF. f, forest 
ecosystems. Orange, red, and green histograms represent the multi-year averaged GPP from ref. 9, ref. 
1, and FORCCHN, respectively. Error bars refer to one standard deviation. Ref. 9 consists of seven light 
use efficiency(LUE) models’ outputs for five forest types over the period of 2000− 2010: Carnegie–Ames–
Stanford Approach (CASA); Carbon Fixation (CFix); Carbon Flux (CFlux); Eddy Covariance-Light Use 
Efficiency (EC-LUE); Moderate Resolution Imaging Spectroradiometer (MODIS) GPP algorithm; Vegetation 
Photosynthesis Model (VPM) and Vegetation Photosynthesis and Respiration Model (VPRM). Ref. 1 is 
composed of seven estimations for forest ecosystems over the period of 1993− 2006: Model Tree Ensemble 
1 (MTE1); Model Tree Ensemble 2 (MTE2); Artificial Neural Network (ANN); Light Use Efficiency (LUE); 
Water Use Efficiency (WUE); Köppen-Geiger cross Biome (KGB) and MIAMI Model (MIAMI). The figure 
was produced using OriginPro 8.1.
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The global spatial comparsion of annual GPP (Tg C yr−1 grid−1) derived from two calculations dur-
ing 1982− 2011 is given in Fig. 5.It is evident that the difference between ‘100% coverage’ and ‘realistic 
coverage’ for forest grids is similar with the spatial distribution of IGBP-DIS coverage rate to some 
extent. For example, the overestimated GPP in most forest varies within the minimum range of 0− 0.5 
Tg C yr−1 grid−1 (Fig. 5d) when the corresponding coverage rate is more than 90% (Fig. 1b). Because of 
the lower coverage rate (40%− 70%) along the periphery of EBF between 20 °S and 20 °N (Fig. 1b), the 
largest overestimation of GPP is found with a value of 3− 6 Tg C yr−1 grid−1 (Fig. 5d). Note, however, 
that the ‘100% coverage’ does not always overestimate annual GPP at each forest grid compared with 
the ‘realistic coverage’. It is particularly true for some DNF and ENF girds in the Northern Hemisphere 
(Fig. 5d), where the difference between two calculations has been inversely underestimated by 0− 0.1 Tg 
C yr−1 grid−1. This phenomenon can be attributed almost entirely to the fact that each grid of DNF and 
ENF consists of ~14% and ~15% MIF, respectively (Fig. 4). The relatively higher GPP per unit area of 
MIF might counteract the effects of non-forest coverage, and increase total GPP of these DNF and ENF 
grids. With respect to the difference between ‘100% coverage’ and ‘realistic coverage’ for non-forest grids, 
the underestimated GPP in most grids varies within the range of 0− 0.5 Tg C yr−1 grid−1 (Fig. 5c,d) when 
the corresponding forest coverage is less than 5% (Fig. 1c). Meanwhile, due to the higher forest coverage 
(20%− 50%) along the periphery of forest ecosystems (Fig.  1c), the largest underestimation of GPP is 
observed with a value of 1.2− 4.5 Tg C yr−1 grid−1 (Fig. 5c,d).

Figure 3. A spatial comparison of global forest averaged annual GPP (g C m−2 yr−1) during 
1982−2011. a, FORCCHN. b, Ref. 8. The figure was produced using ArcGIS 10.1.

Figure 4. Averaged forest coverage rate(%) of the given IGBP-DIS land cover types at each grid. The 
figure was produced using OriginPro 8.1.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:10820 | DOi: 10.1038/srep10820

The long-term changes in GPP estimates are consistent between the two calculations. Both calcula-
tions show a significant GPP increase (p <  0.001) from 1982 to 2011 regardless of forest type (Fig.  6), 
which is broadly consistent with the trend of terrestrial vegetation productivity given by 18 CMIP5 earth 
system models over the 1986− 2005 period10. In terms of averaged annual GPP in the ‘100% coverage’ 
calculation, the forest types with the greatest carbon dioxide uptake are EBF, MIF, and ENF, with annual 
GPP of 39.58 ±  3.49 (mean ±  1 standard deviation), 10.84 ±  0.96 and 4.25 ±  0.72 Pg C yr−1, respectively 
(Table  1). Moreover, the global GPP estimates of forest ecosystems is 58.83 ±  5.61 Pg C yr−1, which is 
comparable to the observation-based estimations of 52.61− 67.54 Pg C yr−1(ref. 1) and satellite-based 
simulations of 37.59− 59.77 Pg C yr−1(ref. 9). As far as ‘realistic coverage’ calculation is concerned, the 
corresponding annual GPP estimates in EBF, MIF and DNF decrease to 35.13 ±  3.5, 9.65 ±  1.02 and 
1.23 ±  0.13 Pg C yr−1, respectively, while ENF and deciduous broadleaf forest (DBF) inversely increase 
to 4.51 ±  0.75 and 3.19 ±  0.47 Pg C yr−1, and gross carbon dioxide uptake by global forest ecosystems is 
reduced with an annual GPP of 53.71 ±  4.83 Pg C yr−1, which is comprised of 46.19 ±  4.24 Pg C yr−1 for 
forest grids and 7.52 ±  1.59 Pg C yr−1 for non-forest grids(Table 1). Overall, compared with the ‘realistic 
coverage’, the ‘100% coverage’ calculation, which was generally adopted by most previous studies, has 
overestimated annual GPP across all forest types with exception of ENF and DBF. In terms of global 
forest ecosystems, the annual GPP is approximately overestimated by 5.12 ±  0.23 Pg C yr−1, accounting 
for ~8.7% of the global GPP estimates in the ‘100% coverage’ calculation.

Discussion
At present, different methods used to quantify the global annual GPP (Pg C yr−1) of forest ecosystems 
show substantial disagreement. These uncertainties are suggested to arise from the discrepancies in GPP 
per unit area (g C m−2 yr−1) and forest area. In terms of GPP per unit area, significant uncertainties 
related to the climate-driven ecosystem models are due to differing model sensitivities to climate param-
eters and uncertain global climatological datasets11,12; in addition, uncertainties with the remote sensing 
driven13 or flux-tower based1 semi-empirical models are due to the fact that GPP is simulated as a 
function of leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (fPAR) or 
greenness indices such as the normalized difference vegetation index (NDVI)14, which are often contam-
inated by atmospheric interference, and may result in a misleading conclusion when vegetation becomes 

Figure 5. A spatial comparison of global forest annual GPP (Tg C yr−1 grid−1) during 1982−2011 
under different coverage rate. a,100% coverage. b,Realistic coverage of forest grids. c, Realistic coverage of 
non-forest grids.d, Difference between a and (b + c). The figure was produced using ArcGIS 10.1.
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stressed15. As discussed above, moderate discrepancies between our results and other studies, shown in 
Fig. 2 and Fig. 3, are reasonable and inevitable because of the method structural differences. This is also 
the reason why we concluded that FORCCHN can yield comparable GPP per unit area (g C m−2 yr−1) as 
other methods on a global scale. What is more, there are some literatures showing that nitrogen(N) depo-
sition has an impact on the carbon dioxide uptake by temperate, boreal and subtropical forest ecosystems 
in the Northern Hemisphere3,16, and Luyssaert et al. also proved that not accounting for N deposition 
resulted in a mean 11% lower net primary production (NPP) across European forests by comparing the 
BIOME-BGC simulations with and without N cycle17.Accordingly, N deposition not taken into account 
by FORCCHN model in present study might lead to underestimation of GPP to a certain degree.

Forest area, another critical factor for globally annual GPP, has not been paid enough attention in 
the previous studies. Here, we argue land cover classification and coverage rate are two major causes for 
the different estimates in global forest area. For example, a previous study has revealed changes in land 
cover maps could result in large differences in global GPP estimates1. In the present study, EBF exists in 
south-central Africa (e.g., Afghanistan, Zambia, Mozambique, and Southern Congo) based on IGBP-DIS 
classification (Fig. 1a); however, according to global land cover 2000 (GLC2000) and moderate resolution 

Figure 6. Interannual variation in GPP (Pg C yr−1) for different forest types during 1982−2011. a, ENF. 
b, EBF. c, DNF. d, DBF. e, MIF. f, forest ecosystems. The figure was produced using OriginPro 8.1.

ENF EBF DNF DBF MIF
Forest 

ecosystems

100% coverage 4.25 ±  0.72 39.58 ±  3.49 1.32 ±  0.13 2.84 ±  0.37 10.84 ±  0.96 58.83 ±  5.61

Realistic coverage

Forest girds 3.73 ±  0.58 31.00 ±  2.58 1.15 ±  0.12 2.25 ±  0.28 8.06 ±  0.73 46.19 ±  4.24

Non-Forest girds 0.78 ±  0.18 4.13 ±  0.91 0.08 ±  0.01 0.94 ±  0.19 1.59 ±  0.29 7.52 ±  1.59

Total 4.51 ±  0.75 35.13 ±  3.50 1.23 ±  0.13 3.19 ±  0.47 9.65 ±  1.02 53.71 ±  4.83

Difference − 0.26 ±  0.04 4.45 ±  0.06 0.09 ±  0.01 − 0.35 ±  0.11 1.19 ±  0.07 5.12 ±  0.23

Table 1.  Averaged global annual GPP (Pg C yr−1) for different forest types during 1982− 2011a. 
aUncertainty estimates refer to one standard deviation and are derived from the spread of 1982− 2011.
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imaging spectroradiometer (MODIS) land cover, the identical land is broadly classified into DBF and 
savanna, respectively. Hence, it is evident that inconsistent forest area of land cover classification maps 
could directly increase the uncertainty of globally annual GPP in forest ecosystems. With respect to 
coverage rate, most previous studies assumed 100% coverage of each spatial grid by a given forest type, 
whereas the IGBP-DIS classification shows that the coverage rate along the periphery of the forest is only 
40− 70% (Fig.  1b), and the averaged value of each grid is approximately 80.6% (Fig.  4), which largely 
deviates from the assumption of 100% coverage; meanwhile, some land cover grids not categorized as 
forest also contain a certain amount of forest area (Fig. 1c) and the averaged coverage rate could nearly 
approach to 3.5% (Fig. 4), which is absolutely not a negligible factor for estimating forest carbon fluxes 
on large scale. For these reasons, both the neglected forest coverage of forest grids and non-forest grids 
by previous studies could indeed overestimate and underestimate forest area, respectively, and therefore, 
we argue that their conclusions concerning carbon dioxide uptake by global forest ecosystems are likely 
to be further discussed and reevaluated. Besides, the contributions of land use and land cover change 
(LULCC) to anthropogenic carbon emissions are approximately 12.5% over the 2000− 2009 period18, and 
the largest carbon emissions by LULCC have been from land cove change, particularly the conversion 
of forests to non-forests, or deforestation19. Here, we also infer that the satellite-based approach used to 
document changes in forest area would increase the uncertainty of carbon emissions from LULCC, if the 
coverage rate is not properly considered in the estimation process.

In our study, the overestimated GPP in global forest ecosystems caused by coverage rate is approx-
imately 5.12 ±  0.23 Pg C yr−1. This amount is equivalent to 48% of the annual emissions from anthro-
pogenic activities in 2012 (9.7 ±  0.5 Pg C yr−1 for fossil-fuel combustion and cement production and 
1.0 ±  0.5 Pg C yr−1 for land-use change)20. Despite this conclusion, to some extent, large uncertainty 
remains and requires further discussion, particularly regarding the accuracy of coverage rate in the 
IGBP-DIS classification. We argue that coverage rate still may be a required factor to further quantify 
the global carbon cycle.

Methods
FORCCHN model. The model used in the study is FORCCHN, which is constructed to simulate 
seasonal and interannual variations in the carbon budget of forest ecosystems in the given areas21. 
FORCCHN model is built on two different timescales, including daily and annual processes. Primary 
daily processes are composed of photosynthesis, plant respiration, photosynthate allocation, litter pro-
duction, and soil respiration and transfer, while annual processes consist of distributions of forest stand 
assimilation, growth in the form of tree height and diameter at breast height (DBH), and the production 
of coarse wood debris(CWD). Detailed description of the daily processes and relevant computations 
concerning the increment of wood, basal diameter and tree height can be found in refs 21 and 22.

In FORCCHN, the daily GPP of an individual tree (kg C d−1) is given by:

= ( × × × , × ) ( )GPP GPPM f f f an aNSmin 1i i c dry T
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where GPPMi is the maximal daily gross primary production of the ith tree (kg C d−1); fc, fdry, fT and 
an × aNS represent the effects of carbon dioxide, water, temperature and soil active nitrogen on GPP, 
respectively; aNS is the soil active nitrogen amount (kg N m−2) and an =  150; DL is the possible sunshine 
duration (h); PARi is the photosynthetic active radiation of the canopy at noon (W m−2); LAIi is the leaf 
area index of the ith tree; Amj, Klj and Slj represent the maximal photosynthesis (kg C m−2 h−1), the 
extinction coefficient and the initial slope of light intension and photosynthesis (kg C W−2 h−1) of the 
jth forest type, respectively. 

Model forcing data on the global scale. FORCCHN is driven by climatic conditions, soil param-
eters and forest characteristics. I. Climatic conditions consist of the daily maximum and minimum air 
temperature (°C), precipitation (mm), relative humidity (%), wind speed (m/s), atmospheric pressure 
(hPa) and total solar radiation (W m−2).In this paper, we used the global meteorological forcing dataset 
from Princeton University (PU dataset) over the period of 1982− 2011 at a grid resolution of 0.5° ×  0.5°23.
This dataset provides near-surface meteorological data for driving land surface models and other terres-
trial modeling systems. It blends reanalysis data with observations and disaggregates in time and space. 
II. Soil parameters are composed of the soil organic matter (carbon and nitrogen pool in units of kg 
C m−2 and kg N m−2, respectively), soil physical parameters and litter pool decomposition parameters. 
The soil physical parameters, which are strongly dependent on the geographical position, include the 
soil field capacity (mm), wilting point (mm), bulk density (kg m−3), sand content (%), silt content (%) 
and clay content (%).In the present study, the Global Gridded Surfaces of Selected Soil Characteristics24, 
coupled with the Harmonized World Soil Database25, provides resources for the soil organic matter and 
physical parameters. Furthermore, the litter pool decomposition parameters can be found in refs 21 and 
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22. III. We ascertained the global forest types (Fig. 1a), forest coverage rate of forest grids (Fig. 1b) and 
non-forest grids (Fig. 1c) based on International Geosphere-Biosphere Program-Data and Information 
Service (IGBP-DIS) DISCover land cover classification system with a spatial resolution of 0.5° ×  0.5°26. 
In addition, the 8-day 5-km LAI of global land surface satellite (GLASS) in 198227 is also used to drive 
the model. Quality control flags in LAI were examined to screen and reject poor quality data. The 8-day 
GLASS data were composited into yearly maximum and minimum values. Note that the satellite datasets 
were resampled to the geographic projection and spatial resolution of the global PU dataset.

GPP estimation in Calculation II. On the basis of IGBP-DIS classification, a given land cover 
grid might include several forest types irrespective of whether the grid is forest or non-forest (Fig.  4). 
Accordingly, in order to estimate the total forest GPP(Tg C yr−1) at each grid, we firstly simulate the 
GPP per unit area (g C m−2 yr−1) of included forest types using FORCCHN model, and then multiply 
by the gird area (m2) and corresponding coverage rate (%) to get their total GPP, respectively. Finally, 
these kinds of total GPP for different forest types are added up and we take the aggregated GPP as the 
total forest GPP at each grid. The equation is list as follows:

∑= (( ) × × )
( )=

T P C S
3

GPP
j

GPP j j
1

5

where TGPP is the total forest GPP (Tg C yr-1) at each grid; j is an integer variable, delineating 5 forest 
types and ranging from 1 to 5; (PGPP)j and Cj represent the GPP per unit area (g C m−2 yr−1) and the 
coverage rate (%) of the jth forest type, respectively; S is the corresponding grid area (m2).
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