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Anderson localization and Mott 
insulator phase in the time domain
Krzysztof Sacha

Particles in space periodic potentials constitute standard models for investigation of crystalline 
phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue 
of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena 
can be observed in the time domain. Here we show that wave-packets localized on resonant classical 
trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott 
insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary 
states of a periodically driven particle. However, an additional perturbation that fluctuates in time 
results in disorder in time and Anderson localization effects emerge. Switching to many-particle 
systems we observe that depending on how strong particle interactions are, stationary states can 
be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the 
periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be 
observed in the time domain.

Nearly sixty years ago Anderson discovered that transport of non-interacting particles in the presence of 
disorder can stop totally due to interference of different scattering paths1. The suppression of the trans-
port is accompanied by localization of eigenstates in the configuration space2,3. Quantum description 
of classically chaotic systems reveals yet another version of Anderson localization (AL) where localiza-
tion of a particle takes place in the momentum space4. Suppression of classical chaotic diffusion in the 
momentum space was identified with AL after the quantum kicked rotor system was mapped to the 
quasi-random one-dimensional (1D) Anderson model5. Here we show that the presence of time disorder 
in periodically driven systems can induce AL in the time evolution.

Controlling interactions between bosonic particles in the presence of a space periodic potential allows 
for investigation of quantum phase transitions6. In the limit of weak interactions, particles in the ground 
state reveal long-range phase coherence. For strong repulsive contact interactions, the phase coherence is 
lost because it is energetically favorable to suppress quantum fluctuations of number of particles in each 
site of an external periodic potential. Such a Mott insulator (MI) phase is characterized by a gap in the 
excitation spectrum7,8. Transition between the superfluid and Mott insulator phases has been demon-
strated9 and is extensively investigated in ultra-cold atom laboratories10. In the present letter it is shown 
that repulsive particle interactions of a periodically driven system lead to formation of Mott insulator-like 
state where long-time phase coherence is lost.

It has been proposed that spontaneous breaking of time translation symmetry can lead to formation of 
time crystals where probability density at a fixed point in the configuration space reveals spontaneously 
time periodic behaviour11–14. The possibility of such a spontaneous process is currently a subject of the 
debate in the literature15–22. In our study we do not consider the problem of the time crystal formation 
but concentrate on an analysis of systems where time-periodicity is already given by an external driving.

Results
Anderson localization in the time domain.  We consider single-particle systems that periodically 
depend on time, i.e. Hamiltonians ( + ) = ( )H t T H t  where T is the time period. While the energy is 
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not conserved, there are so-called quasi-energy states un (in analogy to Bloch states in spatially periodic 
problems) that are time-periodic eigenstates, HFun= εnun, of the so-called Floquet Hamiltonian 

( ) = ( ) − ∂H t H t iF t. There are many different quasi-energy eigenstates of the systems but we will be 
interested in those that are represented by wave-packets localized on classical s-resonant orbits, i.e. on 
orbits whose periods equal sT where s is integer. Such extraordinary states exist in different experimen-
tally attainable systems like, e.g., electronic motion in a hydrogen atom in microwave field23,24, rotating 
molecules25 or an atom bouncing on an oscillating mirror26. The latter system will serve as an illustration 
of the ideas presented in this letter. In Fig. 1 classical motion of this system is described. From the sem-
iclassical point of view, existence of wave-packets which move along classical orbits is related to locali-
zation of quantum states inside elliptical resonant islands in the phase space26.

A single wave-packet moving on a s-resonant orbit cannot form a quasi-energy eigenstate because its 
period of motion is s times longer than the required period for all eigenstates of the Floquet Hamiltonian. 
However, superpositions of s wave-packets can form system eigenstates – in Fig. 2 we show an example 
for the s =  4 case. There are s such superpositions that are linearly independent, hence, there are s eigen-
states which reveal localized wave-packets moving along a s-resonant orbit. The corresponding 
quasi-energy levels εn are nearly degenerated with only small splittings related to rates of tunneling of 
individual wave-packets. That is, if a single wave-packet is prepared initially on a s-resonant orbit, it 
travels along the orbit but after some time tunnels to the positions of other wave-packets which form the 
system eigenstates but which are missing initially. If s Æ∞, the nearly degenerated eigenvalues εn form a 
quasi-energy band which is an analogue of the lowest energy band of spatially periodic systems. Now we 
can establish conjecture about the behaviour of periodically driven systems and systems of particles in 
spatially periodic potentials. A single wave-packet localized on a s-resonant orbit is an analogue of a 
Wannier state localized in a single site of a spatially periodic potential10 but in the time domain, see  
Fig. 2. There exist also excited wave-packets that move on a s-resonant trajectory26 which are analogues 
of Wannier states corresponding to excited energy bands of spatially periodic systems. The conjecture 
becomes formal when we derive Floquet energy of a periodically driven particle in the Hilbert subspace 
spanned by s individual wave-packets ϕj,

∑ψ ψ= ≈ − ( + . . ),
( )=

+
⁎E H J a a c1

2
c

1
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j j j
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Figure 1.  Panel (a): schematic plot of a particle bouncing on an oscillating mirror in the presence of the 
gravitational field. In the absence of the oscillations all classical trajectories are periodic with a period the 
longer, the greater energy of a particle. When the time periodic oscillations are on and their amplitude is not 
very big, orbits whose period is multiple of the mirror oscillation period survive. Such perturbation resistant 
orbits are located in resonant islands in the classical phase space. If the period of an orbit is s times longer 
than the mirror oscillation period T, where s is integer, we will call the orbit s-resonant. Panel (b): 
description of the system is more convenient if we choose the coordinate frame that oscillates with the 
mirror26. Then, the mirror does not move but the gravitational acceleration becomes time dependent. The 
resulting Hamiltonian of the system reads λ π( ) = / + + ( / )H t p z z t T2 cos 22  where the gravitational units 
have been used, i.e. = ( / ) /l m g0

2 2 1 3, = ( / ) /t mg0
2 1 3 and E0 =  mgl0 for length, time and energy, 

respectively, where m is particle mass and g  original gravitational acceleration. The results presented in 
Figs. 2–3 correspond to λ =  0.01 and T =  7.79.
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where ∫ψ ψ ψ ψ= ( )H dt H tF
sT

F0
 and ψ φ≈ ∑ = aj

s
j j1  has been substituted22. The tunneling 

rates between wave-packets that are neighbours in the time domain (see Fig. 2) φ φ= − +J H2j j F j1  
with the same absolute value =J Jj .

Description of a resonantly driven particle has been reduced to the problem of a particle in 1D lattice 
with nearest neighbour tunnelings (1). If we are able to create an additional disorder term, 
′ = ∑ =E E aj

s
j j1

2
 where Ej are random numbers, Eq. (1) will become the 1D Anderson model and AL 

phenomena will emerge. The disorder term can be realized by an additional small perturbation H′ (t) that 
fluctuates in time. That is, H′ (t + sT)= H′ (t) but between t and t + sT it behaves so that the set of 

φ φ= ′E Hj j j  reproduces a chosen set of random numbers. Then, the quasi-energy eigenstates of 
the total system, ( ) + ′( )H t H tF , are time periodic with the period sT but reveal superpositions of indi-
vidual wave-packets ψj with exponentially localized distributions. In Fig. 3 we describe an example of the 
realization of time disorder and show solutions that exhibit AL.

Time crystal phenomena are related to time-periodic evolution of probability density for measure-
ment of a particle at a fixed position. If there is no time disorder, such a probability reveals a uniform 
train of s humps that is repeated every sT period, see Fig. 2(b). If the disorder is on, the train is no longer 
uniform but reveals an Anderson localized distribution of humps, see Fig. 3.

Mott insulator phase in the time domain.  Let us consider N bosonic particles with repulsive con-
tact interactions, characterized by a parameter g0 >  0, that are periodically driven, e.g. we can focus on 

Figure 2.  Analysis of the quasi-energy eigenstates localized on s-resonant periodic orbit, with s =  4, for a 
particle bouncing on an oscillating mirror – the classical behaviour is described in Fig. 1. Panel (a) shows 
one of the eigenstates at t =  0.25T (solid line) and t =  0.3T (dash line). The eigenstate is a superposition of 4 
wave-packets that move on the classical orbit. Each wave-packet evolves with the period 4T but after T  they 
exchange their positions what makes the whole eigenstate periodic with the period T. There are 4 such 
eigenstates that are localized on the orbit. Proper superpositions of the eigenstates allows one to extract 4 
individual wave-packets, ψj, that are numbered in (a) and (b). After each period T of the time evolution the 
wave-packets exchange their positions in the following order ϕj + 1Æϕj (with j +  1 modulo 4). Crystalline 
structures are not visible in the configuration space, however, they emerge in the time domain. Panel (b) 
shows time evolution of the 4 wave-packets (plotted with different colours), whose superpositions form the 
eigenstates localized on the 4-resonant orbit, at z =  121 that is close to the turning point of a particle in the 
classical description. These wave-packets are analogues of Wannier states corresponding to the lowest energy 
band of a particle in a spatially periodic potential. Tunneling between wave-packets that are neighbours in 
the time domain are the leading tunneling processes. These processes are taken into account in (1). The 
corresponding absolute values of the tunneling rates φ φ= = ≈ ×+

−J H J2 6 10j j F j1
7 for the 

system parameters described in Fig. 1.
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ultra-cold atoms bouncing on an oscillating mirror. In the absence of the interactions, a Bose-Einstein 
condensate can be formed. Then, the system description reduces to a single particle problem and s
-resonant driving can be described by the Floquet energy (1). In order to describe behaviour of the 
interacting many-body system we may truncate the Hilbert space to a subspace spanned by Fock states 
, …,n ns1  where the occupied modes correspond to localized wave-packets ψj moving along a s-resonant 

trajectory. Then, the many-body Floquet Hamiltonian reads

∑ ∑≈ − ( + . . ) + ,
( )=

+
, =

ˆ ˆ ˆ ˆ ˆ† J a a c U n n1
2
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2 2
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where âi and ˆ †ai  are bosonic anihilation and creation operators and =ˆ ˆ ˆ†n a ai i i. The coefficients 
φ φ φ φ= ⁎U gij i i j j0

 describe interactions between particles that ocupy the same mode (for i =  j) 
and between particles in different modes (i ≠ j). The latter are negligible if propagating wave-packets 
never overlap. If they pass each other during the evolution along the orbit, ≠U 0ij  and the Hamiltonian 
(2) corresponds to a lattice model with long range interactions what could be surprising because the 
original particle interactions are zero range. For the parameters described in Fig. 1 and s =  4, Uij are about 
0.1Uii for i ≠ j.

If g0Æ0, the ground state of (2) is a superfluid state with long-time phase coherence. However, the 
long-time phase coherence is lost when /U NJ sii  because the ground state becomes a Fock state 

Figure 3.  Quantum description of a particle moving on the 4-resonant orbit in the presence of a small 
perturbation,  ( )α π π′( ) = ∑ 


− 

= { }H t z ncos 2 sin 2n n
t
T

t
T1

4
4 4

 , that fluctuates in time. The whole Floquet 

Hamiltonian HF(t) +  H′ (t) is time periodic with the period 4T and so do the eigenstates. The coefficients αn, 
in H′ , are chosen so that the set of φ φ′Hj j  reproduces a chosen set of numbers Ej, where ψj‘s are the 
wave-packets described in Fig. 2. We have chosen Ej =  4Jwj where wj are random numbers corresponding to 
a Lorentzian distribution π π( ) = /( + )W w w1j j

2 . Then, the Floquet energy (1) supplemented with 
′ = ∑E E aj j j

2
 constitutes the Lloyd model of 1D lattice where all eigenstates are Anderson localized and the 

exact expression for the localization length is known4. From the Lloyd model we know that the eigenstates  
are superpositions of the wave-packets, φ∑ ( , )a z tj j j , with ∝ − − /a ej

j j l
2

0  where l is the AL length and j0 is a  

number of the wave-packet around which a given eigenstate is localized. The wave-packets ψj arrive at a 
given position z in equidistant intervals in time, thus, the AL length in time is lt =  lT. Solid lines in (a) and 
(b) show one of the 4 eigenstates localized on the 4-resonant orbit at =z 121 versus time in the linear (a) 
and logarithmic (b) scales (the eigenstate is obtained in full numerical diagonalization of HF +  H′  but the 
solution of the Lloyd model is identical). Dash lines present behaviour of the eigenstates in the absence of 
the disorder in time, i.e. when H′  =  0. Despite the fact that the system is rather small, the characteristic 
exponential decay of the humps is clearly visible in (b) – the fitted exponential profile (dash-dotted line) 
corresponds to lt =  0.18T.
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/ , / , …, /N s N s N s 8,10. If we fix position in the configuration space and analyze what is the phase rela-
tion between wave-packets arriving one by one at this position (see Fig. 4), it turns out the phase is totally 
undefined. Moreover, there is a gap in the excitation spectrum of the order of Uii. Hence, the system 
reveals Mott insulator-like properties but in the time domain. Ultra-cold dilute atomic gases are prom-
ising laboratories for the realization of such a MI phase due to an unprecedented level of experimental 
control.

Discussion
Summarizing, we have shown that periodically driven systems can reveal non-trivial crystalline proper-
ties in the time domain. One-particle systems show Anderson localization in the time evolution if there 
are fluctuations in the periodic driving. Long-time phase coherence of periodically driven many-body 
systems can be lost due to particle interactions and the Mott insulator-like phase emerges.
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Corrigendum: Anderson 
localization and Mott insulator 
phase in the time domain
Krzysztof Sacha

Correction to: Scientific Reports https://doi.org/10.1038/srep10787; published online 15 June 2015; updated  
28 February 2018

This Article contains typographical errors. In the Results section under subheading ‘Mott insulator phase in the 
time domain’.

“In order to describe behaviour of the interacting many-body system we may truncate the Hilbert space to a 
subspace spanned by Fock states |n1, …​, ns〉​ where the occupied modes correspond to localized wave-packets ψj 
moving along a s-resonant trajectory. Then, the many-body Floquet Hamiltonian reads

∑ ∑≈ − + . . +
=
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=
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where âi  and ˆ†ai  are bosonic anihilation and creation operators and ˆ ˆ ˆ†=n a ai i i . The coefficients 
φ φ φ φ= 〈〈 | | 〉〉⁎U gij i i j j0  describe interactions between particles that ocupy the same mode (for i =​ j) and between 

particles in different modes (i ≠​ j).”

should read:

“In order to describe behaviour of the interacting many-body system we may truncate the Hilbert space to a sub-
space spanned by Fock states |n1, …​, ns〉​ where the occupied modes correspond to localized wave-packets φ j 
moving along a s-resonant trajectory. Then, the many-body Floquet Hamiltonian reads

∑ ∑≈ − + . . +
=

+
=

ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †H J a a h c U a a a a1
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where âi and ˆ†ai  are bosonic anihilation and creation operators. The coefficients ⁎φ φ φ φ=U gii i i i i0  describe 
interactions between particles that occupy the same mode (for i =​ j) and φ φ φ φ= 〈〈 | | 〉〉⁎U g2ij i i j j0  between parti-
cles in different modes (i ≠​ j).”

In the Legend of Figure 2,

“Proper superpositions of the eigenstates allows one to extract 4 individual wave-packets, ψj, that are numbered 
in (a) and (b).”

should read:

“Proper superpositions of the eigenstates allows one to extract 4 individual wave-packets, φ j, that are numbered 
in (a) and (b).”

In the Legend of Figure 3,
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“The coefficients αn, in H′​, are chosen so that the set of 〈​〈​φj|H′​|φj〉​〉​ reproduces a chosen set of numbers Ej, where 
ψj’s are the wave-packets described in Fig. 2.”

should read:

“The coefficients αn, in H′​, are chosen so that the set of 〈​〈​φj|H′​|φj〉​〉​ reproduces a chosen set of numbers Ej, where 
φj’s are the wave-packets described in Fig. 2.”

and

“The wave-packets ψj arrive at a given position z in equidistant intervals in time, thus, the AL length in time is 
lt =​ lT.”

should read:

“The wave-packets φ j arrive at a given position z in equidistant intervals in time, thus, the AL length in time is 
lt =​ lT.”

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
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