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Shifting material source of Chinese 
loess since ~2.7 Ma reflected by Sr 
isotopic composition
Wenfang Zhang, Jun Chen & Gaojun Li

Deciphering the sources of eolian dust on the Chinese Loess Plateau (CLP) is fundamental to 
reconstruct paleo-wind patterns and paleo-environmental changes. Existing datasets show 
contradictory source evolutions of eolian dust on the CLP, both on orbital and tectonic timescales. 
Here, the silicate Sr and Nd isotopic compositions of a restricted grain size fraction (28–45 μ m) 
were measured to trace the source evolution of the CLP since ~2.7 Ma. Our results revealed an 
unchanged source on orbital timescales but a gradual source shift from the Qilian Mountains to 
the Gobi Altay Mountains during the past 2.7 Ma. Both tectonic uplift and climate change may 
have played important roles for this shift. The later uplift of the Gobi Altay Mountains relative to 
the Qilian Mountains since 5 ±  3 Ma might be responsible for the increasing contribution of Gobi 
materials to the source deserts in Alxa arid lands. Enhanced winter monsoon may also facilitate 
transportation of Gobi materials from the Alxa arid lands to the CLP. The shifting source of Asian 
dust was also reflected in north Pacific sediments. The finding of this shifting source calls for caution 
when interpreting the long-term climate changes based on the source-sensitive proxies of the eolian 
deposits.

The eolian deposits on the Chinese Loess Plateau (CLP) provide a valuable archive for paleo-environmental 
changes1,2. The CLP began to receive massive atmospheric dust since at least the late Oligocene3,4, which 
has been affected by three notably prominent exogenic processes of the late Cenozoic, namely the uplift 
of Tibetan Plateau, the Cenozoic cooling, and the retreat of the Paratethys5–7. Many of paleo-proxies have 
been developed assuming an unchanged source region8–10. Thus, source research is crucial to understand 
the paleo-proxies developed for the loess deposits on the CLP.

The radiogenic isotopic tracers, such as Nd, Sr and Pb isotopes, have been widely used to trace the 
source of eolian dust on the CLP and its response to the tectonic and climatic oscillations11–15. Combined 
with other mineral and geochemical tracers16–19, a similar conclusion seems to be reached in recent 
years that Alxa arid lands, which receive materials mainly from the Gobi Altay Mountains to its north 
and the Qilian Mountains to its south through fluvial systems13, are the main source regions for the 
late-Pleistocene loess20. However, it is still controversial that whether the detrital source of eolian dust 
on the CLP changed on both orbital and tectonic timescales.

According to the unchanged Nd isotopes, Jahn et al.21 suggested no provenance shift on orbital times-
cales. In contrast, the electron spin resonance signal intensity and crystallinity index of fine-grained 
quartz and detrital zircon ages suggested that the provenance of loess and paleosol on the CLP is het-
erogeneous and spatially variable at least during last glacial-interglacial cycle17,22,23. Recently, Che and 
Li19 reported more datasets of detrital zircon ages with less statistical uncertainties; Nie and Peng24 
conducted detailed studies on the assemblage of heavy minerals. Both of the two studies indicated no 
glacial-interglacial and spatial change in eolian source for the loess on the CLP. These controversies may 
be originated from the different size fractions of dust particles on the CLP, as the electron spin resonance 
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signal intensity and crystallinity index are based on fine-grained quartz, while detrital zircon age distri-
butions and heavy minerals analysis are based on the coarse particles.

On tectonic timescales, the shifting Sr, Nd, and Pb isotopic compositions of the < 20 μ m silicate frac-
tions at the boundary of loess-paleosol and red clay indicated a source shift possibly in response to the 
gradual additions of relatively young orogenic materials by glacial grinding in central Asia15,25. However, 
Wang et al.26 argued that the decreasing 87Sr/86Sr ratios over the past 2.5 Ma may reflect increasing grain 
size rather than source shift while the small changes in ε Nd values might be within the external analytical 
error. Considering the relatively small variations of Nd isotopic composition of the source materials, the 
controversies on the source shift of Asian dust might be solved by Sr isotopic composition when the 
influence of grain size and pedogenic alternation on the 87Sr/86Sr ratio are carefully considered.

The Sr isotopic composition of sediments can be strongly dependent on the grain size distribution 
and chemical weathering27,28. The influence of grain size on the 87Sr/86Sr ratio may be excluded by using 
restricted grain size fraction. Previous investigation indicates that the grain size effect is mainly contrib-
uted by the clay minerals in the < 2 μ m size fraction28. The < 2 μ m clay fraction has much higher 87Sr/86Sr 
ratio than the > 2 μ m fractions while the > 2 μ m fractions have very similar 87Sr/86Sr ratios due to the 
limited changes in the content of clay minerals28. Thus, the usage of < 20 μ m size fraction in tracing dust 
sources25 may exaggerate the influence of grain size change on the 87Sr/86Sr ratio. Recently, Chen and Li14 
used the silicate Sr isotopic compositions of a specific grain size (28–45 μ m) fraction as a sensitive source 
tracer. Combined with Nd isotopic composition, they concluded that this specific grain size Sr isotopic 
composition is mainly controlled by the source change other than eolian sorting14. The data of Chen and 
Li14 indicated the source shift of the CLP over the past 2.6 Ma, but the details of the source shift are still 
unclear due to the low-resolution data (only 10 data point).

This work provides a high-resolution (~30 thousand years per sample) silicate Sr isotopic records of 
the 28–45 μ m grain size fraction of the eolian dust on the CLP since ~2.7 Ma. Combined with Nd isotopic 
data, the paper aims to constrain the source evolution of the eolian deposits on the CLP on both orbital 
and tectonic timescales. This work also discusses the possible source shift of Asian dust reflected in the 
Pacific sediments, based on the 87Sr/86Sr data of eolian dust extracted from the north Pacific sediments 
in previous study29.

Results
Samples for Sr and Nd analysis were collected from the Xifeng site (35.45 °N, 107.49 °E) on the central 
CLP (Fig. 1a) and the locations of the Pacific sites cited for comparisons are illustrated in Fig. 1b. The 
87Sr/86Sr ratios of the 28–45 μ m silicate fractions (donated as 87Sr/86Sr* hereafter) of the loess and paleosol 
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Figure 1. Location map of this study. a, Map shows the geographic setting and sampling site. Blue arrow 
indicates transportation of eolian dust by northwesterly wind. Gray arrows indicate input of terrigenous 
materials to the Alxa arid lands from the Qilian Mountains and the Gobi Altay Mountains by fluvial 
systems13. For discussion, Jingchuan site25 and Lingtai site14,26 with published Nd and Sr isotopes are also 
shown. b, Map shows the distributions of Gobi desert, Taklimakan desert and the locations of the Pacific 
cores29,46,47 used in this study. Arrows show transportation of Taklimakan dust and Gobi dust by westerly 
wind and winter monsoon, respectively. We used the “Matlab” software to generate the two maps and the 
maps will not have a copyright dispute.
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samples show a gradually decreasing trend of about 0.004 since ~2.7 Ma (Supplementary Table S1; Fig. 2). 
No obvious glacial-interglacial variations in 87Sr/86Sr* have been observed based on neighboring loess and 
paleosol samples. The gradually decreasing trend of 87Sr/86Sr* since ~2.7 Ma is consistent with the records 
in Jingchuan and Lingtai sections14,25,26 (Fig.  3). The mean value of 87Sr/86Sr* in this study (0.718978, 
n =  97) is slightly lower than that of Lingtai site (0.720292, n =  10) by Chen and Li14 based on the same 
grain size fraction. As expected, the mean value of 87Sr/86Sr* in this study (0.718978, n =  97) is about 
0.006 lower than that of the < 20 μ m silicate fractions of the Jingchuan section (0.724730, n =  66)25 and 
is 0.002 lower than that of the bulk silicate fractions of the Lingtai section (0.721130, n =  43)26. Opposite 
trends of 87Sr/86Sr ratio between the Xifeng section and the Pacific cores have been observed during 3 and 
0.8 Ma (Fig. 1b and Fig. 4). However, the CLP records and Pacific cores show similar decreasing trend of 
the 87Sr/86Sr ratio of Asian dust since 0.8 Ma (Fig. 4a and Fig. 4b). The ε Nd value of Xifeng section shows 
an increasing trend by 1.5ε  unit since ~2.7 Ma (Supplementary Table S2; Fig. 2).

Discussion
The limited variations of 87Sr/86Sr* between the neighboring loess and paleosol layers (Fig. 2) imply an 
unchanged eolian source on the CLP during the glacial-interglacial cycles. However, it may be argued 
that 87Sr/86Sr* is not sensitive enough to reflect the subtle source changes and the influence of source 
shifts on 87Sr/86Sr* is offset by the effect of grain size changes (Fig. 4). We think such possibilities are very 
unlikely since potential source shift to the Gobi Altay Mountains17 would largely decrease 87Sr/86Sr* due 
to the low 87Sr/86Sr ratio of Gobi materials11,13,14,20. The possible increasing grain size in the 28–45 μ m 
fraction during glacial times30,31 will decrease the 87Sr/86Sr ratio.

It has been shown that the 87Sr/86Sr ratio of the clay particles is about 0.006 higher than that of other 
grain size fractions11, but the maximum variation of grain size would only introduce less than 0.001 
change in the 87Sr/86Sr ratios of bulk silicate14,20. Thus, the observed 0.004 shift of the 87Sr/86Sr* over the 
past 2.7 Ma (Fig. 2) may not introduced by sorting process but mainly reflect source change. The primary 
control of source shift on 87Sr/86Sr* is also supported by the long term shift in ε Nd values (Fig. 2). Unlike 
Sr isotope, Nd isotope has been commonly used as a robust source tracer with minimal effects from 

Figure 2. Evolutions of Sr and Nd isotopic compositions of the eolian deposits of the Xifeng section on 
the Chinese Loess Plateau. From top to bottom, are the global ice volume and/or temperature variations 
reflected by the oxygen isotopic composition of benthic foraminifera36, the evolutions of Sr (the blue solid 
dots are corresponding to the paleosol samples) and Nd isotopic compositions with error bars (the solid 
dots are corresponding to the paleosol samples) of the eolian deposits since ~2.7 Ma in this study, and the 
stratigraphy of magnetic susceptibility of the Xifeng section with red solid dots (loess samples) and blue 
solid dots (paleosol samples), showing the locations of the samples selected for Sr isotopic analysis.
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mineral sorting27. The negative correlation between Nd and Sr isotopes lies on the binary mixing line 
between the Gobi Altay Mountains and the Qilian Mountains (Fig. 3), confirming binary source evolu-
tion of the eolian deposits on the CLP13,14,19. Thus, the gradual decreasing 87Sr/86Sr* and increasing ε Nd 
values reflect a gradual source shift of the CLP from the Qilian Mountains to the Gobi Altay Mountains 
since ~2.7 Ma (Fig. 3).

The source shift of eolian dust on the CLP over the past ~2.7 Ma might be related to tectonic and 
climatic changes. It has been shown that the CLP receives eolian dust mainly from the Alxa arid lands 
by prevailing near surface winds13,14 (Fig. 1a). However, Alxa arid lands only act a sediment holder rather 
than a producer. It receives materials mainly from the Gobi Altay Mountains and the Qilian Mountains 
through fluvial systems13. Mountain processes are the most important mechanisms that produce the silt 
particle of the loess deposits32. Mountain erosion is a strong function of relief33. The differential uplift 
history between the Qilian Mountains and the Gobi Altay Mountains may have modulated the relative 
contribution of debris from the two mountains to the CLP. Considering a relative stable Gobi Altay 
Mountains, the progressive uplift of North Tibetan Plateau has been inferred to explain the decreasing 
ε Nd values of Asian dust since the middle Miocene13. However, the evidence of late Pliocene uplift of the 
Tibetan Plateau is controversial34. The uplift of the Gobi Altay Mountains since 5 ±  3 Ma35 may increase 
the relative material contribution of the Gobi materials to the Alxa arid lands, and finally the CLP.

The decreasing trend of 87Sr/86Sr* over the past ~2.7 Ma also seems to match the gradual cooling trend 
of global climate or growth of Northern Hemisphere glaciations as reflected by the oxygen isotope of 
benthic foraminifera36 (Fig. 2), implying control of climate change on the source shift. Climate change 
may modulate the eolian source on the CLP by several means. Global cooling is normally accompanied 
with the drop of snow line and growth of mountain glacial. Glaciation is one of the most efficient ways 
of physical erosion37. Thus, the glacial on the Gobi Altay Mountains produced more materials to the 
Alxa arid lands. Strengthened Siberia High and thus Asian winter monsoon7,30,31 in response to global 
cooling would transport more materials38 from the Gobi Altay Mountains to the Alxa arid lands (Fig. 4a 
and Fig. 1a).

The source shift of eolian dust on the CLP might be reflected in the Pacific sediments. Previous studies 
indicated that the eolian dust in the north central Pacific sediments is mainly derived from the arid lands 
of Asian interior through westerly winds while the dust deposited in circum-Pacific regions is dominated 
by volcanic ash39. Taklimakan desert in northwest China is suggested to be one of the most important 
sources for long-range eolian dust transport by westerly jet stream40–42. Occasionally, Gobi dust can also 
be lifted into the middle troposphere and transport to East Asia and north Pacific Oceans43 (Fig. 1b).

The pacific sediments show very different evolutionary patterns of Sr isotopic composition compared 
to the loess on the CLP (Fig. 4a and Fig. 4b). It has been noticed that the north central Pacific sediments 
are the mixtures of eolian dust from Asian interior arid areas with more radiogenic Sr isotopic composi-
tion and volcanic ash with less radiogenic Sr isotopic composition29,39. Considering a relatively constant 
volcanic activity over the past 3 Ma44, the increasing 87Sr/86Sr ratios of pacific sediments between 3 and 
~0.8 Ma might be caused by increasing Asian dust flux in response to aridification of Asian interior 
since ~2.7 Ma (Fig.  4b). The decreasing 87Sr/86Sr ratios since ~0.8 Ma may attribute to the increasing 
addition of the Gobi dust because contribution of Asian dust dominated the eolian deposits during this 
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Figure 3. Cross plot between the silicate Nd and Sr isotopic compositions of eolian dust on the Chinese 
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materials in the Alxa arid lands are based on < 75 μ m silicate fraction11,13. The mixing line is in 10% steps. 
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www.nature.com/scientificreports/

5Scientific RepoRts | 5:10235 | DOi: 10.1038/srep10235

period and thus the 87Sr/86Sr ratio is not sensitive to the changing relative contribution of Asian dust 
and volcanic ash. The Earth’s climate changed fundamentally after middle Pleistocene transition with the 
dominant periodicity of glacial cycles shifting from 41 ka to 100 ka45. The full glacial climate after middle 
Pleistocene transition strengthened winter monsoon, which transported more materials from the Gobi 
Altay Mountains with lower 87Sr/86Sr ratios to the Pacific Oceans. The increasing eolian flux in the Pacific 
core V21–14646 since ~0.5 Ma and ODP site 885/88647 since ~0.8 Ma may have conformed to this climate 
evolution (Fig. 1b and Fig. 4b).

Methods
The eolian deposits at the Xifeng site consist of tens of loess and paleosol alternations deposited over 
the past ~2.7 Ma and the red-clay formation aged from ~6.2 Ma to ~2.7 Ma. The chronology of loess and 
paleosol deposits have been well constrained by magnetostratigraphy48 as well as orbital tuning based on 
climate proxies of grain size and magnetic susceptibility30.

The 97 samples for Sr isotopic analysis are selected based on magnetic susceptibility (Fig. 2). Paleosol 
layers are characterized by high magnetic susceptibility due to the enhanced pedogenesis during the 
warm and wet interglacial period while loess layers of low magnetic susceptibility are product of glacial 
climate49. Both samples of high and low magnetic susceptibility are selected for most of the loess and 
paleosol alternations. The purpose of this sampling strategy is two fold. The neighboring loess layer and 
paleosol layer have very different grain sizes. Such difference is even larger than the long-term shift of 
grain size over the past 2.7 Ma50. Thus, the samples of neighboring loess and paleosol may help to exam-
ine if the restricting 28–45 μ m grain-size would eliminate the effect of grain size on the 87Sr/86Sr signal. 
Second, the glacial loess may have different eolian source compared to the interglacial paleosol17,22. Thus, 
the sampling strategy could also eliminate possible bias of the samples to loess or paleosol layers, which 
enables us to detect the long-term source shift over the past ~2.7 Ma.

Figure 4. Comparison of Sr-Nd isotopic evolution with other records of the Chinese Loess Plateau and 
Pacific cores. a, Map shows the evolutions of Sr and Nd isotopic compositions of eolian deposits of the 
Xifeng section (this study), Lingtai section14 and Quartz grain size30,31 and eolian flux38 of the Xifeng section 
on the CLP; b, Map shows the evolutions of Sr isotopic compositions and the eolian flux and volcanic ash 
flux in Pacific sediments29, and also the eolian flux of other two Pacific sites, V21–14646 and 885/88547.
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To remove carbonate fraction, the selected samples were dissolved in diluted acetic acid (0.5 mol/L) 
after Chen et al.11 in the ultrasonic bath for about 10 minutes. Then, the remaining silicate fractions were 
sieved to obtain 28–45 μ m grain size fraction. The extracted 28–45 μ m silicate fractions were digested in 
a mixture of HNO3+ HF solution. The Sr and Nd elements in the digested solution were then purified 
using standard ion exchange techniques. The determination of Sr and Nd isotopes were preformed on 
a Neptune plus Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) at the 
Department of Earth Sciences, Nanjing University. Instrumental bias was corrected to 86Sr/88Sr of 0.1194 
and 146Nd/144Nd of 0.7219, respectively. The Sr standard SRM987 and Nd standard JMCNd2O3 were peri-
odically measured to check the reproducibility and accuracy of isotopic analyses with mean 87Sr/86Sr ratio 
of 0.7102387 ±  42 (external standard deviation, n =  10) and mean 143Nd/144Nd ratio of 0.5120997 ±  15, 
respectively. Epsilon Nd values (ε Nd) were calculated using chondritic values of 143Nd/144Nd =  0.51263851. 
The analytical results and samples information are listed in Supplementary Table S1 and Supplementary 
Table S2.
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