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Impact of dataset diversity on 
accuracy and sensitivity of parallel 
factor analysis model of dissolved 
organic matter fluorescence 
excitation-emission matrix
Huarong Yu, Heng Liang, Fangshu Qu, Zheng-shuang Han, Senlin Shao, Haiqing Chang & 
Guibai Li

Parallel factor (PARAFAC) analysis enables a quantitative analysis of excitation-emission matrix 
(EEM). The impact of a spectral variability stemmed from a diverse dataset on the representativeness 
of the PARAFAC model needs to be examined. In this study, samples from a river, effluent of a 
wastewater treatment plant, and algae secretion were collected and subjected to PARAFAC analysis. 
PARAFAC models of global dataset and individual datasets were compared. It was found that the 
peak shift derived from source diversity undermined the accuracy of the global model. The results 
imply that building a universal PARAFAC model that can be widely available for fitting new EEMs 
would be quite difficult, but fitting EEMs to existing PARAFAC model that belong to a similar 
environment would be more realistic. The accuracy of online monitoring strategy that monitors the 
fluorescence intensities at the peaks of PARAFAC components was examined by correlating the 
EEM data with the maximum fluorescence (Fmax) modeled by PARAFAC. For the individual datasets, 
remarkable correlations were obtained around the peak positions. However, an analysis of cocktail 
datasets implies that the involvement of foreign components that are spectrally similar to local 
components would undermine the online monitoring strategy.

Dissolved organic matter (DOM) has always been a major concern in natural and engineered sys-
tems1. Conventional characterization techniques, which generally focus on the bulk characters of DOM, 
e.g. total organic carbon (TOC), ultraviolet (UV) absorbance, and specific UV absorbance at 254 nm 
(SUVA), cannot provide further information on DOM fractions2. In addition to these traditional tech-
niques, liquid chromatography with organic carbon detector (LC-OCD) and fluorescence spectroscopy 
are increasingly adopted to characterize DOM3–5. Three-dimensional fluorescence excitation-emission 
matrix (EEM) spectroscopy enables a rapid and sensitive characterization of DOM. The EEM can be 
correlated to the fluorescence components in the DOM and thus give more insight into DOM frac-
tions and their chemical characteristics6–8. Moreover, Parallel Factor (PARAFAC) analysis was proposed 
to mathematically separate spectrally overlapping EEM data into chemically independent fluorescence 
components9. Studies have adopted PARAFAC analysis of EEMs to characterize DOM in various natural 
and engineered environments, e.g. marine, fresh water, ground water environments, as well as waste-
water, recycled and drinking water systems10–15. Some researchers even proposed to develop a universal 
model that involved samples from aquatic environments as diverse as possible, so that it can be directly 
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fitted to new EEMs obtained from different sources13,16–19. Moreover, online monitoring of DOM using 
EEM-PARAFAC has drawn a lot of attention, and many studies have referred to the possibility of online 
monitoring with this new technique13,16,20,21.

However, EEM PARAFAC has its limitations. It is known that DOM in different aquatic environments 
incorporates different fluorescence components, and even similar components from different systems 
can exhibit shifts in locations of fluorescence peaks13,16. The shifts of componential peaks, either due to a 
new component introduced by peculiar samples or resulted from a long sampling duration, may lead to 
systematically biased estimates of the spectrum and score of a component in the PARAFAC model13,16. 
Therefore, it was recommended that an EEM dataset for PARAFAC analysis would better contain samples 
from similar types of sources13,19. However, because of the samples or components introduced through 
some unexpected sources (especially when involving a long sampling duration or a contamination event), 
the discrepancy derived from the variation of sample sources would be inevitable during the PARAFAC 
modeling13,15. Therefore, it is necessary to examine the PARAFAC model that incorporates samples from 
diverse sources and to analyze the actual sensitivity of the bias derived from diversity of the sample set.

In terms of the universal model mentioned above, a large dataset of EEMs that contains a great 
diversity in DOM source and chemical quality is required to build this universal model. Therefore, if 
the sample set diversity does impact the accuracy and sensitivity of the PARAFAC model, the universal 
model will be highly vulnerable. Although PARAFAC models that derived from large datasets (including 
307-1479 sample) were successfully developed in some studies13,19,22, the sampling sources in each of 
these researches focused on only a relatively narrow range of natural or engineered environments. The 
effect of spectral variability on the accuracy and sensitivity of a PARAFAC model still deserves further 
investigation.

In terms of online monitoring, a commonly proposed strategy is to monitor key pairs of 
excitation-emission wavelength at the componential peaks that were determined by PARAFAC mode-
ling13,16,21. This method assumed that the fluorescence overlap is much gentler at the target wavelengths, 
so that the maximum fluorescence (Fmax) of each component in a sample (which is known to be propor-
tional to the concentration of the corresponding component14,22,23) could be estimated quite accurately 
from the measurement at the excitation/emission wavelengths of the peaks. Murphy et al.13 as well as 
Shutova et al.16 assessed the sensitivity of this strategy, and proved that the fluorescence overlap was very 
minor at peak points (R2 = 0.90-1.00). But EEMs in their studies were sampled only from recycled water 
treatment plants and drinking water treatment plants respectively, which undermine the applicability of 
the result to EEMs from other sources. Moreover, some contaminated samples with fluorescence com-
ponents derived from other sources are believed to be highly possibly encountered during a long term 
monitoring, because the monitoring site may access to these multi sources. Therefore, it is necessary to 
examine the accuracy and sensitivity of the peak monitoring strategy at the multi-source situation or 
during a contamination event.

The aim of this paper was therefore to investigate the representativeness and sensitivity of a PARAFAC 
model with a dataset of EEMs stemmed from different aquatic sources and the implications for develop-
ing a universal PARAFAC model. Furthermore, whether monitoring fluorescence intensity at the peaks 
of PARAFAC components was feasible to estimate the Fmax (especially during a contamination event) 
was also evaluated.

Results

Effect of sample set diversity on the accuracy and sensitivity of PARAFAC model.  Peak loca-
tion comparison among PARAFAC models.  Samples from a river (76 samples), effluent of a wastewater 
treatment plant (62 samples), and algae excretion (85 samples) were collected and subjected to following 
analysis. They are named as natural organic matter (NOM), effluent organic matter (EfOM), and extra-
cellular organic matter (EOM) hereinafter. A global dataset that contains all samples was also subjected 
to PARAFAC analysis and the obtained global model was compared with each individual model.

According to the procedures recommended by Murphy et al.24, 3-7 components were finally identified 
in the datasets (Fig. 1). All models converged quickly and each was half split validated (Supplementary 
Fig. S1-6). In the global model, 7 PARAFAC components were identified. The peak locations of these 
components and the comparison with previously identified components in published studies are listed 
in Table 1. The sources of the samples in published models are also listed for comparison. Tyrosine-like 
(G7) and tryptophan-like substances (G2 and G4) are common to practically all published models, and 
these protein-like substances can be found in almost all different sources. But at times G2 and G4 were 
merged into one component in published research25. Similarly, G1 and G6 are also commonly referred 
to humic-like components. G5 was relatively rarely reported, and was mainly founded in surface water 
and algal secretion14,26. G3 was almost exclusively found in the published models encompassing algal 
excretion samples26,27.

As shown in Fig. 1, components in global model encompassed all components in individual models, 
and no new component was identified in individual models. Components G2, G4, G6 were identified 
in all models. G2 and G4 were combined in NOM model. G3 and G5 were unique to EOM, while G7 
was only found in EfOM. This demonstrated the ability of PARAFAC modeling to identify the peculiar 
components from some different sources. As shown in Fig.  1, although all components in the global 
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model can be matched with the similar components in the individual models, the peak locations of some 
similar components were subtly shifted in different models.

Figure  2 shows the variation in peak location and/or spectral shape of the components in different 
models. The shapes of G2 and G4 in NOM model were distinctly different from others. This can be 
attributed to that the G2 and G4 were combined in NOM model. But it can be seen that the peak loca-
tions of G2 and G4 in NOM model were relatively similar to others. Differences in location were also 
observed for components G1 and G6, with spectra shifts up to ~20 nm observed in both excitation and 
emission spectra.

The tucker congruence coefficients (rc) of similar components in global model and individual models 
are listed in Table  2. This quantitative analysis confirmed the observations before. rc of G2 and G4 in 
NOM model were quite low (rc < 0.85). This can be attributed to the inability of NOM model to distin-
guish component G2 and G4. G1 in NOM and EfOM models, as well as G6 in all three individual have 
relatively low rc (0.85 < rc < 0.95). The rest G3, G5 and G7 components have rc larger than 0.95, which 
represents a striking similarity between the corresponding components in global and individual models.

It can be easily found that component G1, G2, G4 and G6 have more than one similar component 
in individual models, while components in global model that have only one similar component in indi-
vidual models always have a high rc (i.e. G3, G5 and G7). It can be concluded that PARAFC modeling 
is able to accurately identify distinguishing components with almost no peak shift; however, when mod-
eling a dataset contained similar components with a subtle peak shift, the global PARAFAC model will 
treat them as a same one, but the peak shift can distort the component identified in the global model.
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Figure 1.  Contour plot of 7 components in Global model and the corresponding components in individual 
models (components were numbered arbitrarily by the PARAFAC models).
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Fmax correlation among PARAFAC models.  The peak locations and spectrums of components deter-
mined in PARAFAC model directly affect the decomposition of an EEM in the modeling. According to 
the definition of PARAFAC analysis, if a peak shift (or a spectrum variation) happens to a component, 
the final Fmax calculated can be considerably varied. Moreover, because of the interdependence of the 
simultaneously estimated components in a PARAFAC model, the inclusion of one or more poorly esti-
mated components can even significantly affect the spectra and Fmax of other components.

Liner regressions of component Fmax of same samples in the global against those in individual models 
were conducted. The correlation coefficient (R2) and regression coefficient (m) of corresponding individ-
ual and global components are listed in Table 3. R2 values of G1 in EfOM and G2 in NOM and EOM 
were low (<0.85), while R2 values of G1 and G2 in other individual model were relatively high (>0.9). 
It can be also found that G3, G5 and G7, which did not have similar components from other sources 
with their excitation (Ex) and emission (Em) loadings accurately estimated in the global model, have 
extremely high R2 values (>0.95). Therefore, the similar components from different sources involved in 
the global model impacted the sensitivity and accuracy of that model. They were regarded as the same 
component in the global model, and the Ex/Em loadings as well as Fmax of these components obtained 
were biased. However, G4 and G6 in global model also exhibited a poor estimation of Ex/Em loadings, 
but the Fmax of these components obtained from global model were relatively accurate (R2 > 0.9). This 
means a poor estimation of Ex/Em loading in a PARAFAC model is not necessary to result in a poorly 
estimated Fmax. However, the poor correlation of Fmax between global and individual models for some 

This study Previous studies

Component λex/λem λex/λem

Description and source 
assignment Reference

G1 230,305/414 <250,320/400 G2, Microbial humic-like 
fluorescence (wastewater)

13

224,314/398 Component 1, humic-like 
substances (surface water)

34

G2 280/332 290/352 G6, protein, Tryptophan-like 
(wastewater)

25

275/340 Peak A, tryptophan (M. 
aeruginosa)

13

225,280/340 C3, protein like (surface 
water)

22

G3 245,285,335/420 250,340/438 Component 4, humic-like 
substances (M. aeruginosa)

27

260,360/440 Component 3, humic-like 
substances (M. aeruginosa)

26

G4 225/332 <250/348 G5, protein, Tryptophan-like 
(wastewater)

13

<224/344 Component 3, protein like 
(surface water)

35

G5 245,290/364 <250,290/360
C4, amino acids, free or 
protein bound (surface 

water)
16

250,290/360 Component 4, protein-like 
substances (M. aeruginosa)

13

G6 265,365/472 <250,370/464
G1, Terrestrial humic-like 

fluorescence in high nutrient 
and wastewater impacted 

environments (wastewater)

9

270,360/478 Component 3, humic-like 
(coastal water)

25

270,360/470 C2, humic-like (surface 
water)

14

G7 265/314 270/300 G7, Protein, Tyrosine-like 
(wastewater)

26

270/305 Component 3, tyrosine 
(lake)

13

<300,280-380
Component 6, protein-
like, microbial delivered 

(drinking water)
22

Table 1.  Description and wavelength positions of PARAFAC components in the Global model, and their 
comparisons with previously identified components.
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components means that the alternative PARAFAC models (global and individual models) are not inter-
changeable in estimating the intensities of some problem components.

The regression coefficients (m) were also calculated. As shown in Table 3, the m values are far from 
1.0 in some regressions, although the corresponding R2 values are relatively high. It resulted from the 
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Figure 2.  Comparison of excitation and emission loadings of PARAFAC components in different models 
(excitation to the left of emission spectra).

Global NOM (Ex/Em) EOM (Ex/Em) EfOM (Ex/Em)

G1 0.9052/0.9826 0.9782/0.9076

G2 0.9390/0.7315 0.9994/0.9987 0.9908/0.9827

G3 0.9827/0.9638

G4 0.9672/0.7670 0.9976/0.8776 0.9650/0.9790

G5 0.9637/0.9512

G6 0.9779/0.9337 0.9025/0.9078 0.9563/0.9215

G7 0.9945/0.9885

Table 2.  Tucker correlation coefficients (rc) of similar components from global and individual models. rc 
that is lower than 0.95 is featured in a bold type.

Sample Components in global model

G1 G2 G3 G4 G5 G6 G7

NOM R2 0.9610 0.8070 0.9795 0.9957

m 1.0353 0.5674 0.5192 0.4498

EOM R2 0.6217 0.9708 0.9271 0.9538 0.9795

m 0.8675 1.0334 0.3053 1.1283 0.8324

EfOM R2 0.7117 0.9383 0.9909 0.9883 0.9966

m 0.8610 0.9476 0.9623 0.9056 0.9857

Table 3.  Correlation coefficient (R2) and regression coefficient (m) of the linear regression of Fmax in 
individual models versus the global model. R2 that are significantly different from 1.0 are featured in a bold 
type.
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different Ex Em loadings of a component resolved in different models. However, this departure should 
not be bothered. Because in DOM samples the Fmax cannot be convert to concentrations, it can be 
only used for relative quantification. As long as Fmaxs of a component in a sample modeled in different 
PARAFAC models are highly correlated (with high R2 value), both of these Fmax values can be used for 
the relative quantification.

Correlation between fluorescence intensity at the peak and Fmax.  To assess the accuracy and sensitivity 
of the peak monitoring strategy, Fmax of each component was regressed against the fluorescence intensi-
ties in the original EEMs. This analysis was done for each individual dataset (i.e. NOM, EOM, EfOM). 
In order to model a contaminant event, e.g. river sample contaminated by algal excreta or effluent of 
wastewater treatment plant, two mixture datasets (76 NOM samples + 10 EOM samples and 76 NOM 
samples + 10 EfOM samples) were constructed, and subjected to PARAFAC analysis and the correlation 
analysis described above.

According to the linear regression analysis, the R2 was close to 1.0 around the peak location for com-
ponents in all individual models (Fig. 3 and Supplementary Fig. S7-8). The R2 values at the peak locations 
in different individual models are shown in Table  4 and Supplementary Table S1-2. All the R2 values 
are higher than 0.9, which indicated a striking correlation. This means the overlapping of fluorescence 
intensity from different components was less occurred around the peak area. Therefore, the Fmax of a 
component in a sample can be accurately estimated by the fluorescence intensity measured at the peak. 
Moreover, even if a subtle peak shift is encountered, the fairly big high R2 area shown in Fig. 3 and Fig. 
S7-8 indicates a still accurate estimation of Fmax.

The regression results of the cocktail dataset shown in Fig. S9 and S10 and Table 4 indicated a rel-
atively weak correlation between Fmax and fluorescence intensity. As shown in Table  4, at the peaks of 
NOM3 in NOM + EOM model and NOM 1, 2, and 3 in NOM + EfOM model, Fmax did not strongly 
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Figure 3.  Contour plot of each component, and correlation coefficient (R2) and regression coefficient (m) 
obtained via linear regression (Fmax against original fluorescence intensity) for each component in the NOM 
model.

Components NOM1 NOM2 NOM3

Peak location(λex/λem) 240,310/394 260,365/446 225,275/336

NOM dataset R2 0.9794, 0.9785 0.9684,0.9543 0.9303, 0.9059

m 0.9071, 0.8594 0.8428,0.8975 1.2316, 0.9320

NOM+EOM R2 0.9812,0.9768 0.9578,0.9787 0.7947, 0.8311

m 0.8606,0.5879 0.4950, 0.7984 0.7586, 0.9927

NOM + EfOM R2 0.8011, 0.8597 0.8137, 0.7790 0.9354, 0.7564

m 0.1235, 0.1127 0.0677, 0.0803 0.7962, 0.8455

Table 4.  Correlation coefficient (R2) and regression coefficient (m) obtained from linear regression (Fmax 
against original fluorescence intensity) with NOM dataset, NOM+EOM, and NOM+EfOM dataset. R2 that 
are significantly different from 1.0 are featured in a bold type.
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correlated with the peak intensity (R2 < 0.85). As shown in Fig.  1,2, components in EOM and EfOM 
models that do not exist in NOM model are obviously overlapped with NOM components, e.g. EOM5 & 
NOM3, EOM4 & NOM3. Therefore, the relatively lower R2 found in the mixed model can be attributed 
to the spectral overlap between the intrusive components and the original components.

Similar to the explanation for the m value in Table  3, the value of m of Fmax against fluorescence 
intensity detected in Table 4 needs not to be minded. As long as R2 value in current regression is high, 
the measured fluorescence intensity at the peak can be correlated to the Fmax, and in turn, correlated to 
the concentration of the corresponding component.

Discussion
According to the results above, it can be concluded that when involving diverse sample sources, the 
PARAFAC model can successfully decompose different components. The distinguishing components 
from peculiar sources (e.g., G3, G5, and G7) can be discriminated, while the similar components from 
different sources will be treated as single component (e.g. G1, G2, G4, and G6). However, the peak shift 
occurred between similar components from different sources (G1 and G2) undermined the sensitivity 
and representativeness of the model. Therefore, a spectral variation of a component derived from the 
diversity of sampling source is believed to impact the development of a global PARAFAC model. All 
the occurrences discussed above are summarized in Fig.  4. Although the dataset obtained in current 
research is far from big and diverse enough to construct a universal PARAFAC model as discussed by 
Fellman et al.19, the bias found in the global PARAFAC model in current research could be extrapolated 
to that proposed universal model. Some published studies also showed this point 13,16. It was found that 
the spectral variation derived from differences of treatment processes and raw water contributed to 
PARAFAC’s difficulty. Fellman et al.19 also found that samples from different sources caused a problem 
when fitting a new sample set to an existing PARAFAC model. Therefore, it is considered that building 
a universal PARAFAC model that could be widely available for directly fitting new EEMs would be quite 
difficult, but fitting new EEMs to existing validated PARAFAC model that all belong to a narrow aquatic 
environment would be more realistic19,23.

The ability of PARAFAC modeling to discriminate the distinguishing components from peculiar 
sources implies that EEM-PARAFAC analysis is able to identify a contamination event and serve as an 
early warning strategy, but the new component introduced (or contamination indicator) must be spec-
trally different from the existing components (without spectral overlap) (as shown in Fig.  4). Because 
of the rapidness and high sensitivity of this method, fluorescence monitoring has been proposed to 
be applied in the cross-connection detection in dual distribution systems, in integrity monitoring in 
a reverse osmosis process, and in microbial contamination detection in a groundwater based drink-
ing water supply plant15,21,28. Loadings for emission and excitation spectra of all components identified 
in current research have been listed in Supporting Information (Table S3, S4 and S5). The distinctive 
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Figure 4.  Schematic diagram of the feasibility of developing universal model, contamination warning, and 
online peak monitoring under different occurrences of componential spectroscopy
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components originated from algal excretion and EfOM identified in current research may provide a ref-
erence for warning a M. aeruginosa bloom or a contamination of water supply by wastewater in further 
application.

In terms of online monitoring, the remarkable correlation between fluorescence intensity measured 
and Fmax of corresponding component around the peak location in the individual models (Table 4, and 
Table S1-2 in Supporting Information) implies that monitoring via a small number of simple fluorom-
eters with appropriate wavelength selectivity (i.e. peak picking method) should capture essentially the 
same information as would online monitoring of full EEMs. Moreover, the sensitivity and accuracy of 
this peak monitoring strategy should be hardly affected by the peak shift, because of the relatively big 
high R2 area observed (Fig. 3 and Supplementary Fig. S7-8). But the relatively low R2 of some compo-
nents in the mixture models (that were constructed for modeling NOM samples contaminated by EOM 
or EfOM) implies that during a contamination event (especially for those contaminant components that 
are spectrally overlapped with the original components), the peak monitoring strategy mentioned above 
may fail (as shown in Fig. 4). This overlap seems to be less possible when involving a single and unal-
tered DOM source. With all the considerations above, it is suggested that a regular check of unexpected 
fluorophore intrusion is necessary during the implementation of the peak monitoring strategy.

Methods
Sample description.  In order to enable the diversity of an EEM dataset, a mixture of natural, indus-
trial and manipulated samples were collected in this research. Samples were collected from an olig-
otrophic river dominated by terrestrial DOM derived from runoff, as well as effluent of a municipal 
wastewater treatment plant and organic matter secreted by algae which were regarded as the major 
sources of microbial derived DOM in aquatic environment.

Songhua River is located in the northeast part of China. 76 grab samples were collected during March 
to May, 2013. Samples were transported cold and filtered through 0.45 μm cellulose ester membrane 
(Taoyuan Co. Ltd., China), and then stored at 4 °C. These samples were referred to as natural organic 
matter (NOM).

Effluent organic matter (EfOM) was sampled from the Wenchang Wastewater Plant (Harbin, China), 
in which anaerobic-aerobic activated sludge treatment process was employed. The raw wastewater of 
WWTP was mainly municipal wastewater with a small portion of industrial wastewater. 62 EfOM sam-
ples were collected during one month. They were stored at 4 °C, and filtered through 0.45 μm cellulose 
ester membrane (Taoyuan Co. Ltd., China) prior to analysis.

Extracellular organic matter (EOM) excreted by algae was another microbial derived DOM in aquatic 
environment17. EOM was extracted from lab cultured Microcystis aeruginosa because of its prevalence in 
algae blooms in China29. M. aeruginosa was cultured in batch mode with BG11 medium at temperature 
of 25 °C with illumination of 5000 lx provided for 14h every day. Cultures were harvested at different 
phases during culture time of 20-40 days. Algal EOM was extracted by centrifuging the cell suspension 
at 10,000 rpm (11,179 g) and at 4 °C for 15 min and subsequently filtering the supernatant with 0.45 μm 
mix cellulose filter. In order to enable a larger EOM dataset for PARAFC analysis, ultrafiltration (UF) 
was conducted. Beforehand, the dissolved organic carbon (DOC) concentration of the extracted EOM 
was first measured with a TOC analyzer (multi N/C 2100S, Analytic Jena, Germany), and then the 
EOM solution was diluted to 5 ± 0.2 mg/L as DOC. Membrane filtration of the EOM was performed in 
a 400 mL unstirred dead-end cell (Amicon 8400, Millipore, USA). A flat sheet polyethersulfone (PES) 
UF membrane (OM 100076, Pall, USA) with molecular weight cut-off of 100 kDa was adopted. Nitrogen 
gas at a constant pressure of 0.03 MPa was used to drive the filtration. The feed, permeate, retentate, 
and backwash solution were collected during the filtration (n = 85). These samples contained identical 
components from the EOM but with different compositions, which enable a large enough dataset (20-100 
samples) for PARAFAC analysis19.

Fluorescence spectroscopy and PARAFAC modeling.  The pH values of samples used for the EEM 
spectral analysis were all adjusted to 7.0 ± 0.1 beforehand. The ultraviolet-visible (UV-Vis) absorbances 
(200-800 nm in 1nm intervals) of all samples were measured using an UV-Vis spectrophotometer (Varian 
Cary 300 UV-Vis) beforehand. After that fluorescence of each sample was measured in a 1 cm cuvette 
using a Fluorescence Spectrophotometer (F7000, Hitachi, Japan) at room temperature (21 ± 1 °C). EEMs 
were generated by scanning over excitation wavelengths of 220-450 nm at an interval of 5 nm and emis-
sion wavelengths of 250-550 nm at an interval of 1 nm. Excitation and emission slit widths were both set 
at 5 nm. Photomultiplier tube (PMT) voltage at 700 V and scanning speed at 2400 nm/min were adopted. 
EEM of Milli-Q water sample was collected everyday throughout the experiment period. The average 
Raman scatter peak (λEx/Em = 350/398 nm) value of 55.3 ± 3.2 arbitrary unit (A.U). (n = 119) showed the 
stability of the instrument12,30.

PARAFAC analysis uses an alternating least-squares algorithm to decompose the data signal into a set 
of trilinear terms and a residual array9:
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1

ijk
f

F

if jf kf ijk
1

where xijk is the intensity of the ith sample at the jth variable (emission mode) and at the kth variable 
(excitation mode); aif is directly proportional to the concentration of the fth analyte at emission wave-
length j; bjf is a scaled estimate of the emission spectrum of the fth analyte; ckf is linearly proportional 
to the specific absorption coefficient (e.g., molar absorptivity) at excitation wavelength k and eijk is the 
residual noise, representing the variability not accounted for by the model.

The 3 individual EEM datasets (i.e. NOM, EOM, and EfOM), as well as a global dataset which encom-
passed all samples from different sources (223 EEMs) and two mixed datesets (62 NOM + 10 EOM and 
62 NOM + 10 EfOM) were subjected to PARAFAC analysis respectively. PARAFAC modeling procedures 
were conducted according to the tutorial published by Murphy et al.24. The datasets were modeled using 
drEEM (http://www.models.life.ku.dk/drEEM) toolbox in Matlab® according to the tutorial, the appendix 
of drEEM toolbox, and the help files in drEEM.

Briefly, all EEMs were subjected to inner filter effect correction according to the UV-Vis absorbance 
data obtained before24,31. The EEMs were also Raman calibrated by normalizing to the area under the 
Raman scatter peak (Ex = 350 nm, Em = 381-426 nm) of Milli-Q water samples, run the same day. Then 
non-trilinear data were eliminated according to the tutorial. Since the global dataset and the mixed 
datasets encompassed large concentration gradients, each EEM in the datasets was normalized to its total 
signal before PARAFAC modeling. It allowed the model to focus on the chemical variations between 
samples rather than the magnitude of total signals, and it also increased the chance that minor peaks 
would be revealed. After the preprocessing above, PARAFAC modeling was conducted for each dataset. 
A series of PARAFAC models consisting of 3-7 components were generated. The number of fluorescence 
components was identified by a validation method including split half and residual analysis. After vali-
dating the model, the normalization was reversed by multiplying the scores by the sum of the squared 
value of all variables of the sample.

After PARAFAC modeling, vectors a, b, and c for each dataset were obtained for following analyses.

Data analysis.  In order to verify the representativeness and sensitivity of the global model, the excita-
tion and emission spectrums of similar components from individual models and global model were 
compared. Tucker congruence coefficients were used to determine the similarity of two pairs of excitation 
and emission spectrum according to eq. (2):

Σ

Σ Σ
=

( )
r XY

X Y 2
c 2 2

where X and Y were two Ex loadings (or Em loadings) from two PARAFAC models compared, and rc was 
the congruence coefficient of the excitation spectrum (or the emission spectrum). A rc value in the range 
of 0.85-0.94 has been seen as corresponding to a fair similarity, and values higher than 0.95 indicating 
that the factors can be considered to be equal32,33.

Previous studies proposed that monitoring the fluorescence data at the peak positions to estimate 
the PARAFAC Fmax

13,16. However, the fluorescence overlap at the peak positions may deteriorate the 
accuracy of this estimation. To assess the accuracy and sensitivity of this online monitoring strategy, 
the PARAFAC intensity for each component (defined in eq. (3)) was regressed against the fluorescence 
intensities in the original EEMs. Linear regression was performed to obtain slope (m) and correlation 
coefficients (R2) as a function of wavelength.

= = , …, = , …, = , … = , … ( )F a b c i I j J k K f F1 ; 1 ; 1 ; 1 3ijkf if jf kf

where Fijkf is the calculated maximum fluorescence intensity of the fth component in the ith sample at the 
jth variable (emission mode) and at the kth variable (excitation mode). The aif, bjf, and ckf were obtained 
from the PARAFAC model and defined in eq. (1). Thus, in the regression, for each wavelength pair in 
the EEM, an i x 1 vector of xijk (defined in eq. (2)) was correlated with the i x 1 vector of Fijkf, with this 
procedure repeated for each component in the PARAFAC model. The regression was conducted for each 
dataset (i.e. NOM, EOM, EfOM, the mixed datasets, and global dataset).
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