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Dzyaloshinskii-Moriya Interaction 
and Spiral Order in Spin-orbit 
Coupled Optical Lattices
Ming Gong1,2, Yinyin Qian1, Mi Yan3, V. W. Scarola3 & Chuanwei Zhang1

We show that the recent experimental realization of spin-orbit coupling in ultracold atomic gases 
can be used to study different types of spin spiral order and resulting multiferroic effects. Spin-orbit 
coupling in optical lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which is 
essential for spin spiral order. By taking into account spin-orbit coupling and an external Zeeman 
field, we derive an effective spin model in the Mott insulator regime at half filling and demonstrate 
that the DM interaction in optical lattices can be made extremely strong with realistic experimental 
parameters. The rich finite temperature phase diagrams of the effective spin models for fermions and 
bosons are obtained via classical Monte Carlo simulations.

The interplay between ferroelectric and ferromagnetic order in complex multiferroic materials presents 
a set of compelling fundamental condensed matter physics problems with potential multifunctional 
device applications1–4. Ferroelectric and ferromagnetic order compete and normally cannot exist simul-
taneously in conventional materials. While in some strongly correlated materials, such as the perovskite 
transition metal oxides5–10, these two phenomena can occur simultaneously due to strong correlation. 
Nowadays construction and design of high-T c magnetic ferroelectrics is still an open and active area of 
research11. These materials incorporate different types of interactions, including electron-electron inter-
actions, electron-phonon interactions, spin-orbit (SO) couplings, lattice defects, and disorder, making the 
determination of multiferroic mechanisms a remarkable challenge for most materials12,13. In this context 
an unbiased and direct method to explore multiferroic behavior in an ideal setting is highly appealing.

On the other hand, the realization of a superfluid to Mott insulator transition of ultracold atoms in 
optical lattices 14 opens fascinating prospects15 for the emulation of a large variety of novel magnetic 
states16–18 and other strongly correlated phases found in solids because of the high controllability and 
the lack of disorder in optical lattices. For instance, it has been shown16,17 that the effective Hamiltonian 
of spin-1/2 atoms in optical lattices is the XXZ Heisenberg model in the deep Mott insulator regime. 
On the experimental side, superexchange interactions between two neighboring sites have already been 
demonstrated19 and quantum simulation of frustrated classical magnetism in triangular optical lattices 
has also been realized20. These experimental achievements mark the first steps towards the quantum 
simulation of possible magnetic phase transitions in optical lattices.

In this paper, we show that the power of optical lattice systems to emulate magnetism can be com-
bined with recent experimental developments21–24 realizing SO coupling to emulate multiferroic behavior. 
Recently, SO coupled optical lattices have been realized in experiments for both bosons25 and fermions26, 
where interesting phenomena such as flat band26–28 can be observed. The main findings of this work are 
the following: (I) We incorporate spin-orbit and Zeeman coupling into an effective Hamiltonian for spin-
1/2 fermions and bosons in optical lattices in the large interaction limit. We show that SO coupling leads 
to an effective in-plane Dzyaloshinskii-Moriya (DM) term, an essential ingredient in models of spiral 
order and multiferroic effects in general. The DM term is of the same order as the Heisenberg coupling 

1Department of Physics, the University of Texas at Dallas, Richardson, Texas, 75080 USA. 2Department of Physics 
and Center for Quantum Coherence, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China. 
3Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 USA. Correspondence and requests for materials 
should be addressed to V.W.S. (email: scarola@vt.edu) or C.Z. (email: chuanwei.zhang@utdallas.edu)

Received: 06 January 2015

Accepted: 19 March 2015

Published: 27 May 2015

OPEN

mailto:scarola@vt.edu
mailto:chuanwei.zhang@utdallas.edu


www.nature.com/scientificreports/

2Scientific RepoRts | 5:10050 | DOi: 10.1038/srep10050

constant. (II) We study the finite temperature phase diagram of the effective spin model using classical 
Monte Carlo (MC). We find that competing types of spiral order depend strongly on both SO and effec-
tive Zeeman coupling strength. (III) We find that the critical temperature for the spiral order can be of 
the same order as the Heisenberg coupling constant. Thus, if magnetic quantum phase transitions can 
be emulated in optical lattices, then spiral order and multiferroic-based models can also be realized in 
the same setup with the inclusion of SO coupling.

Results
Effective Hamiltonian. We consider spin-1/2 ultracold atoms loaded into a two-dimensional (2D) 
square optical lattice. We restrict ourselves to the deep Mott insulator regime where the charge/mass 
degree of freedom is frozen while the spin degree of freedom remains active. Here the atomic hyperfine 
levels map onto effective spin states. The scattering length between atoms in optical lattices can be con-
trolled by a Feshbach resonance. Certain atoms, e.g., 40K, exhibit considerable tunability29. To derive the 
inter-spin interaction in this regime we first consider a two-site tight-binding model,
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g σσ′ is the interaction strength between species σ and σ′, m is the mass of the atom, and V x( ) is a lattice 
potential. Here :: denotes normal ordering. For a general theory the tunneling is assumed to be spin 
dependent, which is a feature unique to ultracold atom systems17,18. The second term is the Rashba SO 
coupling30, written in the continuum as p px y y xγ σ σ( − ). But on a lattice it can be written as
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where c c ci i i= ( , )↑ ↓
† † † , σ denotes Pauli matrices, and i d w p wx i x i ex∫λ γ= − +

⁎  is the SO coupling strength. 
dx dyd ≡ ( , ) is the vector from a site at position r j to a site at r i, where r rdx ei j x= ( − ) ⋅  and 
r rdy ei j y= ( − ) ⋅ . Eq. 2 describes the tunneling between neighboring sites paired with a spin flip. The 

magnitude and sign of λ can be tuned in experiments using coherent destructive tunneling methods31. 
The third term is the external Zeeman field V nz i i= ∑ ϒσ σ σ,  with 2ϒ = ± ϒ/σ .

In the deep Mott insulator regime, the degeneracy in spin configurations is lifted by second order 
virtual processes. The effective Hamiltonian H eff  can be obtained using perturbation theory. We take the 
Mott insulator as the unperturbed state and derive the corrections of the effective Hamiltonian by the 
standard Schrieffer-Wolf transformation17,32. The Schrieffer-Wolf transformation applies a canonical 
transformation H e HeiS iS

eff =
−  to obtain the second order Hamiltonian H H iS V[ ]eff 0

1
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= + ,  by elim-
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, and extend the two-site model to the whole lattice, yielding
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The first two terms are Heisenberg exchange and Zeeman terms, respectively, while the last two terms 
arise from SO coupling. In solid state systems the third term is called the DM interaction33,34, which is 
believed to drive multiferroic behavior. The definition of the D vector and the Γ  tensor will be presented 
below. The structure of these terms can be derived from basic symmetry analyses but the coefficients 
must be computed microscopically. In the following we derive the coefficients in Eq. 3 by considering 
the coupling between four internal degenerate ground states { ; ; ; ; }α ∈ ↑ ↑ , ↑ ↓ , ↓ ↑ , ↓ ↓  
through the spin independent and dependent tunnelings tσ and λ. The couplings are different for fermi-
ons and bosons, as illustrated in Fig. 1.

Fermionic atoms. For fermionic atoms, there are only two possible excited states ex  =  ;0↑ ↓   
and 0; ↑ ↓ , as shown schematically in Fig.  1(a). We find J J t t U2 4x y( + )/ = /↑ ↓ , 
J J dx dy U U2 8x y

2 2 2 2 2λ( − )/ = ( − + ) /( − ϒ ), and J t t U d U U2 4z
2 2 2 2 2λ= ( − ) / − /( − ϒ )↑ ↓ , with 

d dx dy2 2 2= + . The DM interaction coefficient is 
t t U U U dy dxD 2 2 02 2 2 2λ= ( + )(ϒ − ) /( (ϒ − ))( , , )↑ ↓ , and the effective Zeeman field contains 

d UB 4 2 0 0 12 2 2 2λ= (ϒ − ϒ /(ϒ − ))( , , ). Note that without SO coupling the model reduces to the 
well-known XXZ Heisenberg model with rotational symmetry16,17. However, this symmetry is broken by 
the SO coupling, yielding an XYZ-type Heisenberg model. Similar results are also observed for bosons.
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Bosonic atoms. For bosonic atoms, there are six excited states ex  =  ;0↑ ↑ , ;0↑ ↓ , ;0↓ ↓ , 0; ↑ ↑ ,  
0; ↑ ↓ , 0; ↓ ↓ , as shown in Fig. 1(b). Without SO coupling, the only allowed inter-state second-order 
transition is between 2  and 3 , similar to the fermionic case. The presence of SO coupling permits other 
inter-state transitions, therefore the bosonic case is much more complex than the fermionic case. For 
simplicity we only show the results for U U U U= = =↑↑ ↓↓ ↑↓ , which yields 
J J t t U J J d d U U2 4 2 4x y x y x y

2 2 2 2 2λ( + )/ = − / , ( − )/ = ( − ) /( − ϒ ),↑ ↓  
J t t U U t t U d U U4 2 2z

2 2 2 2 2 2 2 2λ= − / + 
(ϒ − )( − ) + 

/ ( − ϒ ),↑ ↓ ↑ ↓  
t t U U U dy dxD B2 2 0 and 0 0 42 2 2 2λ= − ( + )(ϒ − ) / (ϒ − )( , , ), = ( , , ϒ).↑ ↓  
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the Heisenberg model, while the imaginary part contributes to Γ ij. In a square lattice with 
d d 0x y = , this term vanishes. However, for tilted lattices, such as triangular and honey-
comb, this term should be significant.

Lattice parameters. We estimate the possible parameters that can be achieved in a square optical 
lattice V x y V x V y( , ) = ( ) ( ), where V x V k xsin LL

2( ) = ( ). We define the lattice depth s V E RL= /  in 
units of he recoil energy E k m2R L

2 2= / , where kL is the wavevector of the laser. The SO coupling coef-
ficient is given by k mRγ ∼ / , kR is the wavevector of the external Raman lasers, and k kR L~  in most 
cases. The Raman lasers are pure plane waves, and serve as a perturbation to the hopping between adja-
cent sites.

We use the Wannier functions of the lowest band without SO coupling to calculate the tight binding 
parameters t and λ. In a square lattice, coordinates decouple and the Bloch functions are Mathieu 

a

b

Figure 1. Transition processes due to different tunneling mechanisms. Spin-conserving tunneling (solid 
lines, tσ terms) and SO coupling mediated tunneling (dashed lines, λ terms) are plotted for spin-1/2 
fermions (a) and spin-1/2 bosons (b) µσ is the chemical potential. The lowest 4 levels are ground states, and 
the higher energy levels are the excited states.
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 functions. The Wannier functions can be obtained from the Fourier transform of the Bloch functions. 
Our numerical results are presented in Fig. 2(a). The large s limit, t t E s s4 exp 2Rappr

3 4π= / ( − ).
/~

, is also plotted for comparison. Note that U E k a s8R L s
1 2 3 4π/ ( / ) / /~  is in general much larger than t and 

can be controlled through a Feshbach resonance independently.
In Fig. 2(b) we plot D J/  as a function of tξ λ= /  for U U=σσ′ , t t=σ . D J/  reaches the maxi-

mum value of 1.0 at tλ = . This is in sharp contrast to models of weak multiferroic effects in solids with 
D J D J 0 001 0 1/ = / . − .~ , which is generally induced by small atomic displacements35. Optical lat-
tices, by contrast, can be tuned to exhibit either weak or strong DM terms. This enhanced tunability 
enables optical lattice systems to single out the effects of strong DM interactions and study the impact 
of the DM term.

There are notable differences between our model and corresponding models in solids (i) In solids the 
SO coupling arises from intrinsic (atomic) SO coupling and D is generally along the z direction (out of 
plane). However, in our model D is in the plane and the out of plane component is zero. (ii) In our 
effective spin model, Jij

α depends on the direction of the bond (d dx y, ) and the SO coupling strength, 
while in solids Jij

α is independent of SO coupling due to its negligible role.

Spiral order and multiferroics in 2D optical lattices. We now explore the rich phase diagrams of 
the effective spin Hamiltonian using classical MC simulations. Classical MC has been widely used to 
explore the phase diagrams of the Heisenberg model with DM interactions in the context of solids11,36–38 
(thus weak DM interactions). This method may not be used to determine the precise boundaries between 
different phases but can be an efficient tool to determine different possible phases. Due to the unique 
features of our effective model (e.g., strong DM interactions) the phase diagrams we present here are 
much more rich and comprehensive than those explored in the context of solids. We focus on the regime 
where t t=σ , U U=σσ′  (spin independent), and Uϒ  , and define J t U40

2= /  as the energy scale. 
The rescaled effective Hamiltonian becomes
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4ij a x y z

a
i
a

j
a

i j
i

i
z∑ ∑ ∑η= + ⋅ × + ,

( )= , ,

where j d d1x
x y
2 2 2ξ= − + ( − ) , j d d1y

x y
2 2 2ξ= − − ( − ) , j 1z 2ξ= − + , d dD 2 0y xξ= − ( , , ), 

and tξ λ= / .
Eq. 4 hosts a variety of magnetic and spin spiral phases, which are generally characterized by the 

magnetic and spiral order parameters39,40
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where N s is the number of sites. However, these two order parameters do not fully characterize the phase 
diagrams because in some cases there are still local magnetic or spiral orders although both M and 
P P=  are vanishingly small. In these cases, we also take into account the spin structure factor:

S N ik S S k R Rexp
6

s
i j

i j i j
2∑( ) = ⋅ ( ⋅ ( − )).

( )
−

,

S k( ) shows peaks at different positions in momentum space for different phases. For instance, the peak 
of the spin structure factor is at k 0 0= ( , ) for ferromagnetic phases, k π π= ( , ) for antiferromagnetic 
phases, and 0π( , ) (or 0 π( , )) for the flux spiral phase (P 0=  but with nontrivial local spin structure). 

Figure 2. Tunable parameters in an optical lattice. (a) Tunneling amplitudes as a function of lattice depth. 
t is the hopping due to the kinetic energy, tappr. is the analytic expression derived in the deep lattice regime, 
and λ is the SO mediated hopping strength. (b) Plot of D J/  as a function of tλ/  for U U=σσ′ , t t=σ .
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General spiral orders correspond to other k. We obtain the phase diagrams by analyzing both the order 
parameters and spin structure factors. We have not checked for long range order in the spin structure 
factor. We expect quasi-long range order to accompany magnetized phases at low h, e.g., a ferromagnetic 
phase for 1ξ  .

The phase diagrams of an 8 8×  lattice in Fig. 3 show a rich interplay between magnetic orders and 
spin spiral orders. For instance, for fermions with small SO coupling ( 0 25ξ < . ), the ground states are 
anti-ferromagnetic states with zero (non-zero) magnetization for a Zeeman field h J 0 80/ < .  (h J 0 80/ > .
). While for large SO coupling ( 1 45ξ > . ), the ground states are either nonmagnetic or magnetic flux 
spiral phases (similar to the flux phase with a small spiral order P). For 1ξ   the DM term is not 
important because D J 1 ξ/ /~ , therefore the pure flux phase with zero spiral order can be observed. 
Similarly, the increasing SO coupling for bosonic atoms gives rise to a series of transitions from simply 
magnetic (ferromagnetic at small h) order to simply magnetic spiral order (with zero total spiral order 
but local spiral structure), then to magnetic spiral orders (or non-magnetic spiral orders) and finally to 
flux spiral orders. The emergence of the spiral order and flux order with increasing SO coupling can be 
clearly seen from the change of the spin structure factors in Fig. 4, which shift from k 0 0= ( , ) or π π( , ) 
to 0π( , ) and 0 π( , ).

The spin spiral order phase transition temperature is comparable to the magnetic phase transition 
temperature, J 0~ . In Fig. 5(a), we plot the spin configuration of fermions at T J0 05 0= . , 1 0ξ = .  and 
h 1 5= .  (MS phase), which shows clear spiral ordering. The corresponding order parameters P and M 
are plotted in Fig. 5(b) as a function of temperature. The inset shows the susceptibility P Tp

2χ δ( ) /~ . 
We see a phase transition at T J0 5c 0.~ , which is comparable to the magnetic critical temperature17 (In 
2D, the Heisenberg model has a critical temperature T Jc 0=  in mean-field theory). Note that spiral order 
can also exist in the frustrated model without SO coupling, however, the critical temperature is generally 
much smaller than the magnetic phase transition temperature11,41. Our results therefore show that SO 
coupling in the absence of frustration provides an excellent platform to search for spiral order and 
multiferroics-based states in optical lattices.

Discussion
Finally we note that different spiral orders may be observed using optical Bragg scattering methods42, 
which probe different spin structure factors for different spiral orders. Similar methods have been widely 
used in solid state systems. Furthermore, in optical lattices, the local spin magnetization at each lattice 
site (thus the magnetic order M) as well as the local spin-spin correlations (thus the spiral order P) can 
be measured directly43,44, which provides a powerful new tool for understanding the physics of spiral 
orders and multiferroic effects in optical lattices.

Note added. During the preparation of this manuscript (the initial version is available at 
arXiv:1205.6211) we became aware of work45–47 on similar topics.

Figure 3. Phase diagrams of 2D optical lattices. Classical Monte Carlo simulations are performed for an 
8 8×  lattice with fermions (a) and bosons (b) at temperature T J0 05 0= . . The phases diagrams are 
determined by the magnetization order, the spiral order, and the spin structure factor. Different regions 
correspond to: M 0= , P 0=  for green, M 0≠ , P 0=  for grey, M P0 0= , ≠  for cyan, and M 0≠ , 
P 0≠  for red. The abbreviations are: (a) AF: antiferromagnetic phase with zero total magnetization; MAF: 
antiferromagnetic phase with non-zero total magnetization; NMS: zero magnetization spiral order; MS: 
magnetic spiral order; NMFS: nonmagnetic flux spiral phase; MFS: magnetic flux spiral phase. In (b) SM: 
simply magnetic order; SMS: simply magnetic spiral order: Other abbreviations are the same as in (a) The 
dashed lines are guides to the eye. The spin structure factors of the points marked by plus signs are shown 
in Fig. 4.
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Methods
The phase diagrams of an 8 8×  lattice are computed by classical MC methods for both fermions and 
bosons. The results are obtained after 106 thermalization steps followed by 106 sampling steps in each MC 
run at low temperature (T J0 05 0= . ). We have checked that for lower temperatures the phase diagrams 
do not change quantitatively. We also verify that similar phase diagrams can be obtained for larger system 
sizes, however, the spiral orders in a larger optical lattice become more complicated, and the boundary 
between different quantum phases is shifted.
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