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There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D)
materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory
devices, energy storage, and high-frequencymodulation in communication devices. Yet many of the unique
properties of these systems are poorly understood and remain unexplored.Here we report a numerical study
of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and
demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the
characteristic energy governing electronic transport scales logarithmically with either system size or
electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their
immediate context, explaining, for example, recent experimental observations of logarithmic size
dependence of electric conductivity of thin superconducting films in the critical vicinity of
superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical
departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and
establish its macroscopic global character as a generic property of high-dielectric constant 2D
nanomaterials.

T he unique electric properties of high dielectric constant (high-k) nanosheets are the subject of the intense
current attention, see Ref. 1 and references therein. High-k nanosheets are of key technological importance
for the fabrication of nanoscale capacitor components in high-k devices. One of the central issues is the

design and integration of materials that ensure robust high-k properties even at thicknesses of several nan-
ometers, allowing for a high capacitance density. Since these components are usually the largest elements in
integrated circuits, reducing their size is of prime importance for the advancement of electronics. To achieve this
goal it is necessary to understand the size- and related effects which are key to producing enhanced performance
of thin-film capacitors and to progress in device miniaturization. There is a further class of systems, strongly
disordered few nanometers thin superconducting films, whose enormous dielectric constant, developing near the
superconductor-insulator transition (SIT), is crucially important. In these systems, the huge low-temperature
resistance and the macroscopic quantum coherence of the so-called Cooper pair insulator, which forms at the
insulating side of the SIT, are closely related to the large dielectric constant and the two-dimensional Coulomb
interactions that arise as a result2.

One peculiarity of high-k systems is that over distances not exceeding the electrostatic screening length^kd,
which may be quite appreciable in high-k films (d is the film thickness), Coulomb interaction between charges at
distances d, r, kd, acquires 2D logarithmic character2–6 with the interaction energy (between two charges e)
approximated by2,6

V rð Þ< e2

2pE0kd
ln

r
d
: ð1Þ

Logarithmic interaction modifies the effective density of states for hopping transport hardening the Coulomb
gap7. Hopping conductivity then transforms from the so-called Efros-Shklovskii temperature dependence s ,
exp[2(T0/T)1/2] to the Arrhenius-like thermally activated (with the logarithmic accuracy in the activation energy)
behaviour s*exp[{ T�

0

�
T

� �
], where T0 and T

�
0 are two characteristic temperature scales of the problem. Yet the

local character of the conductivity was supposed to hold. It has been recognized, however, that themost important
effect of a long-range logarithmic interaction is that, since a single excess charge polarizes the whole area within
the screening length, the conductivitymay acquire a nonlocal character with the characteristic energy, controlling
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conduction, scaling as a logarithm of either the screening length or
the sample size, depending on which is shorter2,8,9. So far this non-
local behaviour was derived only on a semi-qualitative level8 calling
for a detailed numerical investigation of hopping conductivity in the
insulating high-k 2D films.
We will model high-k systems using the 2D capacitor network

(2DCN). Such a network offers a perfect tunable laboratory for
studying high-k insulating sheets as it captures the tunneling nature
of conductivity of the insulator and, by the proper choice of para-
meters, naturally generates logarithmic Coulomb interactions
between charges placed at the network nodes10. The latter correspond
to charge traps in an insulating film, and their possible random
location in real systems is adequately reflected by the random char-
acter of the network. On the physical level, the effective two-dimen-
sionality of 2DCNwith respect to the electric properties is ensured by
the fact that the field lines are confined to the space between the
plates of the capacitors. Note that the unit cell of the 2DCN does
not necessarily correspond to the unit cell of the realmaterial, but can
be rather an effective unit representing a much larger area.
Furthermore, 2DCN adequately represents a Josephson junction
array in the insulating state, i.e. under the condition that the charge
energy of a single junction well exceeds the characteristic Josephson
coupling in a single junction. Thus 2DCN also offers a perfect model
for investigating electronic transport in Cooper pair insulator8.
We first consider an L3 L square lattice shown in Fig. 1a, the two

opposite edges of which are connected to the leads. The other two
edges are subject to hard wall boundary conditions. The left bank is
connected to the ground, while the right bank is at the potential V.
The capacitances Ci,j assume random values drawn from the distri-
bution Ci,j 5 Ceg, where gg [2W/2,W/2]. We have chosen C5 1
(in units of E0a, where a is the lattice constant) andW5 2. In order to
take into account the leakage of field lines to outside of the 2DCNdue
to the finite value of k, we introduce capacitances to the ground, C0.
The plates of each capacitor of the 2DCN carry opposite charges and
the total charge on each siteQi is the sum of the charges on the plates
of the capacitors connected to it. Carriers hop from site to site trans-
ferring a quantized unity charge. Hopping over many sites with a
probability that exponentially decays with the hopping distance
models charge transfer in experimental systems mediated by the
cotunneling mechanism. Further we consider a 2D system with ran-
domly distributed sites, to which we will be referring as to a 2D
random capacitor network (2DRCN), using periodic boundary con-
ditions in the lateral direction. In this case the corresponding junc-
tion network without crossings can be constructed using a Delaunay
triangularization algorithm11. Capacitors with randomly chosen
capacitances were placed at the links between adjacent nodes, as
shown in the Fig. 2a. Random arrays model doped thin semi-
conductor films and 2D strongly disordered superconducting films
at the insulating side of the superconductor-insulator transition.
The total energy of the 2DCN is given by

H~
1
2
QC{1QT , ð2Þ

where C is the capacitance matrix and Q are vectors whose compo-
nents are the charges at the corresponding nodes. The proper defini-
tion of the vectors Q in (2) allows inclusion of the energy due to a
battery (seeMethods section). ThematrixC21;A plays the role of an
interaction matrix. Its average over disorder having the above rect-
angular distribution is equal to the interaction energy in the absence of
disorder. In a regular array grounded via C0 capacitances, and in the
continuous limit the interaction between the two charges separated by
a distance r is proportional to the modified Bessel function K0(r/L),
where the screening length is L~a

ffiffiffiffiffiffiffiffiffiffiffi
C=C0

p
. In the limit of small

r a=r=Lð Þ we have K0(x) < 2ln(x/2), and the effective interaction
is given by Eq. (1) provided that we identify the screening length with
L5 kd, and choose C~E0kd and C0~E0a2

�
kdð Þ. For a finite system

with L , L, the effective screening length is L. For a 2DRCN, the
average effective interaction is also logarithmic, and given by Eq. (1),
but with the prefactor e2

�
3pE0 rh ið Þ~0:094e2

�
aE0ð Þ, where hri 5

1.128a is the average length of a link which we have calculated numer-
ically. For random nodes, a is defined by the relation a 5 L/N1/2, N
being the number of nodes. In all cases, the unit of distance is a and
the unit of energy is e2

�
aE0ð Þ. The charging energy, i.e., the energy

cost for putting a unit charge at a given site, isAi,i/2. Figures 1b,c show
the 3D plots of Ai,i/2 for a system with L 5 50 as functions of the
coordinates, xi and yi. Figure 1b corresponds to the situation where
L=L, and Fig. 1c shows the energy distribution for the opposite
limiting case L?L. The electrodes screen the interaction so that the
charging energy near them is small. By contrast, near the free banks,
where we assume hard wall boundary conditions, the charging energy
is large. The charging energy at the center of the sample is roughly
equal to one half of the energy given by equation (1) with r < 0.2.
Hopping conductivity s is determined by the charge transfer rate

between sites i and j

Ci,j~t{1
0 e{2ri,j=je{Di,j=kT , ð3Þ

where t{1
0 is the phonon frequency, of the order of 1013 Hz, ri,j the

hopping distance, j the localization length and Di,j the transition
energy. To simulate hopping conductivity in the system of interact-
ing electrons, we employ a kinetic Monte Carlo method12,13. It is
customary in the simulations of this kind to produce the electric
current via imposing on the system a uniformly distributed electric
field. Such an approach, however, is not adequate in our case. Thus,
we employ a scheme corresponding to the experimental situation,
where the electric current is generated by the potential difference
between the leads at the opposite sides of the sample. For a given
sample we calculate conductivity from the dissipated electric power.
Finally, we carry out averaging of ln s over the set of samples (an
ensemble averaging). Hereafter we will imply averaged quantity for
the logarithm of conductivity, ln s.
The logarithm of conductivity, ln s, versus 1/T for regular 2DCN

withLR ‘, is shown in Fig. 1d. We see that at high temperatures, T
. 0.016, conductivities for 2DCN of different sizes are nearly the
same, but start to appreciably differ from each other with separations
growing upon cooling down. Thus, the set of ln s versus 1/T curves
acquires a fan-like shape at lower temperatures when crossing over to
Arrhenius-like temperature behaviour, s / exp(2Eac/T), where Eac
is the activation energy. Dependence Eac(L) extracted from the slopes
of ln s vs 1/T plots is displayed in Fig. 1e. To extrapolate the data
taken on finite samples to the infinite size system we plotted ln s
taken at given temperature as function of 1/L, see Fig. 1f. The points
corresponding to the infinite system are marked by stars in Figs. 1d,f.
The envelope solid line in Fig. 1d is a fit of these extrapolation data by
the formula

ln s~k1{k2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc

T{Tc

r
, ð4Þ

describing conductivity in the critical region just above the
Berezinskii-Kosterlitz-Thouless (BKT) transition. Here k1 5 2.48
and k2 5 1.65, and Tc 5 0.0155 is the BKT transition temperature.
In the case whereL=L the logarithmic size scaling resulting from

logarithmic Coulomb interactionmanifests itself asL-dependence of
the activation energy in accord with the conjecture of Ref. 8. Shown
in the Fig. 1g,h are the ln s vs 1/T plots for systems with different L
and the corresponding Eac(L) inferred from the Arrhenius fits. A few
comments are in order. First, to summarize, the magnitudes of the
characteristic activation energies Eac are of the order of the charging
energy at the center of the sample and increase as Eac5 E0 ln(min{L,
L}), as shown in Figs. 1e,h, where E0~e2

�
2pE0kað Þ. Second, there

are deviations from the pure logarithmic scaling. In the case L , L
this deviation occurs at largestL, see Fig. 1h, where it compares to the
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system size. In the situationL?L, the energy Eac(L) fails to adhere to
the logarithmic scaling at small sizes, see Fig. 1e. The reason is that in
the neutral system of positive and negative charges placed on a square
grid, the genuine BKT transition interferes with the ‘antiferromag-
netic’ order transition at low temperatures where the system falls into
a configuration with the alternating plus and minus charges3,14. To
ensure the presence of antiferromagnetic order, we simulated regular
systems with periodic boundary conditions and checked that the
results strongly depend on the even/odd character of the transversal
dimension.
To eliminate the antiferromagnetic order transition we have simu-

lated conductivity in a network with a random spatial distribution of
the nodes, see Fig. 2a.We investigate two-dimensional random capa-
citor network (2DRCN) in the absence of capacitances to the ground
corresponding to infinite screening lengnth. The corresponding ln s

vs. 1/T dependences are displayed in Fig. 2b. These curves are pretty
similar to those for regular lattices; the red envelope curve also obeys
Eq. (4) evidencing the pure BKT transition at Tc 5 0.019. Near and
below the BKT transition, the conductivity displays an Arrhenius-
like behaviour. As for regular lattices, the characteristic activation
energy Eac is of the order of the charging energy at the center of the
sample. A closer look at the activated behaviour reveals that in smal-
ler systems a change in the slope (flattening) of the Arrhenius depen-
dences at T < 0.015 takes place, indicating a possible change in the
conduction mechanism and the corresponding reduction of Eac at
low temperatures. The activation energies Eac as functions of ln L are
displayed in Fig. 2c. Gray squares correspond to regular network
given for comparison, colored squares represent 2DRCN activation
energies at moderate temperatures, while open diamonds stand for
the low-temperature parts of the ln s vs. 1/T curves. The lines are

Figure 1 | Two dimensional regular network of capacitors (2DCN). (a) A sketch of a square network of capacitors that models electric properties of an

insulating high-k nanosheet. Capacitors connecting the nodes have capacitances {Ci,j}; nodes are linked to the ground by capacitors with capacitances to

the ground {C0}. The electrostatic screening lengthL~
ffiffiffiffiffiffiffiffiffiffiffi
C=C0

p
. (b) Three dimensional plot of the electrostatic energy of the excess charge in the network

with the size L5 50 and in the absence of capacitances to the ground, i.e. withLR‘. The network is connected to the leads at y5 0 and y5 50. (c) The

same as (b) but with L?L~10. The color scales is the same for both (b) and (c). (d) Logarithm of conductivity s, shown by colored circles, as function of

the inverse temperature, 1/T, for different system sizes listed in the legend andLR‘. Straight solid lines are Arrhenius fits, s / exp(2Eac/T). The BKT

red curve is given by Eq.(4) and fits the ln s(1/T) values (shown by stars) obtained by extrapolation of the system size to infinity. (e) Size dependence of the

activation energy Eac inferred from the Arrhenius fits of panel (d). (f) Plots of ln s vs. 1/L for temperatures T5 0.016 (lower plot) and T5 0.017 (upper

plot) giving conductivities for the infinite-size systems. The legend for symbols is the same as that in the panel (d). (g) Logarithm of conductivity s, shown

by colored circles, as function of the inverse temperature, 1/T, for differentL listed in the legend for L5 50. Straight lines are Arrhenius fits. (h) Activation

energies inferred from panel (g) as functions ofL. The last yellow point depictsL5 L5 50. The error bars in panels (d–h) are smaller than the size of the

symbols and have not been shown.
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linear fits showing that the activation energy nicely adhers to log-
arithmic spatial scaling behaviours in both temperature regions since
the antiferromagnetic ground state is destroyed by disorder. The
slope of the moderate temperature Eac(L)-dependence labeled as
(1) is twice as large compared to that of the low temperature region
labeled as (2) on Fig. 2c. The low-temperature decrease of slopes of ln
s(T) signals that processes with the lower activation energy become
important and indicates that at low temperatures dissociation of the
pairs composed of single-particle excitations and their images, as
predicted in Ref. 15, may noticeably contribute to transport, whereas
at intermediate T the leading contribution is due to splitting of the
bound pairs in the bulk.
To gain better insight into the nature of the conducting state of the

2DRCN, it is instructive to visualize the distribution of active charges
contributing to electronic transport. As there are no offset charges,
all the sites are neutral at equilibrium at T 5 0. As temperature
increases some sites become charged. Panels (d–f) of Fig. 2 show
the snapshots of charge distributions at three different representative
temperatures for the system with L5 50. The grey bars are the leads
that are connected to the left and right edges, while periodic bound-
ary conditions are imposed between the top and bottom edges. Black
dots correspond to neutral sites, while blue and red circles depict
positively and negatively charged sites, respectively. The snapshot at
panel (d) is taken well above the BKT transition, at T 5 0.04. The
panel (e) represents the snapshot from the critical region slightly
above the transition, at T 5 0.02. Finally, panel (f) displays charge
distribution at T 5 0.015, which is well below Tc of the infinite
system. As expected, at the lowest temperature the positively and
negatively charged sites appear very close to each other as pairs, since
charges of the opposite signs tend to be bound below the BKT

transition. This demonstrates a remarkable feature of hopping con-
ductivity in electronic glass, namely that only a small fraction of the
sites takes part in the transport process. When T increases more pairs
appear and at about the transition temperature the charged sites
cannot be presented as a set of pronounced pairs anymore, again
in complete agreement with the expectations: near the BKT trans-
ition the distance between the pairs compares with the typical pair
size.
Figures 1 and 2 represent themain result of our work.We find that

as a direct consequence of the logarithmic interaction between the
charges in 2D networks of capacitors (i) the characteristic energy
governing the Arrhenius behaviour of conductivity scales as ln
(min{L, L}) proving the conjecture of Refs. 8, 9. We further find that
(ii) this logarithmic scaling of activation energy develops near and
below the BKT transition. Finally, (iii) we demonstrate two distinct
regimes of hopping transport, the moderate-temperature hopping
characterized by local conductivity and low-temperature transport
governed by non-local conductivity stemming from the global
Coulomb blockade effects.
To cross check the existence of the low-temperature BKT phase we

inspect the nonlinear behaviour of the conductivity of 2DRCN of
different sizes. Shown in Fig. 3a is ln s vs. ln F, where F5 V/L is the
applied electric field, for several system sizes at T 5 0.018. The red
stars correspond to extrapolation of the data to the infinite system.
The straight line describes the s(F) dependence in the BKT phase of
the infinite system and is given by

ln s!
E0 ln F
2T

: ð5Þ

due to dissociation of the bound pairs by applied electric field.

Figure 2 | Two-dimensional random capacitor network (2DRCN). (a) A sketch of 2DRCN. The electrode connected to the left edge row of capacitors is

grounded, the electrode at the right edge has potential V. (b) Logarithm of conductivity s, shown by colored circles, as function of the inverse

temperature, 1/T, for different system sizes listed in the legend andLR‘. Straight solid lines are Arrhenius fits (1), s / exp(2Eac/T), in the temperature

interval 0.020.T. 0.016. The dashed lines are Arrhenius fits (2) forT, 0.016. The red curve represents the BKT behaviour given by Eq.(4) extrapolated

from the data at temperatures T. 0.020. (c) Size dependence of the activation energy Eac inferred from the Arrhenius fits (1) and (2) of panel (d). The

upper grey symbols replot the data from Fig. 1e for the regular network presented for comparison. (d)–(f) Snapshots of the charge distribution

corresponding to three representative temperatures marked by vertical dashed lines in the panel (b). Black dots stand for neutral sites. Blue and red circles

depict the sites with the excess negative and positive charges at the site, respectively.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9667 | DOI: 10.1038/srep09667 4



The benchmark of the BKT transition is the power-law behaviour
of the current-voltage dependence I / F a with a 5 1 1 E0/(2T)
below the BKT transition, and a5 3 at Tc. We present in Fig. 3b the
ln I vs ln F plots shown by colored diamonds in the high field region
for four temperatures below the transition for the system with the
size L5 50. The dotted lines correspond to the expected BKT power-
law behaviour. The only fitting parameter is the prefactor in Eq. (5).
We see an excellent agreement for data taken at three lowest tem-
peratures. The solid straigh lines are fits by I / F a. The values of a
inferred from these dependences are plotted as function of 1/T in
Fig. 3c. The straight line is the linear fit. The value of Tc obtained by
extrapolation of this fit to a 5 3 is close to 0.019 marked by the
vertical stroke in the panel (c) and found above from the analysis
of linear conductivity (see Fig. 2b).
In conclusion, we revealed that high-k thin films exibit striking

nonlocal conductivity. Long range logarithmic Coulomb interac-
tions give rise to logarithmic dependence of the hopping activation
energy upon the minimum of either the system size or dielectric
screening length. On a qualitative level the origin of the logarith-
mic size dependence of the activation energy can be understood as
follows. The conductance of the system is *t{1

ex , where tex is the
time of the first exit from the system of a freely diffusing electron,
implying tex , exp(V(L)/kBT), since V(L) is the energy necessary
for separating two charges of the opposite signs over either the
system size or screening length whichever is smaller. Hence Eac ,
ln min{L, L}. This novel functionality is of crucial importance to
electronic applications of these materials. The obtained results call
for rethinking of and form the base for understanding fun-
damental features of Coulomb systems16 including slow relaxation,

memory effects and aging3,17. It is furthermore imperative to revisit
data on hopping conductivity in high-k sheets like barium titanate
ceramics, exhibiting colosal permittivity18, graphene oxide and tita-
nium oxide nanosheets19, and Bi2Sr2Co2O8 nanosheets20. The capa-
citor network model is a perfect laboratory for studying properties
of Josephson junction arrays and disordered superconducting
films. Our findings offer a firm basis for understanding the sample
size logarithmic scaling of characteristic energies of tunneling con-
ductivity observed at the insulating side of the superconductor-
insulator transition in strongly disordered superconducting
films2,8, as a result of the global Coulomb blockade.

Methods
We employ a kinetic Monte Carlo method to calculate the conductivity of 2DCN.We
consider the Hamiltonian given by equation (2) where the components of Q are the
chargesQi~

X
j
qi,j of the nodes in the sample, where qi,j is the charge in the plates of

the capacitor connecting nodes i and j, satisfying

qi,j~
X
j

Ci,j Vj{Vi
� �

: ð6Þ

For the nodes in the leads it is convenient to define the components of Q as Cj,iV,
whereV is the potential at the lead of node i, andCj,i the capacitance connecting iwith
a node j in the sample. Thus, the vector Q has dimension L 3 (L 1 1)

Q~ Q1, � � � ,QL2 ,CL2{Lz1,L2z1V , � � � ,CL2 ,L Lz1ð ÞV
� �

: ð7Þ
This vector is related to the vector of the components of the potential

V~ V1, � � � ,VL2 ,
{QL2z1

CL2{Lz1,L2z1
, � � � ,{QL Lz1ð Þ

CL2 ,L Lz1ð Þ

� �
ð8Þ

through the relation

Figure 3 | Nonlinear current-voltage characteristics for 2DRCN. (a) Plots of conductivity as a function of the electric field F on a double-logarithmic

scale atT5 0.018 for several values of L, indicated in the figure. The red stars are obtained by extrapolation to infinite system size via the same procedure as

shown in Fig. 1f. Straight line is given by Eq. (5) and describes conductivity due to dissociation of the bound electron-hole pairs. (b) Plots of the current, I,

as a function of the electric field on a double-logarithmic scale for several values of T indicated in the figure and L5 50. The dotted straight lines are the

nonlinear I-F curves corresponding to conductivity from Eq. (5). The fitting parameter is the prefactor in Eq. (5). The solid straight lines are fits according

to formula I/ F a. (c) Plot of a versus 1/T. The straight line is a linear fit; the vertical stroke marks Tc given by the BKT fit of linear conduction data in

Fig. 2b.
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Q~CV, ð9Þ

where the capacitance matrix C has components equal to

Ci,j{
X
k

Ci,k

 !
di,j ð10Þ

between nodes in the sample, and equal toCi,i1L for the diagonal term of node i on the
lead and for the off-diagonal term connecting this site with its neighbor in the sample.
It is easy to prove that with this definition the Hamiltonian given by (2) is equivalent
to

H~
1
2

X
iwj

X
j

Ci,j Vi{Vj
� �2

{
X
i[r:l:

QiV : ð11Þ

The inclusion of the components of Q in the leads takes into account the energy
provided by the battery and tilt the electric potential along the longitudinal direction
y. It is essential to include the effects of the electric field F 5 V/L through a realistic
procedure, such as the previous one, and not through a local change 2eFyi,j in the
hopping energy, which is standard procedure in electron glass simulations13, since the
latter washes out global charging effects21.

The employed Monte Carlo algorithm deals with single-electron transitions with
transition rates given by equation (3). At each Monte Carlo step, the algorithm
chooses a pair of sites (i, j) with the probability proportional to exp(22rij/j), Ref. 12. It
first checks whether the transfer of a unit charge from site i to j is compatible with the
restrictions of the model. Then it calculates the transition energy

Di,j~Vj{Vi{Ai,jz
1
2

Ai,izAj,j
� 	

, ð12Þ

where Vi~
X

j
Ai,jQj is the potential at i, and the hop is performed when Di,j is

negative or with probability exp(2Di,j/T) otherwise. All site potentials Vi are recal-
culated after every successful transition. The time step associated with a hop attempt

is t0
.X

ij
exp {2rij

�
j

� �
, where t0 is the inverse phonon frequency. The last term in

(12) is the charging energy of the nodes involved and is not present in Coulomb gap
calculations. For sites at the leads the charging energy is assumed to be zero.

The algorithm starts from an initial charge configuration and follows the dynamics
at a given temperature, monitoring all relevant magnitudes, among others the energy
absorbed or emitted in the process. The allowed node charges are either 61/2, or 0
and 61, both cases producing similar results. Once the system is in a stationary
situation, the conductivity of each sample is calculated from the dissipated power and
its logarithm is averaged over the samples. The number of Monte Carlo steps per-
formed in this calculation drastically increases with decreasing T, and it is determined
by the condition that the net charge crossing one of the leads is on the order of 1000.
The number of the samples in the set varies from 1000 for the smaller size to 200 for
the largest size.
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