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High levels of carbonaceous aerosol exist over South Asia, the area adjacent to the Himalayas and Tibetan
Plateau. Little is known about if they can be transported across the Himalayas, and as far inland as the
Tibetan Plateau. As important constituents of aerosols, organic acids have been recognized as unique
fingerprints to identify the atmospheric process. Here we measured dicarboxylic acids and related
compounds in aerosols on the northern slope of Mt. Everest (Qomolangma, 4276 m a.s.l.). Strong positive
correlations were observed for dicarboxylic acids with biomass burning tracers, levoglucosan and K1,
demonstrating that this area was evidently affected by biomass burning. The seasonal variation pattern of
dicarboxylic acids is consistent with OC and EC, being characterized by a pronounced maximum in the
pre-monsoon season. Molecular distributions of dicarboxylic acids and related compounds (malonic acid/
succinic acid, maleic acid/fumaric acid) further support this finding. We suggest that the local
meteorological conditions and regional atmospheric flow process could facilitate the penetration of the
carbonaceous aerosols from South Asia throughout theHimalayas.With the consideration of the darkening
force of carbonaceous aerosols, our finding has important implication for this climate-sensitive area, where
the glacier melting supplies water for billions of people downstream.

W ith vast mountain glaciers (ca. 105 km2), the Himalayas and Tibetan Plateau (HTP) present a unique
and sensitive area under the regime of climate change1,2. Meltwater from those glaciers supplies major
Asian rivers, such as the Indus River, Ganges River, Yarlung Tsangpo (Brahmaputra), Yangtze River

and Yellow River3,4. At the same time, serious air pollution (Atmospheric Brown Clouds, ABC) is widely spread
on the Indo Gangetic Plain (IGP)5. To evaluate the influence of the brown cloud over IGP on the high Himalayas,
several continuous observations have been implemented under the framework of the UNEP-ABC project6. Those
research clearly demonstrated that the ABC could affect the high altitudes, and even be lifted to more than 10 km
in height7. However, most current works were confined to the southern slope of the Himalayas and little is known
about the northern slope, especially the spread and transport mechanism of these air pollutants8. Actually, if the
pollutants could be transported across the Himalayas, the gentle surface of the Tibetan Plateau will favor their
further spread to the north, where more glaciers locate9. The deposition and accumulation of carbonaceous
particles on the snow/ice surface may dramatically decrease the snow albedo, thereby resulting in increased
glacier melt10–13.

As major constituents of atmospheric aerosols, organic acids can originate either from the primary process
such as biomass burning and traffic emission14 or the secondary formation by gas-to-particle conversion from
various precursors15,16. Due to the hygroscopicity and the capability to act as cloud condensation nuclei (CCN),
organic acids in aerosols are of great importance in the climate system17. Moreover, several specific compounds
and their concentration ratios have been well recognized as unique fingerprints to identify the sources, transport
and reaction processes of atmospheric aerosols. Given the importance of organic acids, they were widely studied
in different locations such as urban18, continental background19,20, ocean21 and the Arctic22. However, such

OPEN

SUBJECT AREAS:

CRYOSPHERIC SCIENCE

ATMOSPHERIC SCIENCE

Received
2 November 2014

Accepted
13 February 2015

Published

Correspondence and
requests for materials

should be addressed to
K.K. (kawamura@

lowtem.hokudai.ac.jp)
or S.C.K. (shichang.

kang@lzb.ac.cn)

SCIENTIFIC REPORTS | 5 : 9580 | DOI: 10.1038/srep09580 1

April      2015 9

mailto:kawamura@lowtem.hokudai.ac.jp
mailto:kawamura@lowtem.hokudai.ac.jp
mailto:shichang.kang@lzb.ac.cn
mailto:shichang.kang@lzb.ac.cn


research is very scarce in the HTP. In ice core samples from Mt.
Everest, Kang23 found the oxalate concentration level during the
1950s–1980s was three times the background value of the 19th cen-
tury values. This tripling was attributed to the anthropogenic
production.
In this study, dicarboxylic acids and related compounds in aero-

sols were measured for the first time on Mt. Everest, a high-altitude
site on the northern slope of the Himalayas (28.36uN, 86.95uE;
4276 m above sea level), from August 2009 to July 2010. The major
purpose of this research is to reveal the transport process of atmo-
spheric pollutants across the Himalayas by exploiting the source-
indicating faction of organic acids.

Results
Molecular distribution of dicarboxylic acids and related com-
pounds. Table 1 shows the average concentration and ranges of
various dicarboxylic and related compounds in aerosols from Mt.
Everest. Annual average concentrations of dicarboxylic acids, oxo-

acids and a-dicarbonyls were 109, 7.39 and 0.85 ng m23, accounting
for 7.45%, 0.39% and 0.06% of total organic carbon (OC), respect-
ively. The contribution of dicarboxylic acids and related compounds
to aerosol OC could be up to 15.5%, indicating that organic acids are
major components in the high mountain aerosols. The average
concentration of dicarboxylic acids in Mt. Everest aerosol is two to
four times higher than that (64 ng m23) reported in Alert, Arctic24,
and that (30 ng m23) in Syowa, Antarctica25. The value found in this
study is comparable with data from some remote marine sites, such
as 139 ng m23 at Chichi-jima Island in the western North Pacific26,
but much lower than those observed in Asian cities. For example,
high levels of dicarboxylic acids were reported in New Delhi
(2330 ng m23)27 and Chennai (612 ng m23)28, India, and Hong
Kong (692 ng m23)29. Furthermore, in this study the average con-
centration of total dicarboxylic acids in the pre-monsoon period
(235 ng m23) is significantly higher than during other seasons
(63.1 ng m23 in monsoon, 58.4 ng m23 in post-monsoon and
69.7 ng m23 in winter, Table S1). The high loading of dicarboxylic

Table 1 | Concentrations of dicarboxylic acids, oxocarboxylic acids and a-dicarbonyls (ng m23) in the aerosols from QOMS station, the
north slope of the Himalayas

Concentrations (ng m23)

Mean S.D. Min Max

Dicarboxylic acids

Oxalic, C2 59.8 73.4 7.64 426
Malonic, C3 7.30 7.37 0.76 39.7
Succinic, C4 13.7 13.13 2.55 72.1
Glutaric, C5 2.49 2.22 0.50 12.7
Adipic, C6 1.23 1.34 0.15 7.43
Pimelic, C7 0.54 0.98 0.03 5.35
Sebacic, C8 0.35 0.61 0.00 2.91
Azelaic, C9 1.38 1.01 0.42 6.75
Decanedioic, C10 0.28 0.50 0.00 2.78
Undecanedioic, C11 0.26 0.53 0.00 3.55
Dodecanedioc, C12 0.11 0.10 0.00 0.51
Methylmalonic, iC4 0.36 0.33 0.00 1.97
Methylsuccinic, iC5 1.43 1.66 0.20 10.0
2-Methylglutaric, iC6 0.24 0.16 0.05 0.85
Maleic, M 2.98 2.71 0.78 16.4
Fumaric, F 0.72 0.62 0.22 3.34
Methylmaleic, mM 2.20 2.68 0.56 14.2
Phthalic, Ph 9.47 6.14 2.27 33.2
Isophthalic, iPh 0.23 0.17 0.06 0.87
Terephthalic, tPh 1.55 1.43 0.32 8.07
Malic, hC4 0.15 0.10 0.00 0.52
Oxomalonic, kC3 1.18 1.31 0.16 6.52
4-Oxopimelic, kC7 0.67 1.00 0.00 3.99
Subtotal 109 117 16.7 677
Contribution to OC (%) 7.45 2.52 1.71 14.7

Oxocarboxylic acids

Pyruvic, Pyr 0.83 0.87 0.04 4.33
Glyoxylic (2-oxoethanoic), vC2 2.09 3.97 0.00 19.6
3-Oxopropanoic, vC3 0.44 0.54 0.00 2.46
4-Oxobutanoic, vC4 1.62 1.76 0.16 9.87
5-Oxopentanoic, vC5 0.17 0.20 0.02 1.21
7-Oxoheptanoic, vC7 0.77 0.86 0.00 4.49
8-Oxooctanoic, vC8 1.04 1.23 0.00 5.72
9-Oxononanoic, vC9 0.43 0.60 0.00 3.28
Subtotal 7.39 10.0 0.22 50.9
Contribution to OC (%) 0.39 0.20 0.03 0.79

a-Dicarbonyls

Glyoxal, Gly 0.40 0.56 0.03 2.68
Methylglyoxal, mGly 0.45 0.56 0.00 2.45
Subtotal 0.85 1.12 0.03 5.12
Contribution to OC (%) 0.06 0.05 0.01 0.29
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acids in the pre-monsoon season in the Mt. Everest region was likely
related to the source strength rather than photochemical oxidation.
According to a previous study, a positive linear correlation exists
between dicarboxylic acids and air temperature30. However, the
maximum air temperature at Mt. Everest was observed in the
summer monsoon season.
Seasonal average molecular distributions of dicarboxylic acids,

oxoacids and a-dicarbonyls in the aerosols are presented in
Figure 1. Although large differences occurred among seasons, oxalic
acid (C2) was detected as the most abundant dicarboxylic acid spe-
cies, followed by succinic (C4) and malonic acid (C3) in all seasons.
Oxalic acid was commonly detected as the predominant species in
various environments worldwide. However, a clear pattern that C4

being more abundant than C3, a typical signal of biomass burning
emission31,32, was found in the Mt. Everest aerosols. Therefore, our
finding indicates the importance of biomass burning influences in
this area, the point to be further discussed below.

Discussion
Primary versus secondary contribution reflected by ratios of di-
carboxylic acids. Because succinic acid (C4) tends to be degraded
into malonic acid (C3), the ratio of C3/C4 has widely been used as an
indicator to evaluate the photochemical production of dicarboxylic
acids18,21. The C3/C4 ratios in the Mt. Everest aerosols ranged from
0.11 to 0.81 with an average of 0.51, which is similar to some urban
sites (such as 0.6 in New Delhi)27, while much lower than those from

Figure 1 | Molecular distributions of dicarboxylic acids and related compounds in different seasons atMt. Everest (QOMS station), the northern slope
of the Himalayas.
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continental and remote marine sites. For example, the C3/C4 ratio
from Qinghai Lake, northern TP is 2.2 due to the photochemical
production of C3 from C4

33. Even higher ratios are found over the
Atlantic Ocean (2.1–3.4)21 and the equatorial central Pacific (up to
10)34. Low C3/C4 ratios in this study show that the aerosols fromMt.
Everest were relatively fresh, again indicating that the direct
influence from primary emission source is more important than
photochemical oxidation.
The unsaturated dicarboxylic acid, maleic acid (M, cis configura-

tion), is formed by the degradation of aromatic hydrocarbons (e.g.
toluene and benzene). Under the solar radiation, it could be further

isomerized to its trans isomer, fumaric acid (F), through photoche-
mical processes30. Therefore, the ratios of M/F can be applied to
assess the aging of aerosols, i.e, lower M/F ratio means higher photo-
chemical aging. In the present study, the M/F ratios (1.55–8.16,
average 4.44) are much higher than those at marine sites (e.g. the
North Pacific, 0.06–1.3, average 0.26)34. While the M/F ratios of Mt.
Everest aerosols are similar to those reported at urban sites (New
Delhi, 2.0–3.6; Beijing, 2.3)27,35 and sites intensively impacted by
biomass burning (Mt. Tai, China, 2.0; Rondonia, Amazonia,
2.8)31,32. The high M/F ratios found in this study also suggest that
isomerization of maleic acid to fumaric acid by photochemical trans-

Figure 2 | Relationship between the concentrations of total dicarboxylic acids and (a) Elemental Carbon (EC), (b) Levoglucosan and (c) water-soluble
potassium (K1).
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formation is not significant atMt. Everest. This finding confirms that
Mt. Everest aerosols are rather fresh, without being substantially aged.

Source attribution – the influence of biomass burning. Dicar-
boxylic acids have various sources, including primary sources such
as biomass burning, vehicular exhausts and cooking, and secondary
sources i.e. atmospheric photooxidation of organic precursors. Since
EC is only emitted by combustion sources (fossil fuel and/or biomass
burning), it has been used frequently as a conservative tracer for
primary combustion-generated OC. In this study, the dicarboxylic
acids exhibit a strong correlation with EC (R2 5 0.77, Fig. 2a), which
demonstrates that primary combustion sources are the predominant
contributor to dicarboxylic acids, while secondary photochemical
production is negligible. Levoglucosan is a specific tracer of bio-
mass burning, because it can only be produced through the pyroly-
sis of cellulose during the combustion process36. For the aerosols
from Mt. Everest, a strong positive correlation between levogluco-
san and dicarboxylic acids was found (Fig. 2b), with a correlation
coefficient (R2) of 0.83. Furthermore, dicarboxylic acids also closely

correlated with another biomass burning tracer, water-soluble
potassium (K1) (Fig. 2c) (Note here, only the samples with K1 con-
centration above the detection limits were used for the correlation
analysis.). Therefore, these results suggested that among the various
primary combustion sources, biomass burning rather than fossil fuel
(coal combustion or vehicular exhaust) is the prevalent source of
dicarboxylic acids at Mt. Everest. Especially in the pre-monsoon
season, the higher ratios of levoglucosan to EC emphasize the
importance of biomass burning influence (Fig. S1). Our findings
differs from a previous study at Qinghai Lake (3200 m a.s.l.) over
the northern TP (similar background conditions to this study),
where dicarboxylic acids are found to be mainly derived from
photochemical oxidation due to strong radiation33.

Potential source region and transport mechanism. Because mole-
cular distributions and ratios of organic acids in the Mt. Everest
aerosols exhibited a strong influence from biomass burning, we
further checked such emission strength for different seasons using
the active fire spots from MODIS (FIRMS, https://earthdata.nasa.

Figure 3 | CALIPSO retrieved backscatter signal at 532 nm (upper panel) and aerosol sub-type information (lower panel) on 17 April 2010. The
Himalayas and southern TP (marked with circles) are covered by a thick aerosol layer, suggesting that air pollutants could be uplifted to more than 6 km

high in altitude. CALIPSO profiles were obtained from (http://www-calipso.larc.nasa.gov).
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gov/firms). Results showed that in the pre-monsoon period there
were a great number of agricultural burning and forest fires along
the southern Himalayan foothills and Northern IGP (Figure S2).
Similarly, a recent work (BC and O3) conducted at the Nepal
Climate Observatory-Pyramid station (NCO-P) on the southern
slope of the Himalayas also pointed out the importance of open
fire emission from that area37. Our finding is also in agreement
with the viewpoint of Vadrevu et al.38, that the pre-monsoon
period (especially April) is the major fire season in the lowland of
the southern Himalayas. The meteorological regime of this region is
characterized by humid air masses from the Indian Ocean in the
summer monsoon season and strong westerlies in other seasons
(Fig. S3). Therefore, the wind system could facilitate the transport
of air pollutants from South Asia to the Himalayas, regardless the
shift of air circulation pattern among seasons. The aerosol vertical
distribution achieved by Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) retrievals demonstrates that smoke plume
could reach beyond 6 km in altitude, which is higher than most of
themountain valleys in theHimalayas. An example of such pollution
phenomenon can be observed on 17April 2010 (Fig. 3), which clearly
demonstrates that the Himalayas and the southern TP (marked
with circles) are covered by a thick polluted aerosol layer, which
apparently originated from South Asia.
In addition to large-scale atmospheric circulation, the local oro-

graphy may also play an important role in air pollutant transport.
Themountain/valley wind system in the southernHimalayas is char-
acterized by an evident up-valley wind in daytime with a maximum
in the afternoon, which delivers substantial pollutants from South
Asian lowland to higher altitude (e.g. NCO-P)6,39. In contrast, a
predominant down-valley wind occurs on the northern slope of
the Himalayas with peaks in the afternoon, because the downward
‘‘glacier wind’’ produced by the vast snow/ice cover in the northern
Himalayas can overcome the normal up-valley air flow in day-
time40,41. Therefore, acting as efficient channels of south-to-north
air flow, the mountain valleys could allow the air pollutants to easily
penetrate throughout the Himalayas (Fig. 4). A previous work42 has
revealed a trans-Himalayan pollution episode from Khumbu Valley,
Nepal to the Tibetan Plateau (Rongbuk Valley) based on the sim-
ultaneous observation of condensation nucleus.When carbonaceous
aerosols emitted from South Asia are transported to the far north (i.e.
inland on the TP) and eventually deposited and accumulated on
glacier surfaces, undoubtedly, they will change the energy balance
of glaciers43.

Method
Research site and sampling. During August 2009 to July 2010, total suspended
particle (TSP) samples (n 5 50) were collected weekly using a medium-volume

sampler with pre-combusted quartz filters at Mt. Everest (Qomolangma Station for
Atmospheric and Environmental Observation and Research, 28.36uN, 86.95uE;
4276 m above sea level). Given the remote location and very sparse local population,
QOMS is an ideal place to monitor the atmospheric environment in the Himalayas44.
According to meteorological measurements, the seasonality at QOMS was divided
into pre-monsoon, monsoon, post-monsoon and winter (Table S2).

After the water extraction and butyl ester derivatization, dicarboxylic acids (C2-
C12), oxocarboxylic acids (C2-C9) and a-dicarbonyls (glyoxal and methylglyoxal)
(Fig. S4) in the aerosol samples were determined using gas chromatography with a
flame ionization detector (GC-FID) following the modified analytical methods
established by Kawamura and Ikushima18 and Kawamura45.

The concentration of OC and EC was measured using an OC/EC analyzer fol-
lowing the IMPROVE-A protocol. Levoglucosan was determined by GC/MS after the
extraction of the samples with a methanol/methylene chloride mixture followed by
BSTFA derivatization46. The water-soluble ionic species were determined using an
ion chromatograph (761 Compact IC, Metrohm). Details about the analytical pro-
cedures for dicarboxylic acids, oxocarboxylic acids, a-dicarbonyls, OC, EC, andK1, as
well as quality assurance and control are presented in the Supplementary Materials.
All the concentrations of dicarboxylic acids and related compounds, carbonaceous
and ionic components in this study are field-blank corrected.
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19. van Pinxteren, D., Neusüß, C. & Herrmann, H. On the abundance and source
contributions of dicarboxylic acids in size-resolved aerosol particles at continental
sites in Central Europe. Atmos. Chem. Phys. 14, 3913–3928 (2014).

20. Legrand, M. et al. Origin of C2-C5 dicarboxylic acids in the European atmosphere
inferred from year-round aerosol study conducted at a west-east transect.
J. Geophys. Res. -Atmos 112, DOI:10.1029/2006JD008019 (2007).

21. Fu, P., Kawamura, K., Usukura, K. &Miura, K. Dicarboxylic acids, ketocarboxylic
acids and glyoxal in the marine aerosols collected during a round-the-world
cruise. Mar. Chem. 148, 22–32 (2013).

22. Kawamura, K., Kasukabe, H. & Barrie, L. A. Secondary formation of water-soluble
organic acids anda-dicarbonyls and their contributions to total carbon andwater-
soluble organic carbon: Photochemical aging of organic aerosols in the Arctic
spring. J. Geophys. Res. -Atmos 115, doi:10.1029/2010JD014299 (2010).

23. Kang, S., Dahe, Q., Mayewski, P. A. & Wake, C. P. Recent 180 Year Oxalate
(C2O4

2-) Records Recovered from the Mount Everest Ice Core: Some
Environmental Implications. J. Glaciol. 47, 155–156 (2001).

24. Kawamura, K., Imai, Y. & Barrie, L. A. Photochemical production and loss of
organic acids in high Arctic aerosols during long-range transport and polar
sunrise ozone depletion events. Atmos. Environ. 39, 599–614 (2005).

25. Kawamura, K. et al. Water soluble dicarboxylic acids and related compounds in
Antarctic aerosols. J. Geophys. Res. -Atmos 101, 18721–18728 (1996).

26. Mochida, M. et al. Seasonal variation and origins of dicarboxylic acids in the
marine atmosphere over the western North Pacific. J. Geophys. Res. -Atmos 108,
DOI:10.1029/2002JD002355 (2003).

27.Miyazaki, Y. et al. Dicarboxylic acids and water-soluble organic carbon in aerosols
in New Delhi, India, in winter: Characteristics and formation processes.
J. Geophys. Res. -Atmos 114, DOI:10.1029/2009JD011790 (2009).

28. Pavuluri, C. M., Kawamura, K. & Swaminathan, T.Water-soluble organic carbon,
dicarboxylic acids, ketoacids, and a-dicarbonyls in the tropical Indian aerosols.
J. Geophys. Res. -Atmos 115, DOI:10.1029/2009JD012661 (2010).

29. Ho, K. F. et al. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the
urban roadside area of Hong Kong. Atmos. Environ. 40, 3030–3040 (2006).
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