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In the last two decades, considerable advances have been made in the investigation of nano-photonics in
photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero
temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature.
Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons
in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in
the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal
fluctuations together to form photon states that memorize the initial cavity state information. As a result,
Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger
or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from
equilibrium to nonequilibrium steady states is also revealed.

P
hotonic band gap (PBG) structures in photonic crystals (PCs) together with the characteristic dispersion
properties have stimulated considerable interest in the study of fundamental photonic science and also in
the development of new photonic technology1–3. The most significant new features induced by the PBG are

the inhibition of atom spontaneous emission and the localization of light4–6. As a result, ultrahigh quality-factor
cavity has been realized on-chip with PBG structures7. This provides the opportunity to control and manipulate
light for photonic information technology8. In the past two decades, quantum optics with a few-level atom placed
inside PCs have been extensively explored9, and cavity QED with the features of atomic population trapping and
atom-photon bound states in the vicinity of the photonic band edge (PBE) has been examined10–14. These features
are obtained mainly at zero temperature by solving the Schrödinger equation in which the PCs contain only one
single photon emitted from an atom which is initially in the excited state. On the other hand, when the number of
photons increases, light propagating in PCs was understood using the classical Maxwell equations, which is also
defined at zero temperature1,3. Indeed, photonic quantum dynamics, even for a pure micro/nano cavity embedded
in PCs, has not yet been solved at finite temperature. Practically, understanding photonic quantum dynamics at
finite temperature is important for the development of all-optical circuits incorporating cavities and PBG
waveguides embedded in PCs in the microwave regime.

All-optical circuits for networks on-chips consist of micro/nano cavities and waveguides8. Micro/nano cavities
in PCs are created by point defects, and PBG waveguides can be made with coupled defect arrays. Frequencies of
cavities and waveguides can be easily tuned by changing the size and/or the shape of defects. In this article, we
investigate micro/nano cavity photonics in PCs at finite temperature. Due to PBG-induced localized long-lived
non-Markovian photon dynamics, we find that cavity photons in PCs do not obey Bose-Einstein statistical
distribution. Within the PBG region and also in the vicinity of the PBE, cavity photons combine the nontrivial
non-Markovian dissipations with thermal fluctuations together to form photon states that can memorize the
initial cavity state information. As a result, Bose-Einstein statistical distribution for photons is completely broken
down in these regimes, even though the photonic thermal energy is larger or much larger than the cavity detuning
energy. Also, a crossover phenomenon from equilibrium to nonequilibrium steady states is revealed in low-
dimensional photonic crytslas.

Results
Dissipation and dissipationless photon dynamics in photonic crystals. The methodology for the study of cavity
photon dynamics in photonic crystals at finite temperature was developed in our previous work15–18, which is
summarized in the Methods Section in the end of the article. To investigate the evolution of cavity photon states in
PCs, we shall solve first the dynamics of photon dissipation and fluctuations, determined by Eqs. (19)–(20) given
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in Methods. Different spectral density J(v) of the PCs, which
requires the knowledge of DOS of the PCs, will provide different
photon dissipation and fluctuations. In standard quantum optics,
the spectral density J(v) is usually treated as a constant in the
weak-coupling limit, where the Weisskopf-Winger approximation
or the Markovian master equation is valid so that the photon
damping rate is time-independent (i.e. memoryless). As a result, all
cavity photon modes have a finite lifetime and the cavity photon
states will ultimately evolve into thermal equilibrium with the
environment after decoherence takes place19, and photons inside
the cavity must obey Bose-Einstein distribution20–22. However, this
well-known result is no longer satisfied for micro/nano cavities in
PCs, due to the presence of the PBG, as we will show below.

In principle, the DOS for different PCs, denoted by %PC vð Þ, should
be calculated by solving photon eigenfrequencies and eigenfunctions
from the Maxwell’s equations for different photonic crystal struc-
tures2,23,24. In the literature, different photonic DOS have been intro-
duced for different PCs9–12,14,25–29. For examples, for 1D PCs, the

corresponding DOS is given by %PC vð Þ! 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v{ve
p H v{veð Þ,

where H(v 2 ve) is the Heaviside step function and ve is the fre-
quency at the PBE. This DOS is also often used for isotropic 3D PCs,
which could predict qualitatively correct behaviors of the non-
Weisskopf-Winger decay and the photon-atom bound state in
PCs9–12,14, but it may overestimate the spontaneous emission rate of
atoms due to the absence of the singularity of DOS in reality. Thus,
for 3D PCs, the DOS near the PBE may be modeled by an anisotropic
DOS9–11: %PC vð Þ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v{ve
p

H v{veð Þ, which could be further
modified when the vectorial property of EM field is taken into
account25,26. For 2D PCs with van Hove saddle point singularity27–29,
the photonic DOS exhibits a logarithmic divergence near the PBE
and can be approximated by %PC vð Þ!{ ln v{v0ð Þ=v0j j{1½ �
H v{veð Þ, where v0 is the center of the logarithmic peak. The
spectral density J(v) is microscopically defined as the multiplication
of the DOS of the PCs with the photon tunneling amplitude V(v)
between the cavity and the PCs,

J vð Þ~% vð Þ V vð Þj j2: ð1Þ

Assume that the cavity mode equally couples to all possible modes
near the PBE of PCs, i.e. treating V(v) as a constant, then the cor-
responding spectral densities J(v) for different dimensional PCs are
fully determined by the corresponding DOS, which are summarized
in Table 1 and are also plotted in Fig. 1(a). We take the unit �h~1
hereafter so that both the frequency v and the spectral density J(v)
have the same unit as the energy.

Consider the cavity frequency vc lies not too far away from the
PBE. The dissipative photon dynamics is described by the cavity field
propagating Green function u(t, t0) in photonic crystals through the
relation Æa(t)æ 5 u(t, t0) Æa(t0)æ, and is determined by the dissipative

Table 1 | Characters of different photonic crystal structures. For different DOS of different dimensional PCs, the corresponding different
spectral densities J(v) are listed and the reservoir-induced photon self-energy corrections S(v) are calculated, which completely deter-
mine the dissipative photon dynamics in PCs. The parameters C, g and x are coupling strengths (with a proper rescaling) between the
cavity and PCs for 1D, 2D and 3D PCs, respectively. A smooth high-frequency cutoffVC is introduced for avoiding the divergence of DOS
in 3D PCs, and a sharp high-frequency cutoff at Vd is set up for maintaining the positivity of DOS in 2D PCs. Here Li2 (x) is a dilogarithm
function and erfc (x) is a complementary error function

Photonic Crystals (PCs) Spectral density J(v) for different DOS Reservoir-induced self-energy correction S(v)

1D C
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v{ve
p H v{veð Þ {

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ve{v
p

2D
{g ln

v{v0

v0

����
����{1

� �
H v{veð ÞH Vd{vð Þ g Li2

Vd{v0

v{v0

� �
{Li2

v0{ve

v0{v

� �
{ln

v0{ve

Vd{v0
ln

ve{v

v0{v

� �
3D

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v{ve

VC

r
exp {

v{ve

VC

� �
H v{veð Þ x p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ve{v

VC

r
exp {

v{ve

VC

� �
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ve{v

VC

r
{

ffiffiffi
p
p� �

Figure 1 | Band structures of photonic crystals and localized photon
modes. (a) Spectral densities listed in Table 1 for different DOS of 1D, 2D

and 3D PCs (with different colors) are plotted respectively in the vicinity of

photonic band edge ve; (b) The corresponding localized photon mode

frequency vb as a function of the detuning d 5 vc 2 ve; and (c) The

corresponding localized photon mode amplitudes, given in Eq. (2). The

localized photon mode shows a crossover for 1D and 2D PCs, and a critical

transition for 3D PCs when the cavity frequency vc changes from the PBG

region to the PB region. The parameters given in Table 1 take as follows: the

coupling strengths for 1D, 2D and 3D PCs are C2/3 5 0.01ve, g 5 0.001ve

and x 5 0.014ve, respectively. Experimentally, the typical photonic band

edge frequency ve ranges from a few GHz to a few tens GHz for most of 1D,

2D and 3D PCs30,31, then the corresponding coupling strengths used in our

calculations are ranged from a few MHz to a few hundreds MHz. The

cutoff parameters Vd < 3.87ve and VC 5 0.1ve; and the logarithmic

divergence center v0 5 1.04ve.
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integro-differential equation (19). The general solution of Eq. (19) is
given in Ref. 15,

u t,t0ð Þ~ 1
1{S’ vbð Þ

e{ivb t{t0ð Þ

z

ð?
ve

dv
J vð Þe{iv t{t0ð Þ

v{vc{D vð Þ½ �2zp2J2 vð Þ
,

ð2Þ

where S’ vbð Þ~ LS vð Þ=Lv½ �v~vb
and S(v) is the reservoir-induced

cavity photon self-energy correction,

S vð Þ~
ð?

ve

dv’
J v’ð Þ

v{v’
: ð3Þ

The explicit solution of cavity photon self-energy corrections for
different spectral densities is also presented in Table 1. The frequency
vb in Eq. (2) is the localized photon mode frequency located inside
the PBG (0 , vb , ve) but not too far away from the PBE, and it is
determined by the pole condition: vb 2 vc 2 D(vb) 5 0, where

D vð Þ~P
ð

dv’
J v’ð Þ

v{v’

� �
is a principal-value integral.

Equation (2) provides a general solution of the non-Markovian
dissipative photon dynamics for micro/nano cavities in various
photonic crystal structures. It shows that the cavity photon dynamics
in PCs always contains two parts15: a localized photon mode (the first
term) plus a non-exponential photon damping (the second term).
The localized photon mode is a long-lived non-Markovian effect
(dissipationless), induced by the PBG structure in PCs. The corres-
ponding frequency vb lies always within the PBG. The non-expo-
nential photon damping comes from the non-analyticity of the
photon self-energy correction, which is determined by the DOS pro-
file of the PCs. This non-exponential damping is a short-time non-
Markovian memory effect, and it will become an exponential
(Markov) decay in the photonic band (PB) region, as we will show
later. The contributions of both the localized photon mode and the
non-exponential photon damping strongly rely on the detuning d 5

vc 2 ve.
In Fig. 1b, we plot the localized photon mode frequency as a

function of the detuning d for 1D, 2D and 3D PCs, respectively.
The values of the localized mode frequencies for three different
dimensional PCs are indeed very close to each other. However, a
carefully check (see the inset in Fig. 1b) shows that for 3D PCs with
an anisotropic DOS, the localized photon mode exists only when
dv

ffiffiffi
p
p

x, namely, the cavity frequency vc must be tuned into the
PBG or near the PBE. Here x is a coupling strength between the cavity
and the PCs (see Table 1). For 1D and 2D PCs, the localized photon
mode exists for any location of the cavity frequency vc. This is
because for 1D and 2D PCs with the DOS given in Table 1, the
self-energy corrections are negatively divergent when v R ve 2

01 so that the pole condition is always satisfied for the localized
photon mode. However, this does not ensure that the localized
photon mode in 1D and 2D PCs must have a significant contribution
to the photon dynamics for the whole range of the cavity frequency.
The importance of the localized photon mode is determined by the
localized photon mode amplitude, 1= 1{S’ vbð Þ½ � given in Eq. (2),
which is plotted in Fig. 1c as a function of the detuning d for all the
three different dimensional PCs. It shows that for 3D PCs with an
anisotropic DOS, the localized photon mode amplitude vanishes for
dw

ffiffiffi
p
p

x, indicating a critical transition for the occurrence of the
localized mode. For 1D and 2D PCs, the localized photon mode
amplitude decays to almost zero when vc is tuned into the PB region,
as a crossover phenomenon. However, the overall effect of these
localized photon modes on cavity photon dynamics has the very
similar behavior for different PCs given in Table 1, as shown in Fig. 1.

The results presented in Fig. 1b–c provide indeed the full steady-
state information of the cavity photon dynamics. This is because the

non-exponential photon damping [i.e. the second term in Eq. (2)]
will decay to zero so that only the localized photon mode contributes
to the steady-state cavity photon field. In other words, the steady-
state cavity field amplitude quantifies the contribution of the loca-
lized photon mode as a dissipationless effect, given by

u t??,t0ð Þj j~1= 1{S’ vbð Þ½ �: ð4Þ

On the other hand, the non-exponential damping term in Eq. (2)
characterizes the time-dependent cavity photon damping rate k(t) in
the intermediate dissipation time region through the relation15,16

k tð Þ~{Re _u t,t0ð Þ=u t,t0ð Þ½ �: ð5Þ

The detailed photon dynamics in terms of the cavity field amplitude
ju(t, t0)j is provided in Fig. 2(a) for 1D, 2D and 3D PCs, respectively,
with several different detuning d taking from the PBG region to the
PB region. The corresponding damping rate k(t) is given in Fig. 2b,
except for the case with d 5 0.1ve which will be discussed later. The
results show that the cavity dynamics changes dramatically when vc

crosses over from the PBG region to the PB region. Since the range of
u(t, t0) is given by 1 $ ju(t, t0)j $ 0, we define the crossover region
with the condition 0:9 *w u t??,t0ð Þj j*w0:1 which corresponds to
{0:025ve *v d *v 0:025ve, as shown in
show that the damping rate k(t) will
within the PBG (d , 20.025ve) and in the vicinity of the PBE
({0:025ve *v d *v 0:025ve). In other words, the photon damping

Figure 2 | Dissipation and dissipationless photon dynamics. (a)

Dissipation and dissiptionless photon dynamics in terms of the cavity field,

Æa(t)æ 5 u(t, t0) Æa(t0)æ, and (b) the corresponding decay rate k(t), are

plotted for (i) 1D PCs; (ii) 2D PCs and (iii) 3D PCs, with several different

detuning d. It shows how the dissipative cavity photons becomes

dissipationless when the cavity frequency moves from the PB region into

the PBG region for different dimensional PCs. For d 5 0.1ve, the photon

dynamics exhibits almost a perfect exponential decay, and by fitting the

damping with an exponential function, the resulting damping rate is k 5

3.16 3 1023ve, 1.24 3 1022ve and 1.72 3 1022ve for 1D, 2D and 3D

photonic crystals, respectively. Here t0 5 0, and other parameters are the

same as given in Fig. 1.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9423 | DOI: 10.1038/srep09423 3

Fig 1 The results in Fig 2b. . .
rapidly approach to zero



rate will approach to zero after some time, due to
the localized photon dynamics. In the PB region (d . 0.025ve

where either the localized mode vanishes (for 3D PCs) or
becomes negligible (for 1D and 2D PCs), then the cavity photons
undergo a full dissipation process, and can be approximately char-
acterized by an exponential damping for d?0:025ve, as shown by
the black curves in Fig. 2a for d 5 0.1ve. In this case, the damping rate
k(t) will oscillate rapidly in time when u(t, t0) decays to zero, see Eq.
(5). This rapidly oscillating damping rate, originated from u(t, t0)
approaching zero, has no physical consequence because the photon
dissipation is almost completed after this point of time. Thus, alter-
natively we determine the damping rate k by fitting the dashed-dot
black curves in Fig. 2a with an exponential function ,exp(2kt). The
resulting cavity photon damping rate for d 5 0.1ve is given by
k^3:16{3ve, 1.24 3 1022ve, and 1.72 3 1022ve for 1D, 2D and
3D PCs, respectively. Experimentally, the typical photonic band edge
frequency ve ranges from a few GHz to a few tens GHz for most of
1D, 2D and 3D PCs fabricated in the microwave regime30,31, this
corresponds to the damping rate k ranging from a few tens MHz
to hundreds MHz when the cavity frequency vc lies inside the PB
region.

Combining the localized photon mode together with the photon
dissipation dynamics, as shown in Fig. 1 and Fig. 2, we can see that
when the cavity mode is tuned away from the PBE with d . 0.025ve,
the localized mode has a negligible effect on cavity photon dynamics
for 1D and 2D PCs, and vanishes completely for 3D PCs. The cavity
photon field decays almost exponentially for d?0,025ve, which is a
Markov decay, as shown in Fig. 2a by the dashed-dot black curves
with d 5 0.1ve. In the crossover region {0:025ve *v d

*v0:025ve, i.e. the cavity frequency is tuned into the vicinity of the
PBE, the contribution of the localized mode to the photon dynamics
increases rapidly, while the contribution of the nonexponential
photon damping goes in an opposite way, namely the damping rate
k(t) is decreased to zero after some time (see Fig. 2b). When the
cavity frequency lies inside the PBG (d , 20.025ve), the cavity field
has almost no damping (the damping rate k(t) quickly decays to
zero), and the photon dynamics is dominated by the localized photon
mode. Thus light can be confined in the defect of the photonic crystal,
providing a high-Q micro/nano cavity. In fact, this nontrivial dissip-
ative cavity photon dynamics reproduces the same result with regard
to atomic population trapping and atom-photon bound states in the
vicinity of the PBG where an atom is placed in photonic crystals9–12.

The importance of the above results is that the localized photon
mode provides dissipationless cavity photon dynamics when the
cavity frequency vc lies inside the PBG or in the vicinity of the
PBE. This dissipationless localized-mode contribution to the
steady-state cavity photon field is universal for different dimensional
PCs with different DOS given in Table 1, because it only relies on the
presence of PBG. The localized photon mode decreases rather
quickly but smoothly in the crossover region ({0:025ve *v d

*v0:025ve), and becomes negligible for d . 0.025ve for 1D and 2D
PCs, where the cavity photon dynamics becomes dissipative. For the
3D PCs, the cavity photon dynamics shows the same dissipationless
behavior before reaching the critical point dc~ffiffiffi
p
p

x^0:025ve, where the localized photon mode dominates the
photon dynamics inside the PBG (d , 20.025ve) and decays rapidly
near the PBE ({0:025ve *v d *v 0:025ve). When d . dc, the localized
photon mode vanishes for 3D PCs, and the cavity photon dynamics
becomes fully dissipative. With these results, a general picture for
dissipation and dissipationless photon dynamics in photonic crystals
is provided.

Thermal photon fluctuations. The above exact solution of dissi-
pation and dissipationless cavity photon dynamics in photonic
crystals can be used to describe thermal photon fluctuations
through the fluctuated photon correlation function v(t, t), which is

fully determined by the generalized non-equilibrium fluctuation-
dissipation theorem15,

v t,tð Þ~
ðt

t0

dt1

ðt

t0

dt2u� t1,t0ð Þ~g t1,t2ð Þu t2,t0ð Þ: ð6Þ

In Eq. (6), the two-time correlation function ~g t1,t2ð Þ~ð
dvJ vð Þ�n v,Tð Þe{iv t{t’ð Þ depicts photon fluctuations induced by

the thermal photonic crystal, where �n v,Tð Þ~1
�

e�hv=kBT{1
	 


is
the initial photon distribution in PCs at temperature T. When the
cavity approaches the steady state, photon fluctuations are simply
determined by the modified steady-state fluctuation-dissipation
theorem,

v t,t??ð Þ~
ð?

ve

dvV vð Þ with

V vð Þ~�n v,Tð Þ Dl vð ÞzDd vð Þ½ �, ð7Þ

where Dl vð Þ~ J vð Þ
v{vbð Þ2 1{S’ vbð Þ½ �2

and

Dd~
J vð Þ

v{vc{D vð Þ½ �2zp2J2 vð Þ
. The first term is the localized

photon mode contribution that modifies the conventional
equilibrium fluctuation-dissipation theorem. This additional
contribution is negligible when the cavity frequency is tuned into
the PB region, i.e. d . 0.025ve, where vb R ve so thatDl vð Þ?0 (see
Fig. 1b–c). Consequently, the solution (7) is reduced to the standard
equilibrium fluctuation-dissipation theorem: V vð Þ~�n v,Tð ÞDd vð Þ.
In the high temperature limit, it reproduces Einstein’s fluctuation-
dissipation relation.

Photon fluctuations are presented in Fig. 3a(i)–(iii) respectively
for 1D, 2D and 3D PCs at a given temperature. It shows that photon
fluctuations evolve in a similar way for different PCs. When vc is
tuned into the PB region (d . 0.025ve), photons continuously flow
into the cavity from the photonic crystal until the cavity reaches its
steady state. In this case, the cavity thermally equilibrates with the
photonic crystal. When vc lies inside the PBE region
({0:025ve *v d *v 0:025ve), photons also flow into the cavity at
the beginning, but some of photons are then transmitted back into
the photonic crystal, due to the environment-induced memory
effects and the effect induced by the localized photon mode. When
vc is tuned into the PBG region (d , 20.025ve), photons hardly flow
from the photonic crystal into the cavity, because the localized
photon mode dominates the cavity photon dynamics in the PBG
region where the reservoir-induced dissipation is negligible, even
though the thermal energy, kBT~�hve, is much larger than the
detuning energy. Thus, thermal fluctuations are suppressed signifi-
cantly by the photon localization in the PBG region and also near the
PBE.

The physical picture of the above photon fluctuations can be seen
clearly by connecting the photon correlations with the measurable
average cavity photon number (i.e. field intensity)16,18,32: n(t) 5

Æa{(t)a(t)æ 5 ju(t, t0)j2 n(t0) 1 v(t, t), where n(t0) is the initial cavity
intensity. It shows that the fluctuated photon correlation function
v(t, t) is just the thermal-fluctuation-induced average photon num-
ber in the cavity. In Fig. 3b, we present the steady-state photon
fluctuations at a given temperature, see the solid-blue curve. The
dashed-pink curve is the thermal photon distribution in PCs at the
same temperature: �n vc,Tð Þ~1

�
e�hvc=kBT{1
	 


. It shows that when d

. 0.025ve, the thermal-fluctuation-induced steady-state average
photon number in the cavity is identical to the thermal photon
distribution: n t??ð Þ~v t,t??ð Þ~�n vc,Tð Þ. In this regime, the
initial cavity photons are totally lost into PCs as u(t, t0) R 0 in the
steady-state limit, as a consequence of the Weisskopf-Winger decay.
The steady-state cavity photons all come from thermal fluctuations

www.nature.com/scientificreports
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of the reservoir. As a result, the cavity photons approach equilibrium
with the reservoir and obey Bose-Einstein distribution.

However, near the PBE ({0:025ve *v d *v 0:025ve), the thermal-
fluctuation-induced photon number deviates significantly from the
thermal photon distribution, as shown in Fig. 3b. In other words,
Bose-Einstein distribution no longer works for cavity photons in the
PBE region, due to the localized photon effect. When the cavity
frequency vc lies inside the PBG (d , 20.025ve), the thermal fluc-
tuations approach to zero, and thus the cavity is fully determined by
the localized photons, even though the cavity mode equally couples
to all possible modes in PCs and the thermal energy is much larger
than the detuning, kBT?d. Consequently, Bose-Einstein distri-
bution is broken down. This provides a nontrivial phenomenon of
the thermal fluctuation dynamics from equilibrium to nonequili-
brium steady states. Here nonequilibrium steady states are defined
by these steady states which can memorize the initial state informa-
tion of the system so that the equilibrium hypothesis cannot be
satisfied. Such steady states will be given explicitly in the next
subsections.

It is recently shown that non-Markovian dynamics in open sys-
tems can induce a critical transition from equilibrium to nonequili-
brium steady states, when a localized mode occurs15,22,33. Such a
critical transition appears for the 3D PCs with an anisotropic DOS,
where there is a critical detuning for the occurrence of localized
photon mode, dc~

ffiffiffi
p
p

x. However, for the 1D and 2D PCs, our result
shows that there is no such a critical transition due to the fact that the
localized photon mode always exists. The photon fluctuations then
undergoes a crossover from equilibrium to nonequilibrium steady
states through the change of the detuning d. No matter it is a cross-

over or a critical transition, the results in Fig. 3b shows that thermal
photon fluctuations cannot make the cavities embedded in PCs to
approach equilibrium with the PCs when the cavity frequency lies
inside the PBG or near the PBE. This is a general feature for cavity
photons in PCs.

Breakdown of Bose-Einstein distribution through the time-
evolution of photonic Fock states. Based on the exact cavity
photon dissipation and fluctuation dynamics in PCs, we shall
explicitly examine the breakdown of Bose-Einstein distribution
through the evolution of cavity photonic states, and also the
crossover from equilibrium to nonequilibrium steady states. This
must be done by solving the exact master equation (15) given in
the Methods. To be more specific, we consider first the cavity to be
initially in a Fock state with an arbitrary photon number n0, i.e. r(t0)
5 jn0æ Æn0j, which may be prepared experimentally through the real-
time quantum feedback control34. By solving the master equation
(15), the cavity state at arbitrary time t is given by

r tð Þ~
X?
n~0

P n0ð Þ
n tð Þ nj i nh j, ð8Þ

P n0ð Þ
n tð Þ~ v t,tð Þ½ �n

1zv t,tð Þ½ �nz1 1{V tð Þ½ �n0

|
Xmin n0,nf g

k~0

n0

k

 !
n

k

 !
1

v t,tð Þ
V tð Þ

1{V tð Þ

� �k

,

ð9Þ

where V tð Þ~ u t,t0ð Þj j2

1zv t,tð Þ . This result shows that an initial photon

Fock state will evolve into a mixed state of different Fock states,
and the probability in each Fock state jnæ is P n0ð Þ

n tð Þ.
As we have shown, the breakdown of Bose-Einstein distribution

relies on the dissipationless photon dynamics. And different dimen-
sional PCs show almost the same dissipationless photon dynamics,
determined by the localized photon mode due to the existence of the
PBG. To be specific, we will present in the following the numerical
solution of the state evolution for 1D PCs. The 2D and 3D PCs must
provide a similar solution, based on the universal dissipation and
fluctuation photon dynamics provided by Eqs. (2) and (6), and also
the explicit numerical results presented in Fig. 2 and Fig. 3. The time-
evolution of the cavity photon distribution P n0ð Þ

n tð Þ for the initial
state jn0 5 5æ is given in Fig. 4. The steady-state limit,
P n0ð Þ

n t??ð Þ, is shown in Fig. 5, where several different initial states
have been considered to demonstrate the initial-state dependence of
the steady photon states.

The results show that if we tune vc into the PB region (e.g. d 5

0.1ve), then u(t, t0) will gradually decay to zero. This indicates that
photons in the cavity will gradually be damped into the photonic
crystal, and photons in the photonic crystal are transferred into the
cavity through thermal fluctuations. In this case, the contribution of
the localized photon mode is negligible. The cavity state ultimately
reaches thermal equilibrium with the photonic crystal, and Bose-
Einstein statistical distribution is produced,

P n0ð Þ
n t??ð Þ~ �n vc,Tð Þ½ �n

1z�n vc,Tð Þ½ �nz1 , ð10Þ

where the initial state information is completely washed out, and the
cavity photon steady state is independent of the initial states, as
shown in Fig. 4a and Fig. 5a.

Near the PBE (e.g. d 5 0), the cavity still loses photons into the
photonic crystal and gains photons from the photonic crystal
through thermal fluctuations. At a low temperature (kBT~
0:2�hve), the photon loss and photon gain make the cavity become

Figure 3 | Fluctuated photon dynamics. (a) Time-evolution of cavity

photon fluctuations, in terms of the photon correlation function v(t, t), are

plotted for (i) 1D PCs, (ii) 2D PCs and (iii) 3D PCs. Different curves

correspond to different detuning d 5 vc 2 ve, as also shown in Fig. 2a,

with the photonic crystal temperature kBT~�hve; (b) The corresponding

steady-state values of photon fluctuations, given by the solid-blue curve, as

a function of the detuning. The pink-dashed curve is the result of the Bose-

Einstein distribution �n vc,Tð Þ.
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a mixed state of several Fock states jnæ only for n , n0, and mainly
distributed around n 5 n0/2, see Fig. 4b–(i) and also the steady-state
limit by Fig. 5b–(i) where the initial state dependence is manifested.
The photon distribution deviates significantly from the standard
Bose-Einstein distribution. At a relatively high temperature
(kBT~�hve), the cavity state also becomes a mixed state of several
Fock states jnæ, distributed mainly among n # n0/2, but the distri-
bution is broader, see Fig. 4b–(ii) and also the steady-state limit in
Fig. 5b–(ii). In this case, the initial-state dependence of the steady
state is still shown up and the derivation of the photon distribution
from the standard Bose-Einstein distribution is obvious. As the tem-
perature becomes rather high (kBT~10�hve), the time-evolution of
the cavity state behaves quite differently because thermal fluctuations
play a more important role now, thus the structure of the initial state
is quickly destroyed, as shown in Fig. 4b–(iii). However, the cavity
does not really approach thermal equilibrium with the photonic

crystal, because V tð Þ~ u t,t0ð Þj j2

1zv t,tð Þ is small but not negligible so that

the distribution given by Eq. (9) is still different from the thermal
state distribution. The cavity steady states for different initial states
do not differ from each other as much as these in the low temperature
cases, but the initial-state dependence is still observable, as shown in
Fig. 5b–(iii).

When the cavity frequency vc lies inside the PBG, e.g. d 5 20.1ve

given in Fig. 4c and Fig. 5c, the steady-state cavity photon distri-
bution strongly depends on the initial state. In particular, if the
photonic crystal temperature is not too high (kBT~0:2�hve and
kBT~�hve), the cavity remains in its initial Fock state as a photon
localization state. It only has a small chance to decay to the Fock state
jnæ with n , n0 [see Fig. 4c(i) with kBT~0:2�hve], and an even
smaller probability to be in the Fock state jnæ with n . n0 [see
Fig. 4c(ii) when kBT increases to �hve]. The steady-state cavity
photons are distributed mainly in the regime n , n0 with the max-
imum peak at n 5 n0, see Fig. 5c(i)–(ii). However, at a higher tem-
perature kBT~10�hve, the thermal fluctuation becomes strong such
that some of the initial state information will be lost and the cavity
evolves into a mixed state covering several Fock states around the
initial one jn0æ [see Fig. 4c(iii)]. The steady-state cavity photons are
distributed more broadly, but are still centered around the initial

photon number n0, as shown in Fig. 5c(iii). This is because the
localized photon mode dominates the photon dynamics over thermal
photon fluctuations. The overall initial-state dependence of the
steady states shown in Fig. 5b–c indicates that the equilibrium hypo-
thesis in statistical mechanics is no longer obeyed and Bose-Einstein
statistical distribution is completely broken down, even though the
initial thermal energy of the photonic crystals is larger or much larger
than the detuning energy.

Breakdown of Bose-Einstein distribution through the time-
evolution of coherent states. Because Fock sates are highly non-
classical and may not be easy to prepare in experiments, here we
examine the case the cavity is initially in a coherent state ja0æ. By
solving the master equation (15), the cavity state at an arbitrary later
time t is given by

r tð Þ~D a tð Þ½ �rT v t,tð Þ½ �D{1 a tð Þ½ �, ð11Þ

where D a tð Þ½ �~exp a tð Þa{{a� tð Þa
� �

is a displacement operator
with a(t) 5 u(t, t0)a0, and

rT v t,tð Þ½ �~
X?
n~0

v t,tð Þn½ �
1zv t,tð Þ½ �nz1 nj i nh j ð12Þ

is a thermal-like state with average particle number v(t, t). Equation
(11) shows that the initial cavity state will evolve into a displaced
thermal-like state35,36 which is the mixture of displaced number states
D a tð Þ½ � nj i37. In the photon number representation, Eq. (11) can be
written as

mh jr tð Þ nj i~e{V tð Þ a0j j2 a tð Þ½ �m a� tð Þ½ �n

1zv t,tð Þ½ �mznz1

|
Xmin m,nf g

k~0

ffiffiffiffiffiffiffiffiffi
m!n!
p

m{kð Þ! n{kð Þ!k!

v t,tð Þ
V tð Þ a0j j2

" #k

,

ð13Þ

where the probability of the cavity containing n photons (i.e. cavity
photon distribution) is given by the diagonal terms of Eq. (13).

The cavity photon distribution in the steady-state limit is pre-
sented in Fig. 6. It shows again that when the cavity frequency vc

lies inside the PB region (d 5 0.1ve), the cavity state (11) will evolve
into the thermal state rT �n vc,Tð Þ½ �, which indicates that the cavity

Figure 4 | Time-evolution of Fock states. The time-evolution of the

probability distribution, P n0ð Þ
n tð Þ with different detuning d: (a) d 5

20.1ve; (b) d 5 0; and (c) d 5 0.1ve, for photonic crystals at different

temperature T: (i) kBT~0:2�hve; (ii) kBT~�hve; and (iii) kBT~10�hve.

The cavity is initially prepared in the Fock state | n0 5 5æ. The time t is

scaled by 102ve.

Figure 5 | Steady-state photon distributions I. The steady-state cavity

photon distribution, P n0ð Þ
n t??ð Þ for different initial Fock states | n0æ, n0 5

5, 15 and 25 (in terms of different colors); with different detuning d: (a) d

5 0.1ve, (b) d 5 0, and (c) d 5 20.1ve; and different temperatures T of the

photonic crystals: (i) kBT~0:2�hve, (ii) kBT~�hve, and (iii) kBT~10�hve,

as given in the figure.
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photon number obeys Bose-Einstein distribution, see Fig. 6a. If the
cavity mode is tuned at the PBE (d 5 0), the cavity steady state will
depend on its initial state, as shown in Fig. 6b. For low temperature
(e.g. kBT~0:2�hve), the thermal fluctuation is suppressed (v(t, t) R
0), and the cavity will evolve into the coherent state ja(t)æ, see Eq.
(11). In this case, the cavity photon distribution in the steady state is
Poissonian-like, with average photon number Ænæ jt R ‘ 5 ja(t)j2 /
ja0j2, see Fig. 6b–(i). As the temperature goes higher (kBT~�hve), the
cavity photon distribution is deviated away from the Poisson distri-
bution due to thermal fluctuations, see Fig. 6b–(ii). At high temper-
ature (kBT~10�hve), since thermal fluctuation plays a more
important role, the initial-state dependence is not as significant as
that in the low temperature, and the cavity photon distribution is not
Poissonian-like, but still deviates from Bose-Einstein distribution,
see Fig. 6b–(iii). When the cavity frequency lies inside the PBG (d
5 20.1ve), the cavity steady state strongly depends on its initial
state. The photon distribution in the cavity remains almost the same
as in its initial state when the temperature is not very high
(kBT~0:2�hve and kBT~�hve), see the first two graphs in Fig. 6c.
The initial-state dependence of the photon distribution is still strong
when the temperature gets higher (kBT~10�hve), see Fig. 6c–(iii).
The photon distribution in this case is slightly broadened from the
initial states due to thermal fluctuations at high temperature, but still
centered around n < ja0j2, as a manifestation of photon localization.
These results obtained for different initial coherent states at different
temperature behave indeed in the same way as the results obtained
for different initial Fock states under the same temperature.

Discussion
The breakdown of Bose-Einstein distribution in PCs, explored in
details through the time-evolution of various cavity photon states
for 1D PCs, is also valid for 2D and 3D PCs with different DOS listed
in Table 1. This is because the time evolution of the cavity photon
states, solved analytically by Eqs. (8) and (11), is fully determined by
the photon dissipation and fluctuation dynamics of Eqs. (2) and (6).
The steady-state behaviors of Eqs. (2) and (6) for different PCs are
almost the same, as shown in Fig. 2 and Fig. 3. There is only a slight
difference on the photon dissipation and fluctuation dynamics
between 1D and 2D PCs with 3D PCs. For 1D and 2D PCs, varying
the detuning leads to a crossover from equilibrium to nonequili-
brium steady states for the photon dynamics, while for 3D PCs with

an anisotropic DOS, it gives a critical transition, rather than a cross-
over, due to the existence of a critical detuning for the existence of the
localized mode, see explicitly the results presented in Fig. 1 to Fig. 3.
Such a critical transition is also found recently in other open sys-
tems22,33 but not for the crossover phenomenon. Thus, photon dis-
sipation and fluctuation dynamics investigated in this work reveal a
new nontrivial property, i.e. a crossover phenomenon for photon
dynamics in low-dimensional photonic crystals.

In conclusion, we show that when the cavity frequency lies inside
the PBG or near the PBE in photonic crystals, Bose-Einstein statist-
ical distribution is broken down for cavity photons. This conclusion
is generally valid for various photonic band gap structures in PCs.
For the 1D and 2D PCs, the breakdown of Bose-Einstein distribution
leads to a crossover from equilibrium to nonequilibrium cavity
steady states, while for 3D PCs with an anisotropic DOS, the break-
down of Bose-Einstein distribution corresponds to a critical trans-
ition rather than a crossover. No matter whether it is a crossover or a
critical transition, the breakdown of Bose-Einstein distribution is a
consequence of localization photons due to the presence of PBG
structures in PCs. Therefore the conclusion is also valid for other
nanomaterials with band gap structures. It could provide a hitherto
unexplored challenge on photon statistics. Furthermore, this non-
trivial photon dynamics can be examined via quantum non-demoli-
tion measurement38,39, by sending sequences of circular Rydberg
atoms through the photonic crystal micro/nano cavity, which carry
information without destroying the cavity photon state. In particular,
the cavity photon state can be measured using an experimental setup
similar to that given in Ref. 38. Such experiments could be done with
microcavities in low-dimensional photonic crystals in the microwave
regime.

Methods
To investigate photon dynamics of micro/nano cavities which are coupled each other
through waveguides embedded in PCs at finite temperature, we treat both the PCs
and waveguides as reservoirs of the cavities. Thus the entire system of the micro/nano
cavities (defects) embedded in photonic crystals can be described by the Fano-
Anderson model (a model of impurity electrons coupled with continuous states
introduced by Anderson40 in solid-state physics, and discrete states embedded in a
continuum proposed by Fano41 in atomic spectra). The corresponding Fano-
Anderson Hamiltonian is given by Refs.16, 40–43:

H~
X

vcia
{
i aiz

X
k

vkb{kbkz
X

ik

Vika{bkzV�ikb{kai

 �
, ð14Þ

where ai a{i
 �

is the annihilation (creation) operator of the micro/nano cavity modes

(defects), and bk b{k

 �
the annihilation (creation) operator of the photonic modes of

photonic crystals (continuum). The coefficients Vik are tunneling amplitudes of
photons between the micro/nano cavities and the photonic crystals. The Hamiltonian
(14) has also the same form as the one for cavity photon loss in open space20, by
replacing the photonic crystals with an open space.

Consider initially the photonic crystals are in equilibrium state. Integrating out
completely the reservoir degrees of freedom of photonic crystals via the influence
functional44,45 in the coherent state representation46, arbitrary photon states for
micro/nano cavities in PCs are then governed by the following exact master equa-
tion15–18,32,43,47,48

_r tð Þ~{i H0c tð Þ,r tð Þ
	 


z
X

ij

kij tð Þ 2ajr tð Þa{i
hn

{a{
i ajr tð Þ{r tð Þa{

i aj

i
z~kij tð Þ a{i

h
r tð Þaj

zajr tð Þa{
i {a{i ajr tð Þ{r tð Þaja

{
i

io
:

ð15Þ

Here r (t) is the reduced density matrix for cavity states, H’c tð Þ~
X

i,j
v’cij tð Þa{

i aj is

the renormalized Hamiltonian of cavities with the environment-modified cavity
frequencies v’cii tð Þ:v’ci tð Þ and the environment-induced couplings between dif-
ferent cavities v’cij tð Þ, after the environmental degrees of freedom are completely
integrated out. The coefficients kij (t) and ~kij tð Þ characterize photon dissipations and
fluctuations in PCs at finite temperature. The renormalized frequency, v’cij, and the
time-dependent dissipation and fluctuation coefficients, kij (t) and ~kij tð Þ, can be
exactly and non-perturbatively determined by the dissipation-fluctuation Dyson
equation, as shown explicitly in our early works16,17, and will also be given later.

Figure 6 | Steady-state photon distributions II. The steady-state cavity

photon distribution (colored bars), Æn | r (t R ‘) | næ for different initial

coherent states | a0æ (shown by the dotted curves with different colors);

with different detuning d: (a) d 5 0.1ve, (b) d 5 0, and (c) d 5 20.1ve at

different temperatures of photonic crystals: (i) kBT~0:2�hve, (ii)

kBT~�hve, and (iii) kBT~10�hve.
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It might be worth pointing out that the first master equation derived from the
original Feynman-Vernon influence functional44 was obtained by Caldeira and
Leggett for the Brownian motion with a high temperature environment45 which is
also called the Caldeira-Leggett master equation in the literature. For the
Brownian motion, the system-reservoir coupling Hamiltonian is given by
HI~

X
k

lkxqk , where x and qk are the positions of the principal harmonic

oscillator (as the Brownian particle) and all other harmonic oscillators in the
reservoir, respectively. In terms of the second quantization, this system-reservoir

coupling Hamiltonian can be rewritten as HI~
X

k
Vk a{bkzb{kaza{b{kzabk

 �
which shows that the amplitudes for particle tunneling processes between the
system and the reservoir (the first two terms) is equal to the amplitudes of particle
pair production and annihilation processes (the last two terms), both are given by
Vk. However, in quantum optics, it is well-known that the photon tunneling
amplitudes cannot be the same as the amplitudes of two-photon pair production
and annihilation processes. As a result, the Caldeira-Leggett model is not
applicable to photonics.

To make the cavity photon dynamics in thermal photonic crystals more specific, we
consider a single-mode micro/nano cavity in photonic crystals. The photon dis-
sipation and fluctuations, characterized by the dissipation and fluctuation coefficients
k (t) and ~k tð Þ (all the sub-indices (i, j) in Eq. (15) can be dropped now), are deter-
mined non-perturbatively and exactly by the nonequilibrium Green functions49,50

through the relations15–18:

v’c tð Þ~{Im _u t,t0ð Þ=u t,t0ð Þ½ �, ð16Þ

k tð Þ~{Re _u t,t0ð Þ=u t,t0ð Þ½ �, ð17Þ

~k tð Þ~ _v t,tð Þz2v t,tð Þk tð Þ: ð18Þ

Here u (t, t0) is the cavity photon field propagating Green’s function describing the
photon field relaxation, and v (t, t) characterizes the reservoir-induced photon
thermal fluctuations. These two Green functions, u (t, t0) and v (t, t), are determined
by the following integrodifferential dissipation equation and the nonequilibrium
fluctuation-dissipation theorem, respectively15,16,

_u t,t0ð Þ~{ivcu t,t0ð Þ{
ðt

t0

dt’g t{t’ð Þu t’,t0ð Þ, ð19Þ

v t,tð Þ~
ðt

t0

dt1

ðt

t0

dt2u� t1,t0ð Þ~g t1{t2ð Þu t2,t0ð Þ, ð20Þ

where vc is the original cavity frequency. The integral kernels in Eqs. (19)–(20)
characterize all the back-actions between the cavity and photonic crystals, and can be
determined uniquely by the spectral density J (e) of photonic crystals through the

relations: g t{t’ð Þ~
ð

dvJ vð Þe{iv t{t’ð Þ , and ~g t{t’ð Þ~
ð

dvJ vð Þ�n v,Tð Þe{iv t{t’ð Þ,

where �n v,Tð Þ~1
�

e�hv=kB T{1
	 


is the initial photon distribution in PCs at temper-
ature T. The spectral density J(v) is microscopically defined as a multiplication of the
density of states (DOS) % vð Þ of PCs with the photon scattering amplitudes Vk

between the cavity and PCs,

J vð Þ~
X

k

Vkj j2d v{vkð Þ~% vð Þ V vð Þj j2: ð21Þ

In the second equality we have taken the continuous photonic modes of PCs so that
Vk R V(v), and the index i of Vik in Eq. (14) has also been dropped for single-mode
cavity. For arbitrary spectral density J(v), the general solution of Eq. (19) can be
obtained exactly15, which is given by Eq. (2). By solving Eqs. (16)–(18) and (15)
through Eqs. (19)–(20), the complete solution of photon dissipation and fluctuations
can be obtained, as we presented in details in the paper.
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