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Chemoresistance is a poor prognostic factor in breast cancer and is a major obstacle to the successful
treatment of patients receiving chemotherapy. However, the precise mechanism of resistance remains unclear.
In this study, a pair of breast cancer cell lines, MCF-7 and its adriamycin-resistant counterpart MCF-7/ADR
was used to examine resistance-dependent cellular responses and to identify potential therapeutic targets. We
applied nanoflow liquid chromatography (nLC) and tandem mass tags (TmT) quantitative mass spectrometry
to distinguish the differentially expressed proteins (DEPs) between the two cell lines. Bioinformatics analyses
were used to identify functionally active proteins and networks. 80 DEPs were identified with either up- or
down-regulation. Basing on the human protein-protein interactions (PPI), we have retrieved the associated
functional interaction networks for the DEPs and analyzed the biological functions. Six different signaling
pathways and most of the DEPs strongly linked to chemoresistance, invasion, metastasis development,
proliferation, and apoptosis. The identified proteins in biological networks served to resistant drug and to
select critical candidates for validation analyses by western blot. The glucose-6-phosphate dehydrogenase
(G6PD), gamma-glutamyl cyclotransferase (GGCT), isocitrate dehydrogenase 1 (NADP1,soluble)(IDH1),
isocitrate dehydrogenase 2 (NADP1,mitochondrial) (IDH2) and glutathione S-transferase pi 1(GSTP1), five
of the critical components of GSH pathway, contribute to chemoresistance.

C
hemoresistance is a poor prognostic factor in breast cancer, presenting a significant clinical challenge. The
resistance to anticancer drugs, such as anthracycline, is still a major cause of chemotherapy failure in
cancer patients1,2.

The anthracycline drug, adriamycin, is one of the most important anti-cancer chemotherapeutic drugs, and is
generally used to treat solid tumors and acute leukemias3–6. However, adriamycin resistance has been widely
reported in the analysis of cancer research on breast cancer, leukemia, osteosarcoma, lung cancer, etc7–10. A range
of factors contributing to this chemoresistance have been proposed, including increased efflux through the P-
glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) drug pumps, increased GSH trans-
ferases, alterations in topoisomerase activity, and increases in antiapoptotic molecules such as Bcl-211–14.
Potent nuclear DNA repair systems also contribute substantially to the ability of tumor cells to withstand the
cytotoxic effects of adriamycin. Despite being occasionally mentioned, to date there have been no studies which
fully unravel the expressional signatures of adriamycin resistant breast cancer on the proteomic level.
Understanding the mechanisms behind the perspective of proteomic profiling will ultimately facilitate treatments
with enhanced tumor responses in the clinic.

To date, proteomic technology has been applied to a wide range of cancer studies including analysis of drug
resistance15. Mass spectrometry (MS)-based proteomics often involves analyzing complex mixtures of proteins
derived from cell or tissue lysates or from body fluids on a global scale16–18. In recent years MS-based proteomics
has greatly benefitted from enormous advances in high resolution instrumentation. In particular, a novel mass
spectrometer, the Q Exactive, couples a mass selective quadrupole to the Orbitrap analyzer, which has been
proven to be a popular instrument configuration19. In this bench-top instrument, precursor ions are selected by
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the quadrupole, fragmented by Higher Energy Collisional
Dissociation (HCD), and measured at high-resolution and accur-
ate-mass (HR/AM) in the Orbitrap analyzer20. Consequently, the
Q Exactive offers the potential to analyze many more peptides in a
given time, with very high MS/MS data quality21. We wanted to
combine these benefits with a compact Ultra High Pressure Liquid
Chromatography (UHPLC) system, known as the EASY-nLC 1000,
which was not available to us in previous single-run analysis. To
quantify protein expression changes, we applied TmT labeled sam-
ples together with tandem MS to determine differences between the
drug sensitive and drug resistant cells. Protein intensities resulted
from the average of the single TmT reporter ion intensities22.

The aim of this study is to conduct an in vitro investigation into
adriamycin-resistance mechanisms in breast cancer cells using pro-
teomic strategies, to increase our understanding of the molecular
processes involved, and to identify potentially valuable diagnostic
or therapeutic resistance biomarkers. To meet these aims, we have
run a minimalistic proteomic workflow and presented the quantitat-
ive proteomic profiles of two breast cancer cells: MCF-7 and MCF-7/
ADR, which are of the same breast cancer origin, but are character-
ized by different reactions to adriamycin, and therefore, could pos-
sibly represent differences in the active molecular networks. The core
of this work lies in the identification of cancer up/down regulated
proteins externalized by cells, based on the combined exploitation of
MS and bioinformatics tools.

Results
The present study was based on three major sets of experiments.
First, the nanoflow liquid chromatography (nLC) and tandem mass
tags (TmT) quantitative mass spectrometry were applied to distin-
guish the DEPs between the MCF-7 and its adriamycin-resistant
counterpart, MCF-7/ADR cell lines. Subsequently, western blot ana-
lyses of DEPs of GSH metabolism pathway served to validate the
results by the new proteomic method. Last, DEPs served to evaluate
the potential significance of drug resistance using bioinformatic ana-
lysis. These analyses served to assess the potential resistance proteins
and novel related proteins in adriamycin-resistant breast cancer.

Protein profiling. We were able to identify proteins having a wide
range of MW, which spanned mainly from 10,000 to 200,000 Da
(Supplementary Fig. S1). Most proteins had a pI between 4 and 10
(Supplementary Fig. S1). In this case, to improve analytical precision,
all quantitative data associated with a certain peptide that was
identified in multiple fractions were used for deriving protein
quantitation tables. With this criteria, more than 63,900 MS/MS
spectra were matched to peptide sequences and used for protein
quantitation in cell proteomics analysis, excluding spectra deriving
from contaminants and reversed protein sequences. We obtained
more than 9448 peptides, corresponding to 719 proteins which
were identified and quantified in the mixed cell sample.
Quantitation data were retrieved from MS/MS reporter ions
quantifier from PD. More than two unique peptides were
considered for each protein quantitation.

Bioinformatic analysis: identification and functional enrichment
of DEPs. Using the DAVID network analysis tool, we analyzed
the molecular functions/localizations of the protein data sets
according to GO functional annotations and categories. We
performed GO analysis on cellular components (CC), molecular
functions (MF), and biological processes (BP) of the 719 proteins.
A Venn diagram shows the GO analysis of the identified proteins
by PD software (Fig. 1). The GO analysis showed that most of the
modulated proteins have cytoplasmic origin (23.76%), followed by
the membrane region (13.16%), and then nuclear proteins
(12.23%) (Fig. 1a). A functional classification of these proteins
revealed that most were involved in protein binding, catalytic

activity, as well as nucleotide binding and biosynthesis. The
remaining molecular functions showed enzyme regulation, signal
transduction, etc (Fig. 1b). In Fig. 1c, our BP analysis indicated that
the greatest changes occurred in metabolic processes, regulation of
biological processes, responses to stimulus, cell organization, and
biogenesis. Most of those BP feed into transport, communication,
apoptosis, differentiation, and proliferation, suggesting that alterations
in these might be involved in adriamycin resistance.

Next, as found with KEGG pathway enrichment, the most active
pathways are those of endocytosis, spliceosomes, oxidative phos-
phorylation, GSH metabolism, and the pentose phosphate pathway
(PPP) (Supplementary Table S1). Most of the above-mentioned
pathways are strictly connected to growth factor response, invasion,
motility, and resistance. For instance, 14 proteins were significantly
enriched within the GSH metabolism pathway, which is closely
related to the chemoresistance (Fig. 2 and Table 1). At 46.5%, cov-
erage of the proteins in the KEGG database it was lower in the cell
proteome than the coverage of the three GO categories (CC 83.5%,
MF 87.8%, BP 85.7%).

Finally, we focused on the results concerning DEPs exhibiting
significant modulation. With a threshold of 1.5 fold-change ($1.5
or #0.67), we found 80 DEPs showing 49 up-regulated and 31 down-
regulated proteins between MCF-7 and MCF-7/ADR cells
(Supplementary Table S2). When the same analytical method was
used, the coverage of the DEPs in the KEGG database was 43%
(Supplementary Table S3). KEGG pathway analysis showed that
the DEPs were significantly enriched with those related to GSH
metabolism, the PPP, glycolysis/gluconeogenesis, the PPAR signal-
ing pathway, etc. (Fig. 3 and Supplementary Table S3). The coverage
of the three GO categories was as follows: 89.9% (CC), 86.1% (MF),
and 84.8% (BP). In order to better investigate the chemoresistant
relevance of the network and to evaluate the property of a single
protein, we conducted a further analysis with total protein KEGG
as the background and combined the pathways of the DEPs. Those
that share the same pathways were shown below: GSH metabolism
(Fig. 2), PPP, glycolysis/gluconeogenesis, fructose, and mannose
metabolism and the lysosome pathway.

Focusing on the rich degree, the network showed that the main
modulated signaling pathways were the GSH metabolism pathway
and the PPP. In the GSH metabolism pathway we had found the
following 5 DEPs (G6PD, GGCT, IDH1, IDH2, and GSTP1) sig-
nificantly difference. (Fig. 2 and Table 1). Other proteins were
found either increased or decreased in MCF-7/ADR relative to
MCF-7 (Table 2). Of note, ABCB1 (also known as MDR1 or P-
gp) was found highly up-regulated in our study (Table 2), which is
known to be a key player in mediating multidrug resistance
(MDR) in cancer. As expected, our analysis also identified up-
regulated Annexin A2(ANXA2) and Annexin A5(ANXA5) in
the mixed cell sample, which were known to adriamycin resistance
(Table 2).

Bioinformatic analysis: DEPs-one step interacting proteins
network in PPI. Human protein interacting data sets were
downloaded from HPRD, which including 9617 proteins and
39240 interacting relations. In the HPRD database, we found 66
DEPs and used as seed proteins for further network research
(Table 3). One-step interacting proteins which were considered to
correlate with DEPs tightly were mined and the network was built
(Fig. 4). In this network, DEPs and one-step interacting proteins are
represented as nodes, and the biological relationship between two
nodes is represented as an edge. There are 559 nodes and 1899 edges,
including 66 DEPs and 493 one-step interacting proteins. Fig. 4
shows a global view of the DEPs-one step interacting proteins
network with the following color-coded nodes and edges: DEPs
(yellow), one-step proteins (green). Then, we analyzed the function
of DEPs-DEPs and DEPs-one step interacting proteins respectively.

www.nature.com/scientificreports
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Bioinformatic analysis: DEPs-DEPs relations. In the network,
there are nine proteins which not only DEPs but also one-step
interacting proteins (Table 3). They form five pairs of interacting
proteins. According to literature, direct relation means that one
protein has been reported to be relevant to drug resistance,
indirect indicates that one protein has no evidence as resistance,
but its one-step protein has drug resistant function, we can regard
this protein as the resemble function. Three-pair DEPs (HBB-HBA2,
HP-HBB, KRT8-ANXA1) had been reported directly to have
association with resistance to drug23–28. Another pair ANXA6-
A2M, ANXA6 had been proved as a drug resistance protein29, so
we thought A2M might confer resistance indirectly according to
the tightly interaction with ANXA6. Although CBX5-CBX3 had no
direct evidence with resistance, they were indirectly verified by their
other one-step proteins which had resistant function in the network.

Bioinformatic analysis: DEPs-one step interacting protein
relations. In the network, there are some certain proteins
correlated with more than one DEPs, which we thought had closer
relation with DEPs and drug resistance. If the one-step protein has

been proved having drug resistance function, we can deduce the
DEPs have the similar resistant function. An independent analysis
of DEPs-one step interacting proteins relations was performed. The
result showed that the number of DEPs interacting with one-step
protein ranged from 5 to 1 (Supplementary Fig. S3). Biological
interactions were shown previously for these proteins (Fig. 4).
These one-step proteins which correlated with more than one
DEPs should be focused on, for they might be highly correlate with
adriamycin resistance and could be further study.

Literature validation. From literature, we collected scientific publications
of DEPs and one-step interacting proteins that have been experimentally
discovered and verified. We made further correction by two professors
about the text mining results on the DEPs (Table 4). 64(97%) DEPs had
been reported to have correlation with drug resistance. Among them,
49(76.6%) DEPs had been proved as drug resistance proteins directly,
15(23.4%) DEPs were verified indirectly. Only 2(3%) DEPs had no
evidence to demonstrate the correlation with resistance (Table 4). These
results were highly in accordance with the proteomics data, which further
validate the accuracy of our proteomic experimental method.

Figure 1 | These Venn diagrams demonstrate the GO analyses of all the identified proteins by Proteome Discoverer software. (a) Cellular component

analyses of the identified proteins. (b) Molecular functions analyses of the identified proteins. (c) Biological processes analyses of the identified proteins.

www.nature.com/scientificreports
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Bioinformatic analysis: Modules Identification in Networks. To
further discover the relationship of the DEPs, we dig out 32 modules
in the network (Supplementary Table S4). Such potentially biological
relevant associations are inferred from either direct or indirect
(including intra- and inter-module) interactions. Among these
modules, we randomly took one module which contained 20
proteins for further research (Supplementary Fig. S2). The 20
proteins were enriched within 11 pathways, among them, there
were six pathways associated with resistance, especially MAPK
signal pathway30. There were five proteins in MAPK signal
pathway, including one pair of DEPs-one step interacting protein
(HSPB1-DAXX).

Validation by western blot on DEPs in GSH pathway. The
expression of G6PD, GGCT, IDH1, IDH2 and GSTP1 were further
validated by western blot. Consistent with the observations in
proteomics analysis, G6PD, GGCT, IDH1 and IDH2 were found

down-regulated in MCF-7/ADR cells compared with MCF-7 cells,
and GSTP1 was found up-regulated in MCF-7/ADR cells compared
with MCF-7 cells (Fig. 5).

Discussion
Quantitative proteomics is driving the discovery of disease-specific
targets and biomarkers31. UHPLC, mass spectrometry-based proteo-
mics (Q-Exactive), combined with TmT labeled samples were
applied to quantify protein expression changes due to its faster sepa-
ration, greater sensitivity and resolution.

The novelty of our study deals with the application of this pro-
posed quantitative proteomic approach to dissect the DEPs asso-
ciation with adriamycin-resistance mechanisms in breast cancer
cells. This proteomics technique is a powerful method to reach very
large coverage of the cell proteome and allow systems wide analysis,
and to discovery of DEPs aiming to address potentially valuable

Figure 2 | GSH metabolism pathway. Proteins indicated in red were significantly enriched within the GSH metabolism pathway. Red stars represent

DEPs. 2.3.2.4.: GGCT; 1.1.1.42: IDH1 and IDH2; 1.1.1.49: G6PD; 2.5.1.18: GSTP1.

www.nature.com/scientificreports
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diagnostic or therapeutic resistance biomarkers, which may led to a
better characterization of the MCF-7/ADR cell line and to a better
understanding of its adriamycin resistant phenotype. 80 DEPs were
found to be differentially expressed in MCF-7/ADR cells compared
with MCF-7 cells, five DEPs (G6PD, GGCT, IDH1, IDH2 and
GSTP1) belonging to the GSH pathway were identified significantly
different. To validate results of the proteins identified in the proteo-
mics experiments, western blot analyses were performed on these 5
DEPs in MCF7 and MCF-7/ADR cells (Fig. 5).

The GSH metabolism pathway contributes to the detoxification
and elimination of a wide range of xenobiotic compounds, under-
scoring the role of redox regulation of MDR mediated by drug efflux
pumps32–34. In several previous studies GGCT, a critical component
of the GSH pathway, has been implicated as a cancer marker with a
potential role in cell proliferation. Despite the differential expression
of GGCT in tumor tissues35–37, little is known about the function of
GGCT in cancer resistant cells. The c-glutamyl cycle is a pathway
that encompasses the synthesis and degradation of GSH and is
thought to contribute to the uptake of amino acids across cellular
membranes38. GGCT is a pivotal enzyme that contributes to the c-
glutamyl cycle regulating GSH metabolism through catalyzing the
formation of 5-oxoproline (pyroglutamic acid) from c-glutamyl
dipeptides34,39. Aaron J Oakley et al. reported39 that the inhibition
of GGCT in cases of GSH synthetase deficiency blocks the degrada-

tion of c-glutamylcysteine and allows it to accumulate to a level
where it may partially substitute for GSH in redox and detoxification
reactions (Fig. 6). There is a significant turnover of GSH and c-
glutamyl-amino acid dipeptides via GGCT and the c-glutamyl cycle
under normal metabolic conditions (Fig. 2 and Fig. 6). The position
of GGCT in the c-glutamyl cycle suggests that it could play a signifi-
cant role in regulating the synthesis of GSH by limiting the availabil-
ity of c-glutamylcysteine. Aaron J Oakley et al.39 also discuss the
feedback inhibition of c-glutamyl cysteine synthetase by GSH.
Based on this process, we further hypothesize that GSH expression
is modulated by GGCT dependent negative feedback. In our analysis
GGCT was found down-regulated in MCF-7/ADR cells (Table 2),
while GSH synthetase was not found statistically regulated in the
mixed samples. Moreover, the expression of GGCT was also inde-
pendently shown by observations from western blot analyses, the
expression of GGCT was down-regulated in MCF-7/ADR cells com-
pared with MCF-7 cells which supporting proteomic results (Fig. 5).
These results suggest that the decreased activity of GGCT is neces-
sary for MCF-7/ADR cells to maintain a high level of GSH, which in
turn exports adriamycin out of the cell. Our data provide a novel
mechanism for the acquisition of adriamycin resistance.

An alternative and less investigated way to increase the level of
GSH is to activate the PPP flux via the activation of G6PD33. As the
earlier workers have pointed out, G6PD catalyses the first and rate-

Table 1 | Fourteen proteins were significantly enriched within the GSH metabolism pathway

Uniprot accession no. Gene IDs Gene symbol Protein description CoverageA 127/126B

P15144 290 ANPEP Aminopeptidase 3.62 1.257
Q9Y2Q3-3 373156 GSTK1 Glutathione S-transferase kappa 1 15.89 0.885
P11413 2539 G6PD Glucose-6-phosphate 1-dehydrogenase 31.46 0.498
P21266 2947 GSTM3 Glutathione S-transferase Mu 3 51.56 0.723
P78417 9446 GSTO1 Glutathione S-transferase omega-1 36.10 1.268
P00390-5 2936 GSR Glutathione reductase 8.18 0.851
O75223 79017 GGCT Gamma-glutamylcyclotransferase 21.28 0.631
P48637 2937 GSS Glutathione synthetase 5.27 0.932
O75874 3417 IDH1 isocitrate dehydrogenase 1 (NADP1), soluble 28.50 0.568
P48735 3418 IDH2 isocitrate dehydrogenase 2 (NADP1), mitochondrial 40.49 0.643
P28838-2 51056 LAP3 Cytosol aminopeptidase 33.20 0.777
P09211 2950 GSTP1 Glutathione S-transferase P 52.86 1.612
P10620-2 4257 MGST1 microsomal glutathione S-transferase 1 28.74 0.932
P52209 5226 PGD 6-phosphogluconate dehydrogenase 28.99 0.703
AData associated with the particular peptide from our proteomics analysis were matched to the peptide database.
BMCF-7 peptide samples of were labeled with TMT2-126 isobaric tags; MCF-7/ADR peptide samples of were labeled with TMT2-127 isobaric tags. The values of 127/126 represent the relative quantitation
ratio of the DEPs in two cells.

Figure 3 | DEPs were enriched within KEGG pathway.

www.nature.com/scientificreports
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Figure 4 | Biological interaction network of DEPs and their one-step interacting proteins. In this network, proteins are represented as nodes, and the

biological relationship between two nodes is represented as an edge. The yellow node indicates DEPs and the green node indicates one-step

interacting protein. There are 559 nodes and 1899 edges, including 66 DEPs and 493 one-step interacting proteins.

Table 3 | DEPs information obtained from HPRD

DEPs identified by
Proteomic method number Gene symbol

seed proteins in
HPRD

9 HBB, HP, ANXA6, HBA2, KRT8, A2M, CBX3, CBX5, ANXA1
57 GSTP1, FHL1, APOA2, ANXA2, CLIC4, DNPEP, LGALS3, G6PD, ALB, BCAP31, SERPINA1, ABCB1, ASNS, ANP32B,

HSPB1, C3, IGF2BP2, AKAP12, AKR1B1, IGHG1, LAMP2, IDH1, AGR3, GPI, FLNC, CTSD, ALDOA, ANXA5, ENSA,
CA2, HMGA1, CD44, GDA, CAPN2, CALD1, FKBP10, CLU, CD63, DBN1, APOA1, HMGN1, ANLN, FABP5, LDHB,
EPCAM, FBP1, KRT7, KRT19, AHSG, GFRA1, IDE, CDA, IDH2, CNN3, LIMA1, DES, ETHE1

non-seed proteins in
HPRD

14 HIST1H1D, IGLC2, ISOC1, IGHA1, GGCT, APOC3, LXN, KIAA1324, AKR1C4, FSTL1, L1RE1, CMBL, CTSZ, LY6K
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limiting step of the PPP and a major source of NADPH. NADPH is
used by GSH reductase to reduce glutathione disulfide (GSSG) to
GSH33. P. Manuela et al.33 showed the increase expression of G6PD in
the adriamycin-resistant human colon cancer cellline HT29-DX
when compared with normal HT29 cells. Although evidence has
been provided that oxidative stress plays a role in resistant cells,
many controversial data persist. As demonstrated in another study40

as well as in our study(Table 1), the decrease in the expression of
G6PD in MCF-7/ADR was surprisingly found, probably due to the
different cell types investigated. Western blot were performed for
G6PD to further validate the accuracy, the expression of G6PD
was down-regulated in MCF-7/ADR cells compared with MCF-7
cells. This discrepancy suggests a further mechanism study for
GSH increase and its effects on MDR, i.e. the hyperactivity of the
PPP and of its rate-limiting enzyme G6PD. IDH1 and IDH2 are
NADP1 dependent enzymes that catalyze the oxidative decarbox-
ylation of isocitrate to a-ketoglutarate (a-KG), generating NADPH
from NADP141. Somatic heterozygous mutations in IDH1 and
IDH2 have been identified in a number of cancers42–44. There is
increasing evidence that the prognostic impact of IDH1and IDH2
mutations varies according to the specific mutation and also depends
on the context of concurrent mutations of other genes41. In our study,
we found the expression of IDH1 and IDH2 was down-regulated in
MCF-7/ADR cells (Table 2), we do found that the expression of
IDH1 and IDH2 down-regulated by western bolt in MCF-7/ADR
cells compared with MCF-7 cells (Fig. 5), which is in good agreement
with the proteomic data. Our data suggested G6PD, IDH1 and IDH2
may carry out a novel mechanism with adriamycin resistance in
breast cancer.

In addition to the differentially expressed proteins discussed
above, several other proteins were found to have remarkably altered
expression. A number of drugs including adriamycin are known to be
substrates of Glutathione S-transferase (GST) and it has been clearly
shown that the overexpression of GST and high levels of GSH in
tumors are linked to the development of MDR45–47. One member of
the GST family, GSTP1 up-regulation was identified to be associated

with adriamycin resistance in our proteomic experiments (Table 2).
Western blot analysis showed the up-regulated expression of GSTP1
in MCF-7/ADR cells compared with MCF-7 cells (Fig. 5), which in
accordance with the proteomic result. In addition to the GST family,
the most striking up-regulated proteins were HMGA1 in DEPs
(Table 2). HMGA1 belongs to the high mobility group A (HMGA)
family,which has been previously implicated in breast carcino-
genesis48. D Angelo D49 reported that the blockage of HMGA1
expression was a promising approach to enhance cancer cell chemo-
sensitivity, which supported HMGA1 could increase the sensitivity
of cancer cells to antineoplastic drugs. To the best of our knowledge,
no previous reports have revealed that HMGA1 is increased in adria-
mycin-resistant breast cancer. MCF-7/ADR cells also have markedly
increased expression of the L-lactate dehydrogenase B chain (LDHB)
relative to MCF-7 cells (Table 2), which support the hypothesis that
LDHB is a predictive marker for the response for patients with breast
cancer receiving neoadjuvant chemotherapy50. Furthermore, our
proteomic analysis revealed a large number of proteins that may
cause cells to adopt an apoptosis-resistant state. For example, the
small stress HSP beta-1 (HSPB1 or Hsp27) is well described to
counteract apoptosis and its elevated expression is associated
with increased aggressiveness of several primary tumors51. R.
Kanagasabai52 reported that the expression of HSPB1 sensitizes
MCF-7/ADR cells to adriamycin. But recent reports show that
HSPB1 up-regulation can worsen the prognosis of breast cancer
and the sensitivity of tumors to chemotherapy and radiotherapy53,54.
HSPB1 implications in cancer cell resistance to adriamycin has been
debatable. In our study HSPB1 was found down-regulated (Table 2),
which requires further experiments to confirm this result. Several
studies have suggested that the acquisition of the MDR phenotype is
associated with elevated invasion and metastasis of tumors55,56.

Overall, western blot experiments were served to provide confid-
ence in the proteomics methodology applied. The expression of
G6PD, GGCT, IDH1, IDH2 were down-regulated in MCF-7/

Figure 5 | Western blot analysis confirmed changes in protein expression
initially identified by quantitative proteomics method. The expression of

DEPs was focused on GSH metabolism pathway. G6PD, GGCT, IDH1 and

IDH2 were found down–regulated in MCF-7/ADR cells compared with

MCF-7 cells. Up-regulated expression was observed for GSTP1. GAPDH

was used as the loading control.

Figure 6 | Enzyme-catalyzed reactions in the c-glutamyl cycle. 1: c-

glutamyl cysteine synthetase; 2: glutathione synthetase; 3: c-glutamyl

transpeptidase; 4: GGCT; 5: 5-oxoprolinase.

Table 4 | The relation of DEPs-one step interacting proteins were identified by HPRD

Correlation with drug resistance No correlation with drug resistance

DEPs 64 (97%) 2(3%)
Direct correlation 49 (76.6%) -
Indirect correlation 15 (23.4%) -
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ADR cells compared with MCF-7 cells, and GSTP1 was found up-
regulated in MCF-7/ADR cells compared with MCF-7 cells. The
results obtained are in good agreement with the proteomic
method, which strengthen the evidence that proteomic method
used in our study is powerful in identification of pathways of drug
resistance proteins.

It is important to point out that in our experimental design
bioinformatic analysis was carried out to further validate the
results obtained from this proposed proteomic method. We use
the 66 DEPs called seed proteins and proteins which have direct
interactions with DEPs in one step called one-step proteins to
build the network map (Fig. 4). If the one-step protein was proved
to have drug resistance function, we could deduce the DEPs–one
step proteins had the similar resistant function. In the network, the
relation of DEPs-DEPs was investigated at high priority. Nine
DEPs formed five paires of DEPs-DEPs, among them, six DEPs
had been proved directly as drug resistance-associated protein,
three DEPs were also deduced to relate with resistance indirectly.
An independent analysis of DEPs-one step interacting proteins
relations was performed. SUMO4 as a one-step interacting protein
was reported to resistant with Type 1 diabetes mellitus57, which
was referred to five DEPs (GSTP1, G6PD, IDH1, ALDOA, LDHB)
simultaneously. These five proteins had been proved to be corre-
lated with resistant drug directly or indirectly by HPRD. We also
obtained that there were four one-step proteins correlate with four
DEPs respectively, nine one-step proteins correlate with three
DEPs respectively, 63 one-step proteins correlate with two DEPs
respectively and 425 one-step proteins correlate with one DEPs in
the network (Supplementary Table S5,Fig. S3). From literature, we
collected scientific publications of DEPs and one-step interacting
proteins that have been experimentally discovered and verified. We
aimed at these high credible proteins and make further manual
correction. 97% DEPs in the HPRD database had been reported to
have correlation with resistant drug. To further discover the rela-
tionship of the DEPs, we dig out 32 modules in the network. The
2nd module was focused on further research, which including 20
proteins enriched within 11 pathways, among them, MAPK signal
pathway was involved in resistance30, which enriched five proteins
in network, including one pair of DEPs-one step interacting pro-
tein (HSPB1-DAXX). These results were highly in accordance with
the proteomics data, which further validate the accuracy and feas-
ibility of our proteomic experimental method, and support the
results from proteomics.

In order to guarantee the data source of built network accuracy, we
chose HPRD, a strictly protein interacting database which had been
experimentally discovered and verified, rather than predicting pro-
teins interacting database. 66 DEPs involved in HPRD, which led to
experimental data couldn’t be totally validated. For example, GGCT
aforementioned validation by western blot was not existed in HPRD,
so the bioinformatic result didn’t cover GGCT. One reason is that
HPRD may be not a whole protein interacting data and need to be
updated timely. Another cause is GGCT may be a new resistant drug
protein. It is the first time to find the new resistant function of GGCT
by our study. Moreover, experimental testing of these hypotheses will
be required to support further assessments for potential clinical
application.

Despite the pilot study presented here, two further questions
require in depth studies. Firstly, are any of the elements in this
proteomic profile predictive of clinical responses to adriamycin?
On-going research to correlate in vivo protein expression signatures
and clinical responses will address this issue. Secondly, are the aber-
rant proteins identified central to the mechanism of cellular adria-
mycin resistance? Functional assays that relate differential
expression of these novel proteins to the generation or maintenance
of the drug-resistant phenotype will improve our understanding of
the roles of these proteins in cancer drug resistance.

Conclusions
Although still in its infancy, the use of proteomics is an excellent
approach for the discovery of predictors that can be used for indi-
vidualization of treatment for breast cancer patients. Our proteomic
studies in breast cancer cells have revealed a number of promising
proteins that might serve as candidate biomarkers of prognosis and
chemotherapy. Hopefully, these findings can be exploited in the
future as a useful source of information to guide targeted experi-
ments aiming at discovering yet unknown chemoresistant mechan-
isms and therapeutic strategies.

Methods
Chemicals and reagents. TmT duplex isobaric tags reagent set (TMT2) and trypsin
for MS were purchased from Thermo Scientific (San Jose, CA, USA). EDTA-free
protease inhibitor cocktail was purchased from Roche Diagnostics (Indianapolis, IN,
USA). Phosphatase inhibitors were purchased from Pierce (Idaho, ID, USA). RIPA
Lysis Buffer was purchased from Thermo Scientific (San Jose, CA, USA). The
Bradford assay was purchased from Applygen (Beijing, China). C18 ZipTip
micropipette tips were purchased from Millipore (Bedford, MA, USA). Generic
chemicals were purchased from Sigma-Aldrich (St. Louis, USA). All of the chemicals
and reagents used in this study were of analytical chromatography grade.

Cell culture. The breast cancer cell line MCF-7 and its adriamycin resistant
counterpart MCF-7/ADR were purchased from the Cancer Institute & Hospital
(CIH), Chinese Academy of Medical Sciences (CAMS). Cells were cultured in RPMI
1640 (Gibco, Invitrogen, Carlsbad, CA, USA) containing 10% fetal bovine serum
(Hyclone), 2 mM L-glutamine, streptomycin, 100 IU/mL penicillin (all from Gibco-
Invitrogen Corp., UK) and maintained without/with 0.2 mg/ml , 0.5 mg/ml
adriamycin, respectively. All cells were incubated at 37uC in a humidified atmosphere
containing 5% CO2. The cells were passaged every 2 , 3 days.

Sample preparation. Cells were cultured to harvest 100 mg of protein per sample
according to the TmT manufacturer’s instructions. 45 ul of 200 mM triethyl
ammonium bicarbonate (TEAB) was added to the each protein sample and followed
with 5 ul of 2% SDS and 5 ul of 200 mM tris (2-chloroethyl) phosphate (TCEP). The
reaction was incubated for 1 hour at 55uC. According to the manufacturer’s
instructions, 5 ul of 375 mM iodoacetamide (IAA) was added for 30 min at room
temperature in the dark.

The protein was then precipitated overnight in six volumes of pre-chilled (220uC)
acetone. In order to improve protein identification and characterization, 4 mL (1 mg/
mL) of trypsin was added per sample, and the digestion was performed at 37uC for
12 hours. Finally, enzymatic digestion was performed by adding 2 mL (1 mg/mL) of
trypsin to the sample and incubating it at 37uC for 6 hours.

The reporter ions are characteristic of each tag form and detected at distinct m/z
(i.e., 126–127 Da for TMT2). These reporter ions are in the low mass region of the MS/
MS spectrum and are used to report relative protein expression levels during peptide
fragmentation. Peptide samples from MCF-7 were labeled with TMT2-126 isobaric
tag according to the manufacturer’s protocol, and peptide samples from MCF-7/ADR
were labeled by adding the same amount of TMT2-127 isobaric tag. Two pools of
labeled peptide samples were combined at equal amount. The dried peptides in the
mixed cell sample were cleaned and desalted using C18 ZipTip micropipette tips
following the manufacturer’s user guide.

Chromatographic and mass spectrometric analysis. All separations were performed
on a 150 3 0.050 mm capillary reversed-phase column packed with C18 packing
material at room temperature using a Thermo Scientific EASY-nLC1000TM system
and a binary solvent system composed of water containing buffer A (0.1% formic acid
and 2% acetonitrile) and buffer B (acetonitrile containing 0.1% formic acid). The
peptides were separated by a linear gradient of buffer B up to 40% in 200 minutes for a
4 hours gradient run with a flow rate of 300 nl/min in the EASY-nLC 1000 system.

The samples were analyzed with a Thermo Scientific Q ExactiveTM hybrid quad-
rupole-Orbitrap mass spectrometer. The UHPLC was coupled to a Q Exactive mass
spectrometer via the nanoelectrospray source (Thermo Fisher Scientific). The Q
Exactive was operated in data dependent (dd) mode with full scans acquired at a
resolution of 70,000 at 350 m/z and with dd-MS/MS scans acquired at a resolution of
17,500. The mass spectrometer was operated in positive mode in the scan range of 350
, 2,000 m/z. Fixed first m/z is 100 in dd-MS/MS scans. Up to the top 15 most
abundant isotope patterns with a charge $2 from the survey scan were selected with
an isolation window of 2.0 m/z. The maximum ion injection times for the full scan
and the dd-MS/MS scans were 20 ms and 100 ms respectively, and the automatic
gain control (AGC) for the full scan and the dd-MS/MS scans were 3E6 and 1E5
respectively. Repeat sequencing of peptides was kept to a minimum by dynamic
exclusion of the sequenced peptides for 30 s.

Protein identification. We used Proteome DiscovererTM (PD) software version 1.3
(Thermo Scientific) to perform the quantitative proteomic analysis. The MS/MS
spectra search was performed by SEQUESTH engines to search against the Uniprot
Homo sapiens database (http://www.uniprot.org), coupled to the appropriate
statistical and quantitative validation methods. Starting with the raw data, PD
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calculated the relative intensities of reporter ions from a specific identified tandem
mass spectrum. A threshold intensity rate of 10,000 for the sum of the reporter ion
intensities of HCD spectra was applied. A first statistical evaluation of these large data
sets was performed by computing the distribution of m/z measurements. We
evaluated analysis performance in terms of molecular weight (MW) and isoelectric
point (pI) range of detected proteins. Data derived from MS analysis were examined
using percolator for false discovery rate (FDR) , 0.01, which was calculated on the
basis of the number of peptide matches against a decoy database. We then performed
MS analysis of the TmT labeled samples on Q Exactive. Protein intensities resulted
from the average of the single TmT reporter ion intensities obtained for each peptide
associated with a specific protein. The average ratio of differential TmT 127/126
expression (1.5 fold increase or decrease) represents the ratio of two samples. In other
words, we identified DEPs in our TmT experiment using 1.5 and 0.67 as the up-
regulation and down-regulation cutoff points.

Bioinformatic analysis of the detected proteome. The data sets have been analyzed
using bioinformatic methods, extracting information about activated pathways and
biomarkers linked to chemoresistance. Specific bioinformatics tools like Database for
Annotation,Visualization, and Integrated Discovery (DAVID 6.7) have been used to
identify protein and molecular pathway modifications. Gene IDs and gene symbol,
corresponding to each protein, were obtained by PD. We imported the list of
modulated genes, corresponding to total protein, integrated with the list of singleton
proteins into DAVID. To understand high-level functions and utilization of the
biological systems from molecular-level information, especially large-scale molecular
datasets generated by MS, we utilized the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway representing our knowledge about molecular interactions and
reaction networks. Distributions in subcellular locations and molecular functions
were assigned to each protein based on Gene Ontology (GO) categories. The
significantly (p , 0.05 and FDR , 0.05) enriched categories are presented here.

Human protein interacting Data were downloaded from HPRD database (http://
www.hprd.org/). We use the DEPs and proteins which have direct interactions with
DEPs in PPI to build the network map. We then analyzed the topological charac-
teristics, mined modules using MINE58, a plugin of Cytoscape59, and identified
associations between modules and KEGG biological processes using DAVID. We
examined the Web of Knowledge and NCBI PubMed databases with the keywords
‘‘resistant’’ and gene symbol from the abstracts. From these articles, we manually
extracted DEPs, which have been screened by HPRD for drug resistance. Although
the number of DEPs collected by the literature search is limited, they are highly
trustworthy and thus they lay the foundation for our results.

Western blot analysis. In order to validate data obtained from proteomics analysis,
the expression of DEPs which focused on GSH metabolism pathway have been
determined by western blot analysis, including G6PD, GGCT, IDH1, IDH2 and
GSTP1. MCF-7 and MCF-7/ADR cell proteins were extracted in RIPA lysis buffer
and quantified by the Bradford assay. Samples were separated on 12% SDS–PAGE
and transferred to a PVDF membrane. The membranes were blocked with 5% nonfat
dry milk for 2 h at room temperature and subsequently probed with the primary
antibodies: rabbit-anti-G6PD polyclonal antibody (diluted 15500 ABclonal, China),
rabbit- anti-GGCT polyclonal antibody (diluted 15400 Proteintech, China), rabbit-
anti-IDH1 polyclonal antibody (diluted 15500 ABclonal, China), rabbit-anti-IDH2
polyclonal antibody (diluted 15500 ABclonal, China), rabbit-anti-GSTP1polyclonal
antibody (diluted 15500 ABclonal, China). Membranes were then probed by
incubation with a anti-rabbit secondary antibody (diluted 155000) for 1 h at room
temperature, conjugated to fluorophores from Rockland Immunochemicals
(Gilbertsville, PA). The fluorescent signals were visualized using the Odyssey imaging
system (Li-COR, Lincoln, NE). All western blot analyses were repeated at least three
times.
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