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Ghost imaging (GI) is a method to nonlocally image an object with a single-pixel detector. However, the
speckle’s transverse size at the object plane limits the system’s imaging resolution for conventional GI linear
reconstruction algorithm. By combining the sparsity constraint of imaging object with ghost imaging
method, we demonstrate experimentally that ghost imaging via sparsity constraint (GISC) can dramatically
enhance the imaging resolution even using the random measurements far below the Nyquist limit. The
image reconstruction algorithm of GISC is based on compressive sensing. Factors affecting the
reconstruction quality of high-resolution GISC, such as the receiving system’s numerical aperture and the
object’s sparse representation basis, are also investigated experimentally. This high-resolution imaging
technique will have great applications in the microscopy and remote-sensing areas.

F
ar-field high-resolution imaging is always an important topic in imaging science. In practical applications,
the imaging resolution is mainly restricted by the system’s Rayleigh limit and detection signal-to-noise ratio
(SNR)1,2. For example, the telescope with a large aperture is currently very difficult to be manufactured, thus

the imaging resolution is basically circumscribed with the optical system’s Rayleigh limit in remote sensing. For
fluorescence imaging, because the fluorescent is weak and easy to be disturbed by the stray light in detection, the
imaging resolution is limited mainly by the detection SNR.

Over the last decades, numerous ‘hardware’ methods have been invented to improve the resolution of far-field
imaging. Several techniques based on point-by-point scanning or fluorescence imaging have been introduced to
improve the imaging resolution3–7. However, they require scanning or repetitive experiments, which limits real-
time applications and makes them impossible to be applied in the field of imaging such as remote sensing. Apart
from hardware solutions, several algorithmic approaches for far-field high-resolution imaging have been sug-
gested by using additional a priori information on the optical system8–12. However, the degree of improvement is
extremely sensitive to both noise in the measured data and the accuracy of the assumed a priori knowledge2,8–12. In
addition, for an N-pixel image, these high-resolution imaging methods require at least N samples to reconstruct
the image (this is called the Nyquist limit of the measurement).

Ghost imaging (GI), which is based on the quantum or classical correlation of fluctuating light fields, has
demonstrated theoretically and experimentally that one can nonlocally image an unknown object without
scanning the object, by using a single-pixel detector at the object path13–20. Because all the photons reflected
(or transmitted) from the object illuminate the same single-pixel detector, this technique has the ability of high
detection SNR. However, the imaging resolution of this technique is limited by the speckle’s transverse size at the
object plane for conventional GI linear reconstruction algorithm16,17. When signals satisfied a certain sparsity
constraint, Donoho had demonstrated mathematically that super-resolution restoration was possible21,22.
Recently, the image’s sparsity has been taken as a quite general assumption, a compressive sensing (CS) technique
enables the reconstruction of an N-pixel image from much fewer than N global random measurements23,24. This
technique has already been successfully applied to super-resolution imaging25,26, remote sensing27,28, and com-
pressive imaging29–31. For GI, the fluctuating light field obeys Gaussian statistical distribution and the measure-
ment process is globally random. Therefore, when CS is applied to the image reconstruction of GI, high-
resolution far-field ghost imaging via sparsity constraint (GISC) is possible with the use of random measurement
below Nyquist limit because a natural object can be sparsely expressed in a proper representation basis (or under a
suitable basis transform)23,24.

In this paper, we have experimentally demonstrated the high-resolution ability of GISC, by comparing the
reconstruction results of GI and GISC techniques. We also discuss the effect of receiving system’s numerical
aperture and the object’s sparse representation basis on the quality of high-resolution GISC.
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Results
Experimental setup. Fig. 1 presents experimental schematic of
lensless far-field GI with pseudo-thermal light. The scheme is
similar to standard pseudo-thermal GI two-detectors setup
mentioned in Ref. 30, but the speckle’s transverse size at the object
plane is too large to resolve the object and the test detector is fixed in
the far field of the object, thus a single pointlike detector is enough to
record global information from the object. In the experiment, as
shown in Fig. 1, a Gaussian-shape laser (the wavelength l 5

650 nm and the diameter 5.0 mm) firstly goes through a hole (the
diameter about 3.05 mm, see Fig. 2(a)) and then is focused onto a
diffuser by a lens with the focal length f 5 250 mm. The distance
between the lens f and the diffuser is about z0 5 190 mm and the

beam diameter on the diffuser is about D 5 0.58 mm (see Fig. 2(b)).
When the diffuser is slowly rotating, a pseudo-thermal light source
can be generated16–18. Next, the light modulated by the diffuser is
divided by a beam splitter (BS) into a test and a reference paths. In the
test path, the light goes through a double-slit (slit width a 5 100 mm,
slit height h 5 500 mm and center-to-center separation d 5 200 mm)
and then to a detector Dt fixed in the far field of the object (namely
z1w2d2

�
l). In the reference path, the same light propagates directly

to a charge-coupled device (CCD) camera Dr. Both the object and the
CCD camera Dr are located in the far field of the source (namely
zw2D2

�
l). In addition, the reconstruction algorithms used for GI

and GISC are the same as in Ref. 30.
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Figure 1 | The experimental schematic of lensless far-field ghost imaging with pseudo-thermal light.
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Figure 2 | The characters of some important parameters used in the experiment. (a). The profile of the laser beam through the hole before the lens f and

its cross-section at maximum value (along the red-line direction of the image); (b). the profile of the laser beam on the diffuser and its cross-section at

maximum value (along the red-line direction of the image); (c). an image of a single speckle pattern record by the CCD camera Dr; (d). the normalized

second-order correlation distribution of light field at the reference detection plane; (e). the Fourier-transform distribution of (d).
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Experimental results. The parameters listed in Fig. 1 are set as
follows: z 5 1200 mm, the pixel size of the camera Dr is 13 mm 3

13 mm, and the single-shot exposure time is set to 1 ms. Fig. 2(c)
presents an image of a single speckle pattern measured by the camera
and the normalized second-order correlation distribution of light
field at the reference detection plane is displayed in Fig. 2(d)19. For
GI, the resolution limitation is determined by the full-width at half-
max of normalized second-order correlation distribution, which is
also equal to the transverse size of the speckle shown in Fig. 2(c)16,17.
By operating the Fourier transform to the normalized second-order
correlation distribution, the angular spectrum illuminating the
object is shown in Fig. 2(e).

To demonstrate the high-resolution ability of GISC, Fig. 3 and
Fig. 4 present experimental results of a double-slit recovered by GI
and GISC methods in different receiving areas L1 3 L1 and different
distances z1, using the schematic shown in Fig. 1. For GISC method,
we have utilized the gradient projection for sparse reconstruction
algorithm32 and the double-slit is sparsely expanded in Cartesian
representation basis. By measuring the normalized second-order
correlation distribution displayed in Fig. 2(d), as shown in
Fig. 3(a), its cross-section curve’s full-width at half-max is about
1280 mm, which coincides with the theoretical result Dxs < lz/D
5 1345 mm16,17. Therefore, as shown in Fig. 3(e), the object’s image
can not be reconstructed by conventional GI linear reconstruction
algorithm because the speckle’s transverse size at the object planeDxs

is much larger than center-to-center separation of the object16,17.
However, the imaging resolution can be dramatically improved by
GISC method even if the number of random measurements used for
image recovery is far below the Nyquist limit (see Fig. 3(f) and
Fig. 4(a–d)). Usually, similar to the k-space spectral analysis
method34, the improvement degree of imaging resolution can also
be evaluated by measuring the angular spectrum of reconstructed
images. In comparison with the angular spectrum of GI reconstruc-
tion result, it is clearly seen that, as displayed in Fig. 4(e) and Fig. 4(f),
the angular spectrum with more than 6 times wider can be retrieved
by GISC. Further, generally speaking, the intensity values measured
by the bucket detector Dt satisfy a Gaussian distribution when the
transverse size of the speckle illuminating the object is smaller than
the object’s dimensions33. However, for the case demonstrated in
this paper, the bucket intensity values have a similar Rayleigh distri-
bution (see Fig. 3(c)). By calculating the standard-deviation dI and

the statistical mean ÆIæ of the bucket intensity values, the ratio of its
mean to standard deviation ÆIæ/dI 5 1.16, which further validates the
high-resolution ability of GISC. In addition, as the receiving areas of
the detector Dt are increased or the distance between the object and
the detector Dt is decreased, the quality of GISC will be improved
(see Fig. 3(f) and Fig. 4(a–d)), which can be explained by Eqs. (5–7)
(see Methods part) because the Euclidean term in Eq. (5) will
approach zero such that Eq. (5) becomes the linear ‘1-norm pro-
blem as the increase of the receiving system’s numerical aperture

(N:A:~
L1

2z1
)23,24,32.
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Figure 3 | Experimental reconstruction of a double-slit in different receiving areas with z1 5 500 mm (the speckle’s transverse size at the object plane
Dxs 5 1280 mm). (a). The cross-section curve of normalized second-order correlation distribution at (xr, yr 5 100) direction displayed in Fig. 2(d) (the

curve’s full-width at half-max is corresponding to the resolution limitation of GI); (b). the object (100 3 100 pixels, the pixel size is 13 mm 3 13 mm); (c).

the probability distribution of the intensity values measured by the bucket detector Dt relative to the statistical mean; (d). the object’s Fourier-transform

diffraction patterns received by the test detector Dt; (e). GI reconstruction results (K 5 10000); (f) GISC reconstruction results (with K 5 3000 (K/N 5

30% the Nyquist limit)). The receiving areas of the detector Dt shown in (1–3) are 1.6 mm 3 1.6 mm, 3.2 mm 3 3.2 mm, and 6.4 mm 3 6.4 mm,

respectively.
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Figure 4 | Experimental GISC reconstruction results of the same double-
slit in different distances z1, and the other conditions are the same as Fig.
3 (K 5 4000, namely 40% the Nyquist limit). (a). z1 5 500 mm; (b). z1 5

200 mm; (c). z1 5 100 mm; (d) z1 5 10 mm. The receiving area of the

detector Dt is 6.4 mm 3 6.4 mm. The green solid curves displayed in (e)

and (f) are the cross-section of Fourier-transform distributions of GI and

GISC reconstruction results at (fx, 0) direction in the case of (d),

respectively. The red solid curve is the cross-section of Fourier-transform

distribution of the object shown in Fig. 3(b) at (fx, 0) direction. The blue

solid curve is the cross-section of the image shown in Fig. 2(e) at (fx, 0)

direction.
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In order to verify the high-resolution ability of GISC for more
general images and the effect of the object’s sparse representation
basis on the quality of GISC, as shown in Fig. 5(c,g) and Fig. 5(e,h), a
transmission aperture (‘‘zhong’’ ring, 100 3 100 pixels, the pixel size
is 13 mm 3 13 mm) is also reconstructed successfully by GISC when
the aperture is sparsely expanded in cartesian and two-dimensional
discrete cosine transform (2D-DCT) representation basis, respect-
ively. It is clearly seen that the recovered image obtained in 2D-DCT
representation basis is much better than that obtained in cartesian
representation basis because the aperture has sparser representation
in 2D-DCT basis, which means that using the same measurement
data, the images with better quality can be achieved by choosing a
proper representation basis24,31. Therefore, for the first time, we dem-
onstrate experimentally that far-field high-resolution imaging can be
realized by utilizing the object’s sparsity constraint and random
measurement even below the Nyquist limit in ghost imaging
schemes.

Discussion
By calculating the correlation function between two light fields, it is
impossible for GI to obtain both the image in real-space of the dou-
ble-slit and its diffraction pattern at the same time in fixed GI
schemes17–19. However, by taking the image’s sparsity as a priori,
for far-field GI system shown in Fig. 1, when the speckle’s transverse
size at the object plane is much larger than center-to-center separa-
tion of the double-slit and the test detection plane is located in the far
field of the double-slit, the double-slit’s Fourier-transform diffrac-
tion pattern and its real-space image, as shown in Fig. 3(d,f), can be
obtained by GISC method at the same time. Moreover, the recon-
struction results of GISC don’t only depend on how we measure the
object as in GI frame (see Fig. 3(f) and Fig. 4(a–d)), but also depend
on how sparse the object is in the representation basis (see Fig. 4(d)
and Fig. 5(c,e)). Actually, for any GI system, we can find a suitable
representation basis in which the object is sufficiently sparse, thus
high-resolution imaging can be achieved and GISC will be a universal
high-resolution imaging method. Understanding what happens at
quantum level and the quantitative description of imaging resolution
in GISC seem to be an interesting challenge deserving more
investigation.

Conclusion
In conclusion, by combining GI method with the object’s sparsity
constraint, we have achieved experimentally high-resolution far-field

GI by using random measurement even below the Nyquist limit. Both
the approaches to realize the linear ‘1-norm problem and an optimal
representation basis can dramatically enhance the image’s reconstruc-
tion quality. We have also shown that Fourier-transform diffraction
pattern of the object and its image in real-space can be obtained by
GISC method at the same time. This brand new far-field high-reso-
lution imaging method will be very useful to microscopy in biology,
material, medical sciences, and in the filed of remote sensing, etc.

Methods
The intensity distribution Is

i (xi,yi) at the detection plane can be expressed as8

Is
i (xi,yi)~

ð
dx1dy1dx2dy2Es(x1,y1)½Es(x2,y2)��

|h�i (xi,yi; x2,y2)hi(xi,yi; x1,y1); i~r,t:

ð1Þ

where the index s is defined as the sth measurement. Es(x,y) and [Es(x,y)]* denote the
light field at the plane (x, y) and its phase conjugate, respectively. hi(xi, yi; x, y)(i 5 r,t)
denote the impulse response functions of the reference and the test paths from the
plane (x, y) to the plane (xi, yi).

GI reconstruction. For ghost imaging13–17, the correlation function between the two
detectors is:

DG(2,2)(xr ,yr)~

ð
dxtdyt

ð
dx1dy1dx2

���� dy2G(1,1)(x1,y1; x2,y2)

|ht(xt ,yt ; x2,y2)h�r (xr ,yr ; x1,y1)
��2:

ð2Þ

where G(1,1)(X1,y1; X2,y2) is the first-order correlation function at the source plane. By
computing the intensity correlation between the intensity distributions Is

r (xr ,yr) at the
reference detection plane and the total intensities Bs~

X
xt ,yt

Is
t (xt ,yt) recorded by the

detector Dt, the object’s image can be obtained without the utilization of the object’s
sparsity in the process of image restoration, namely called GI linear reconstruction
algorithm19,30

DG(2,2)(xr ,yr)~
1
K

XK

s~1

Is
r(xr ,yr)B

s{
1

K2

XK

s~1

Is
r (xr ,yr)

XK

s~1

Bs: ð3Þ

where K is the total measurement number. Using GI linear reconstruction algorithm
described by Eq. (3), the results of GI with pseudo-thermal light demonstrated in Refs.
16, 17 suggest that the imaging resolution of GI is determined by the speckle’s
transverse size at the object plane (namely Dxs < lz/D). Therefore, for the scheme
shown in Fig. 1, the object’s image can not be resolved by GI linear reconstruction
algorithm when the speckle’s transverse size at the object plane is larger than the
character of the object.

GISC reconstruction. Mathematically speaking, any image can be expanded by an
orthonormal basis (such as a Fourier basis and a wavelet basis). However, only a small
number of the expansion coefficients are nonzero, and the largest coefficients can
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Figure 5 | Recovered results of an aperture (‘‘zhong’’ ring) in different representation basis, under the same conditions of Fig. 4 and z1 5 10 mm (K 5
6000, namely 60% the Nyquist limit). (a). The object; (b). GI reconstruction; (c). GISC reconstruction when the object is represented in cartesian basis;

(d). the object’s DCT coefficients; and (e). GISC reconstruction when the object is represented in 2D-DCT basis. The green solid curves displayed in (f)–

(h) are the cross-section of Fourier-transform distributions of the reconstruction results (b), (c), (e) at (fx, 0) direction, respectively. The red solid curve is

the cross-section of Fourier-transform distribution of the object (a) at (fx, 0) direction. The blue solid curve is the cross-section of the image shown in

Fig. 2(e) at (fx, 0) direction.
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express the image’s main features23,24. Therefore, the image is considered to be sparse
or compressible in an appropriate representation basis, for example, a transmission
double slit in Cartesian representation basis. Based on the theory of CS, there are an
infinite number of images, which—after being convoluted by the random
measurement matrix—will obtain the intensities recorded by the test detector for the
setup shown in Fig. 1; our goal is to find the sparsest one. It has been mathematically
and experimentally demonstrated that if the object is sparse enough, then any
sparsity-based reconstruction method is bound to find the sparsest solution with
measurements even below the Nyquist limit22–26. Employing the assumption of the
object’s sparsity in a representation basis, we try to realize far-field high-resolution
imaging by using GISC method30,31. In the framework of GISC, each of the speckle
intensity distributions Is

r(xr ,yr) (m 3 n pixels) is reshaped as a row vector (1 3 N, N 5

m 3 n) for GI system shown in Fig. 1. After K measurements, the random sensing
matrix A (K 3 N) is reconstructed and meanwhile, the intensities (Bs) recorded by the
test detector Dt are arranged as a column vector Y (K 3 1). If we denote the unknown
object as a N-dimensional column vector X (N 3 1) and X can be represented as X 5

y?a such that a is sparse (namely there are only Kc non-zero entries in the column
vector a, Kc=N and y denotes the transform operator to the sparse basis), then the
object X can be reconstructed by solving the following convex optimization
program32:

X~Y:a; which minimizes:
1
2

Y{k AXk2
2zt ak k1: ð4Þ

where t is a nonnegative parameter, vk k2 denotes the Euclidean norm of V, and
vk k1~

X
i
vi is the ‘1-norm of V. Therefore, for the image with sparse cartesian

representation, the reconstruction process of GISC shown in Fig. 1 can be written as
follows based on Eq. (4):

TGISC~ T 0j j; which minimizes :
1
2

Bs{k
ð

dxdyIs
r (x,y) T 0(x,y)j j2

����
2

2

zt T 0(x,y)k k1,Vs~1 � � �K:
ð5Þ

Where

Is
r(x,y)!

ð
dx1dy1dx2dy2Es(x1,y1)½Es(x2,y2)��

|expf{ 2jp
lz
½(x1{x2)xz(y1{y2)y�g:

ð6Þ

Bs!
ð

dx1dy1dx2dy2dx0dy0dx00dy00Es(x1,y1)½Es(x2,y2)��

|T(x0,y0)T�(x00,y00)sinc½ L1

lz1
(x0{x00)�sinc½ L1

lz1
(y0{y00)�

|expf2jp
lz

(x00x2zy00y2{x0x1{y0y1)g:

ð7Þ

Here sinc(x)~
sin pxð Þ

px
, TGISC is the object’s transmission function recovered by

GISC method, and L1 is the effective receiving aperture of the test detector Dt. Based
on the theoretical analysis described in Refs. 22, 23, the imaging resolution of GISC
will depend on both the object’s sparsity in the representation basis and the mutual
coherence of random measurement matrix. For GISC, in order to evaluate quanti-
tatively the improvement degree of imaging resolution, we can measure the angular
spectrum of reconstructed images compared with GI reconstruction result, similar to
the k-space spectral analysis method34.
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