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The occurrence and maintenance of cooperative behaviors in public goods systems have attracted great
research attention across multiple disciplines. A threshold public goods game requires a minimum amount
of contributions to be collected from a group of individuals for provision to occur. Here we extend the
common binary-strategy combination of cooperation and defection by adding a third strategy, called
insured cooperation, which corresponds to buying an insurance covering the potential loss resulted from the
unsuccessful public goods game. Particularly, only the contributing agents can opt to be insured, which is an
effort decreasing the amount of the potential loss occurring. Theoretical computations suggest that when
agents face the potential aggregate risk in threshold public goods games, more contributions occur with
increasing compensation from insurance. Moreover, permitting the adoption of insurance significantly
enhances individual contributions and facilitates provision, especially when the required threshold is high.
This work also relates the strategy competition outcomes to different allocation rules once the resulted
contributions exceed the threshold point in populations nested within a dilemma.

T
he origin and stability of cooperation is a hot subject in social and behavioural sciences1,2. A complicated
conundrum exists as defectors have an advantage over cooperators, whenever cooperation is costly and
consequently, defection pays off. Therefore social dilemmas are situations in which the optimal decision of

an individual contrasts with the optimal decision for the group3–5. In the investigation of this plight the most
prevailing framework is game theory together with its extensions involving evolutionary context6–10.

Throughout evolution, crucial human activities like hunting for food, conserving common forestry or fisheries
resources, and warfare, constitute public goods. In situations like these, each group member gains benefits from
the goods, including those who pay no cost of providing the goods. This arouses the question of why characters
regularly participate in costly cooperative activities like warfare and risky hunting. Perhaps one of the most
frequently used multiple-agent-two-strategy models to describe the confusion of how cooperation arises is the
public goods game (PGG)11–15. It focuses on the gains arising in multi-person interactive decision situations when
probably a part of the population decide to cooperate16–19.

Quite a few solutions or mechanisms have been put forward to explain the perplexing problem of cooperation
evolution. The kin selection theory focuses on cooperation among individuals that are genetically related, whereas
theory of direct reciprocity emphasizes the selfish incentives for cooperation in bilateral long-term interac-
tions20–22. The theories of indirect reciprocity and signalling indicate how cooperation in larger groups can emerge
when cooperators can build a reputation23,24. Besides, punishment also plays a crucial role in the resolution of
cooperative dilemma25–29. The integration of the microscopic patterns of interactions among the individuals
composing a large population into the evolutionary setting, affords a way out for cooperators to survive in
paradigmatic scenarios. A common framework is that each node in a graph carries one player and, edges
determine who plays with whom30–33.

Although the public goods game is deemed as one of the most common games in the study of the cooperation
evolution, there are still some social dilemmas for which a different game would be a more appropriate model. In
many cases of a collective action, the achieving of the group goal depends on the amount of common goods
contributions. It is a common observation that many public goods contributed by collective actions are provided
if contributions reach or exceed the required threshold of contributions; otherwise, no goods is provided34–36.
Thus, a threshold public goods game requires a minimum amount of contributions to be raised from a group of
individuals for provision to occur37–39. Researchers have examined how several factors, including incomplete
information and identifiability of individual contributions, inhibit or foster successful public goods provision40–47.
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Our previous work48 has introduced insurance against punish-
ment and studied the roles of speculation adopted by defectors in
public goods systems. Along this line, our aim here is to devise a
scenario of evolutionary competition between three competing strat-
egies, and study the roles of insurance for cooperators in the pro-
motion of public cooperation. We are interested in the capacity of
agents to contribute and produce the public goods when they are
confronted with ambiguous risks or losses, meanwhile, facing the
choice of being insured. In this threshold public goods model, agents
can buy an insurance that sequentially covers the potential loss. We
consider these aspects in an insurance deal, since the premium
should not only be high enough to compensate the insurer for bear-
ing the individual’s risk, it should at the same time be low enough so
that an individual is willing to insure her risk for this premium.
Besides, if the threshold is not reached, contributions are not
returned to the providers.

We add the insured cooperation as the third strategy to extend the
individual strategy profiles originally consisting of cooperation and
defection. These sets of hypotheses are generated from the motiva-
tion of our designing insurance in threshold public goods game. In
the first place, everyday experience tells us that agents differ in per-
sonal features, such as the often-observed different economic status,
or consciousness and demand for insurance in real world. When
facing some potential loss, players may show heterogeneity in risk
preferences. There is one more paramount point, cooperators will
lose all their contributions when the group contribution falls short of
the threshold. Intuitively, it is reasonable that the purchasers of
insurance are cooperators since they are the altruistic contributors
of the public goods activities and bear the risk of losing all their
contributions. Therefore it is fair that they are provided the option
of transferring their future loss to some insurance policy. In doing so,
they could get some (part or full) compensation for their altruistic
behaviors. In other words, the proposed insurance mechanism is
provided as a means for encouraging those contributors and an effort
deceasing the size of any loss occurring. Conversely, defectors can
rest easy with no contribution for the generation of common goods.
In this sense, it is meaningful to provide insurance choice only for
contributors to avoid or decrease the unfavorable loss in this game
setting. Finally, it is plausible that the insurance provider may be a
profit management, and it will prefer cooperators over defectors as
the object of insurance. The reason is that success accomplishment of
public goods will help the insurance company save more benefits,
otherwise it has to cover the loss for the insurers. Especially, the
success provision of public goods is closely related to the number
of cooperators. In this new framework, the two-strategy public goods
game can be convincingly reframed as a cooperative dilemma among
cooperators, insured cooperators and free riders.

The rest of the paper proceeds as follows. In section 2 we describe
the threshold public goods games with three strategies in the static
context. Next, we present and discuss the main dynamic outcomes of
the system, whereas conclusive remarks are given in the final section.

The model
In a typical threshold public good game (TPGG), each player in a
group receives an endowment and individually decides how much of
it to be contributed to a public goods system. If the group contri-
bution exceeds a certain threshold, then the public goods is success-
fully provided and each player receives an equal reward, irrespective
of her strategy. If the threshold is not reached, contributions are not
returned to the players. Rational players intend to selfishly free ride
on others’ contributions, as contributors always benefit others at a
cost to their benefits. Therefore, this rationale leads to social dilem-
mas and the predictable abandonment of the public goods.

To illustrate, suppose that in a finite population of size N (N . 1),
individuals are provided with identical endowment c, and each must
privately decide how much (between all and none here) of her endow-

ment to contribute. After multiplying the accumulated contributions
by r, each individual receives an identical benefit, if the required
threshold T* is reached by the group as a whole. Note that rc , T*
, rcN so that it is impossible for the threshold to be reached based
solely upon the contribution of one player, but it is possible for it to be
attained based upon the contributions of more than one player19.

As mentioned, when facing with potential loss, some coopera-
tors prefer buying an insurance covering the possible loss and we
call them the insured cooperators. Other cooperators may disreg-
ard this insurance and readily bear the potential loss, and they will
be referred to as (common) cooperators. For the public goods
game played by N players, both of the insured cooperators and
common cooperators are contributors and their numbers are
denoted by Ni (insured cooperators) and Nc (cooperators) respect-
ively. Thus the population is composed of Ni 1 Nc contributors
and Nd free-riders.

Next, if the threshold is already achieved, how to define the payoff
function of the participants gained from more contributions and
provision is a crucial step. For the sake of generality, herein we
consider two types of payoff functions that are plausible and conform
to real situations for the study of cooperation, described in the fol-
lowing two scenarios respectively.

Scenario I: If the group contribution exceeds the required thresh-
old, all the participants will henceforth share the fixed return T*/N
from the accomplished public goods game. And that is, contributions
above the threshold point of provision are wasted. There exists a set
of living examples conforming to this model setting, such as voting
for building a public garden or dam. The neighborhood residents are
asked to individually fill in a questionnaire, or vote, or petition the
government to get the project approved. For example, whether the
public project will be approved and built, depends on the amount of
supporters and the required minimum numbers needed for success-
ful action. The residents might not know how many signatures are
needed to get the project built. In the example above, the project gets
approved only if enough voters achieve the threshold, and excess
signatures play a meaningless role in affecting the results.

Scenario II: If enough contributions are made to reach the
stated threshold level of contributions, contributions above the
provision point are not wasted, but result in further group benefit
and thus more contributions are still meaningful. Herein we
assume that the public goods is provided in an amount increasing
with the aggregate level of contributions even though the specified
threshold has already been met. The evenly distributed benefit is
further assumed to be of the linear form rc(Nc 1 Ni)/N, where
more contributors will provide larger benefits to the group. A
large amount of meaningful and visual examples lend support
to the above model setting. The more contributions are raised,
the higher probability that a project will be successfully con-
structed. Returning to the earlier example, the neighborhood resi-
dents decide to build the public dam by voluntary contributions.
The rates of successful provision and observed efficiency of the
project are directly and positively related to the amount of con-
tributions. Clearly, an effective dam requires a minimum of con-
tributions to resist the invasion of flood. While if the required
threshold is reached, more contributions exceeding the threshold
still remain a significant role for a much more effective dam.

However, real-world dilemmas are typically not models with an
obvious or clearly defined classification, and thus we combine these
two scenarios with a variable v as follows

U~vT�z 1{vð Þrc NczNið Þ: ð1Þ

By changing the parameter v, our model allows to transverse
smoothly from scenario I (i.e. v 5 1) to scenario II (i.e. v 5 0). In
between the two extremes, we have a mixed situation of these two
scenarios in the threshold public goods system.
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Further, the payoff to an individual depends only upon her strat-
egy and the combination of the strategies of her opponents. Each
player chooses to contribute all or nothing. The proposed TPGG with
three strategies has identical allocation rules with the common PGG
if the public goods achieves the threshold: each player receives an
equal amount of reward from the successful game, minus her own
cost related to her strategies. As already stressed, the contributors
within a TPGG group are composed by common cooperators (whose
number is Nc) and insured cooperators (whose number is Ni). Let us
now linger on the game dynamics of the investigated population.

And, we look at the situation the threshold of common goods is
attained by

rc NczNið Þ§T�, ð2Þ

where r denotes the amplification effect on the common pool, and T*
is the required threshold for the public goods provision to succeed.

Each player derives exclusively from the contributions provided by
cooperators and insured cooperators, minus her cost to the common
pool. For a group of size N probably consisting of the three characters
(i.e. cooperator C, defector D and insured cooperator I), the payoffs
of these three roles are specified as follows:

Pc~
U
N

{c

Pd~
U
N

Pi~
U
N

{c{l

8>>>>><
>>>>>:

: ð3Þ

The enhancement factor r . 1 means that if all cooperate, they are
better off than if all defect. For a public goods game to deserve its name,
r , N should be satisfied, where each individual is better off defecting
than cooperating. In this game, each unit of investment is multiplied by
r and the resulting goods is distributed among all participants irre-
spective of their strategies. The first term in the expression represents
the benefit that the agent obtains from the public goods, while the
second term denotes her cost. For a cooperator, the cost is the invest-
ment c to the public goods. For an insured cooperator, the cost is the
contribution c to the common pool and her payment l to the insur-
ance. Still, defectors withhold their share and exploit other players.

If the contributions are not sufficient to provide the public goods,

rc NczNið ÞvT�, ð4Þ

the contributors lose their contributions and the goods is not pro-
vided finally. Thus, the net payoffs of the three strategies are deter-
mined by

Pc~{c

Pd~0

Pi~e{c{l

:

8><
>: ð5Þ

Compared with formula (3), each player is better off if the goods is
provided than if it is not. For insured cooperators, they will be com-
pensated by the insurance against the risk of ‘wasting’ their contribu-
tions on this unrealized project. Thus, the payoff advantages of
defectors over insured cooperators depend on the involved para-
meters: the cooperative contribution c, the compensation e (e . 0)
provided by the insurance, and the insurance cost l. So, it is difficult
to say whether those who do not contribute are better off than those
who do contribute.

For simplicity and without loss of generality, we set the coopera-
tive cost c from a contributor (either a cooperator or an insured
cooperator) to 1. For r . 0, we can rewrite rc(Nc 1 Ni) $ T* as N
2 Nd $ (T*/r), and thus introduce H 5 ceil[N 2 (T*/r)]. Notably,
this ceiling function of H returns the smallest integer greater than or
equal to N 2 (T*/r). Substituting the function H for T* thus yields a

simple judgment: Nd , H leads to the success provision of the
TPGG, and Nd $ H means the failure of the game. In the following
study, we employ the threshold value H as the maximum number of
defectors above which public goods game ends in failure. In this
model, the resulting dynamics will be closely related to a variety
parameters, as illustrated in Fig. 1 which provides some examples
of the proposed TPGG.

Evolutionary dynamic outcomes
Here we posit a very large, well-mixed population of players. From
time to time, sample groups of N such players are chosen at random
and could join in a threshold public goods game. Notably, the prob-
ability that two players in large populations ever encounter again can
be neglected. The probability that there are m defectors among the N
2 1 other agents in the sample population of size N in which a given
player finds herself, is determined by

N{1

m

� �
xm

d 1{xdð ÞN{1{m: ð6Þ

This probability is independent of whether the agent is a contributor
or a defector. xd denotes the fraction of defectors in the population.
The only determinant in the well-mixed population is the payoff that
the agent herself receives. Consequently, the expected payoff for a
defector in such a group is

Pd~
XH{2

m~0

vT�z 1{vð Þr N{1{mð Þ
N

N{1

m

� �
xm

d 1{xdð ÞN{1{m: ð7Þ

The payoff of a cooperator is given by

Pc~
XH{1

m~0

vT�z 1{vð Þr N{mð Þ
N

{1

� � N{1

m

 !
xm

d 1{xdð ÞN{1{m

z
XN{1

m~H

{1ð Þ
N{1

m

 !
xm

d 1{xdð ÞN{1{m:

ð8Þ

Figure 1 | Diagrams illustrating four examples of TPGG, whose
dynamics outcomes are closely related to the model parameter involved.
Parameters here: N 5 50, T* 5 40. The x-axis is indexed by the number of

contributors (including cooperators and insured cooperators), and the y-

axis represents the individual benefits from TPGG. Results show that,

when r 5 5, individuals can gain positive benefits from TPGG if there are at

least 8 contributors. When r 5 2, at least 20 contributors in one TPGG are

needed to bring each participant with positive benefits. As mentioned,

varying the parameter v can transverse the model smoothly from scenario

I (i.e. v 5 1) to scenario II (i.e. v 5 0) about the payoff functions in the

TPGG after the threshold point has already been reached. In between the

two extremes, we obtain a mixed situation of the payoff distribution rules

in the threshold public goods system.

(7)
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The payoff of an insured cooperator will thus be

Pi~
XH{1

m~0

vT�z 1{vð Þr N{mð Þ
N

{1{l

� � N{1

m

 !
xm

d 1{xdð ÞN{1{m

z
XN{1

m~H

e{1{lð Þ
N{1

m

 !
xm

d 1{xdð ÞN{1{m:

ð9Þ

Further, the advantage of one strategy over another depends on
the payoff difference between them, below we will discuss the strat-
egy competition results in detail.

Competition between strategy C and I:

Pc{Pi~l{e
XN{1

m~H

N{1

m

� �
xm

d 1{xdð ÞN{1{m: ð10Þ

Then we get limxd?0 Pc{Pið Þ<lw0, and limxd?1 Pc{Pið Þ<
l{eð Þv0. Competition between strategy I and D:

Pi{Pd~e{l{1z
XH{1

m~0

r 1{vð Þ
N

{e

� � N{1

m

 !
xm

d 1{xdð ÞN{1{m

z
T�

N

N{1

H{1

 !
xH{1

d 1{xdð ÞN{H

~e{l{1z
r 1{vð Þ{Ne½ � N{Hð Þ

N

ð1{xd

0
tN{H{1 1{tð ÞH{1dt

z
T�

N

N{1

H{1

 !
xH{1

d 1{xdð ÞN{H :

ð11Þ

By introducing w1(xd), we can rewrite Eq. (11) as

Pi{Pd~e{l{1zw1 xdð Þ, ð12Þ

and hence,

dQ1 xdð Þ
dxd

~
r 1{vð Þ{Ne½ � N{Hð Þ

N

N{1

H{1

 !
{xH{1

d 1{xdð ÞN{H{1� �

z
T�

N

N{1

H{1

 !
H{1ð ÞxH{2

d 1{xdð ÞN{H
{ N{Hð ÞxH{1

d 1{xdð ÞN{H{1� �ð13Þ

Provided that 0 , xd , 1 holds, the above Eq. (13) keeps the same
sign with 2[r(1 2 v) 2 Ne](N 2 H)xd 1 T*(H 2 1)(1 2 xd) 2 T*(N
2 H)xd. Resolving the equation 2[r(1 2 v) 2 Ne](N 2 H)xd 1

T*(H 2 1)(1 2 xd) 2 T*(N 2 H)xd 5 0 yields

xd,1~
T� H{1ð Þ

r 1{vð Þ{Ne½ � N{Hð ÞzT� N{1ð Þ ð14Þ

Consequently, both the maximum and minimum values of w1(xd)

exist, since w1(xd) is continuous in [0, 1]. Given that
dw1 xdð Þ

dxd
~0

when xd 5 xd,1,
dw1 xdð Þ

dxd
w0 if xd , xd,1 holds, and

dw1 xdð Þ
dxd

v0 when

xd . xd,1, Pi 2 Pd reaches the maximum value at xd,1. Then we

can safely get xd,1~
T� H{1ð Þ

T� N{1ð Þ{Ne N{Hð Þ at v 5 1, xd,1~

T� H{1ð Þ
T� N{1ð Þz r{Neð Þ N{Hð Þ at v 5 0.

From Eq. (11) we get limxd?0 Pi{Pdð Þ< r 1{vð Þ
N

{l{1v0, and

limxd?1 Pi{Pdð Þ<e{ lz1ð Þ.
To sum up, there are two interior roots on the edge of ID when

w1(xd,1) 1 e 2 l 2 1 . 0 and e 2 (l 1 1) , 0, one interior root on the
edge of ID when w1(xd,1) 1 e 2 l 2 1 5 0 and e 2 (l 1 1) , 0 or

when w1(xd,1) 1 e 2 l 2 1 . 0 and e 2 (l 1 1) . 0, and no interior
root on the edge of ID when w1(xd,1) 1 e 2 l 2 1 , 0.

Competition between strategy C and D:
In analogy to the above methods, the sign of Pc 2 Pd determines

whether it pays to switch from defection to cooperation or vice versa,
with Pc 2 Pd 5 0 being the equilibrium condition. Fig. 2 illustrates
three examples with respect to T*, to help depicting the complicated
situations of Pc 2 Pd.

Pc{Pd~{1z
XH{1

m~0

r 1{vð Þ
N

N{1

m

 !
xm

d 1{xdð ÞN{1{m

z
T�

N

N{1

H{1

 !
xH{1

d 1{xdð ÞN{H :

ð15Þ

By employing

w2 xdð Þ~
r N{Hð Þ 1{vð Þ

N

N{1

H{1

 !ð1{xd

0
tN{H{1 1{tð ÞH{1dt

z
T�

N

N{1

H{1

 !
xH{1

d 1{xdð ÞN{H ,

ð16Þ

Eq. (15) can be reduced to

Pc{Pd~{1zw2 xdð Þ: ð17Þ

Next,

dw2 xdð Þ
dxd

~{
r 1{vð Þ N{Hð Þ

N

N{1

H{1

 !
{xH{1

d 1{xdð ÞN{H{1� �

z
T�

N

N{1

H{1

 !
H{1ð ÞxH{2

d 1{xdð ÞN{H
{ N{Hð ÞxH{1

d 1{xdð ÞN{H{1� �

~
N{1

H{1

 !
xH{2

d 1{xdð ÞN{H{1
{

r 1{vð Þ N{Hð Þ
N

xd

�

z
T�

N
H{1ð Þ 1{xdð Þ{ T�

N
N{Hð Þxd

�

ð18Þ

0 , xd , 1 helps the Eq. (18) keep the same sign with 2r(1 2 v)(N
2 H)xd 1 T*(H 2 1)(1 2 xd) 2 T*(N 2 H)xd. Then,

{r 1{vð Þ N{Hð ÞxdzT� H{1ð Þ 1{xdð Þ{T� N{Hð Þxd~0 ð19Þ

gives rise to

xd,2~
T� H{1ð Þ

r 1{vð Þ N{Hð ÞzT� N{1ð Þ : ð20Þ

Pc 2 Pd 5 21 when xd 5 0, and Pc 2 Pd 5 21 when xd 5 1.
Similarly, w2(xd) is a continuous function in the interval of [0, 1], and
thus both the maximum and minimum values of w2(xd) can be

found. Considering that
dw2 xdð Þ

dxd
w0 if xd , xd,2, and

dw2 xdð Þ
dxd

v0

if xd . xd,2, Pc2Pd reaches its maximum value at xd,2. In this

case, v 5 1 leads to xd,2~
H{1
N{1

, and v 5 0 results in xd,2~

T� H{1ð Þ
r N{Hð ÞzT� N{1ð Þ . It thus follows that: there are two interior

roots on the edge of CD when w2(xd,2) . 1, one interior root when
w2(xd,2) 5 1, and no interior root when w2(xd,2) , 1.

In the continuous time model, the evolution of the fractions of the
three strategies are given by

_xk~xk Pk{�Pð Þ, ð21Þ

where k can be c, d, i, and �P~xcPczxdPdzxiPi. Now consider some
typical possible cases of different parameters and the resulting game
dynamics one by one, pointed out by Fig. 3.

(9)

(11)

(13)

(18)
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Case 1 (e2l21 1 w1(xd,1) , 0, w2(xd,2)21 , 0): In this case, full
defection equilibrium (D) is the only stable and a global attractor. For
an insured cooperator, her contribution for common goods and the
cost for insurance cannot be totally reimbursed and thus she suffers
negative payoffs if the threshold is not reached. Each individual has
an incentive to free ride for the higher payoffs, and thus the dominant
strategy equilibrium in case 1 is the defection.

Case 2 (e 2 l 2 1 1 w1(xd,1) . 0, e 2 l 2 1 . 0, and w2(xd,2) 2 1 ,

0): Herein, there is a border equilibrium consisting of insured

cooperation and defection. And this equilibrium is stable and a global
attractor. In comparison with case 1, the compensation e from insur-
ance is increased and the resulted e , l 1 1 will foster the survival of
insured cooperators gaining higher payoffs than defectors.
Thenceforth, larger compensation provided by insurance will stimu-
late more contributors to jointly produce the threshold public goods
when they face the ambiguous risks and losses.

Case 3 (e 2 l 2 1 1 w1(xd,1) , 0, w2(xd,2) 2 1 . 0): In this case,
there are two border equilibrium points consisting of cooperation
and defection. The one close to the full cooperation is a stable equi-
librium and the other near full defection is unstable. In comparison
with case 1, the increasing threshold T* leads to two stable equilibria
here: full defection and the coexistence of cooperation and defection.
Which equilibrium the system will evolve to depends on the initial
states of the population.

Case 4 (e 2 l 2 1 1 w1(xd,1) . 0, w2(xd,2) 2 1 . 0): In this case,
there are two stable border equilibria: one consisting of cooperation
and defection, and the other consisting of insured cooperation and
defection. In comparison with case 2, the increment of required
threshold T* results in the two equilibria on the edge of CD here.
Similar to case 3, lager v will propel the equilibrium point on the
edge of CD to approach to the point of pure defection. We offer an
accessible explanation of this observation: larger v implies a bigger
competitive advantage of defectors over cooperators based on pay-
offs, which is essential for the stability of the competing strategies.

Summarizing the four cases above, we can conclude that the insur-
ance guarantee for contributive behaviors encourages contributions
and provision, but in a manner which interacts with both the
required threshold and the reimbursed compensation from insur-
ance. Results presented above show that larger required threshold T*
helps contributors gain more advantages in payoffs than free riders,
therefore improving the provision for public goods. In addition,
increasing the compensation e from insurance also dramatically
alters the dynamic outcomes of the game. Defectors reap the benefit
of the common goods without any contribution into it, which inhi-
bits the spread of contributive behaviors. Although defectors always
do better than cooperators in the public goods games with binary
contributions, insurance proposed here can offer the possibility for
contributors of receiving higher payoffs than defectors, and so con-
tributors will increase. The insurance reduces or removes the risk
that contributions made towards the public goods will be lost if the
threshold is not attained. Supported by sufficiently high compensa-
tion e, contributors can avoid extinction by the potential payoff
advantages over defectors, or even the possible dominance of the
population. It is also worth emphasizing that the allocation rules
(adjusted by v here) of the public goods after the contributions reach
the threshold point, also act as a focal point for survival of coopera-
tion. Smaller v enhances the payoff advantages of contributors over
defectors and hence cooperation thrives in our model. Hence, the
insurance guarantee encourages contributions and provision in
threshold public goods games, and suggests a positive role in unrid-
dling the bewilderment of the ‘Tragedy of the Commons’.

Conclusions
In the threshold public goods game, public goods are provided if the
joint contributions meet or exceed a predetermined threshold level of
provisions; otherwise, no public goods is provided. With the exist-
ence of the potential risks, we are interested in the capacity of agents
to contribute and to produce the public goods when they can opt to
be insured at some cost. Therefore individuals joining the game are
provided with three strategy options: cooperation, defection and
insured cooperation. Here, the public goods is provided in a thresh-
old fashion with a predetermined threshold T*: if the accumulated
contributions reach or exceed T* then the public goods is provided,
otherwise it is not. In addition, the public goods are allocated accord-
ing to two different rules if the contributions exceeds the threshold:

Figure 2 | Examples illustrating the payoff difference Pc 2 Pd between
cooperators Pc and defectors Pd, which is closely related to the required
threshold T*. Lines connecting the symbols are just to guide the eye. The

mentioned examples suggest that the possible roots of the Pc 2 Pd will be:

none, a unique or two roots situated in the interval (0,1).
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fixed value or a linear form of contributors. In this model our atten-
tion is paid to relating individual contributions in threshold public
goods game to riskiness and risk aversion mechanisms.

Theoretical computations show that the evolutionary dynamics
are intrinsically regulated by the game parameters specified by the
proposed insurance choice. We demonstrate that compensation
from insurance is of crucial importance for stabilizing cooperation
among competing strategies. Larger compensation will tempt
more agents to contribute, thus inhibiting the spread of free riding
behavior. Further, increasing the threshold can also elicit more

contributions to the threshold public goods game. And, the alloca-
tion rules of the public goods after the contributions catch up with
the threshold point, also notably affect the final results.

Researchers are often intrigued by employing public goods games
to simulate collective dilemmas existing in the real world. In this
endeavor, incorporating features of the real-world dilemma into
the game also deserves attention. Our work is therefore a potential
remedy to collective cooperation problem nested within a dilemma
when cooperators are provided with some insurance, implying that
the insurance for competing strategies deserves more attention in

Figure 3 | The dynamic outcomes under different cases. The corners C (cooperation), D (defection), and I (insured cooperation) are equilibrium pints.

Open dots are unstable equilibrium points and closed dots are stable equilibrium points. In case 1, full D is the only stable equilibrium while in the

other three cases, other strategies may be the dominative ones. Therefore, we can conclude that our model promotes contribution by adding the third

strategy: insured cooperation.
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theoretical and empirical studies. The work reported here also lends
itself to multiple extensions. An immediate one, for example, would
be improving the theoretical validity of the study here by introducing
insurance in experimental research. One feasible experimental
research is to conceive of a threshold public goods game with more
complicated forms or functions (usually nonlinear) of insurance.
Moreover, it would be interesting to see whether insurance provided
for both cooperators and defectors in the populations can foster
cooperation. For instance, the volunteers in experiments can face
multiple actions (e.g., cooperation, defection, insured cooperation
and insured defection). In this way, we can gain a thorough under-
standing about the roles of insurance in the real-life collective dilem-
mas: such as the construction of some public projects and in other
cases where a public good needs to be provided. A closer look at the
nature of insurance in situations that are called collective dilemmas
can foster the advancement of our understanding of cooperative and
selfish behaviors. Hence, learning how insured agents can forgo indi-
vidual interests for collective interest is useful for understanding
social behaviors and developing social policy.
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