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We introduce disk matrices which encode the knotting of all subchains in circular knot configurations. The
disk matrices allow us to dissect circular knots into their subknots, i.e. knot types formed by subchains of the
global knot. The identification of subknots is based on the study of linear chains in which a knot type is
associated to the chain by means of a spatially robust closure protocol. We characterize the sets of observed
subknot types in global knots taking energy-minimized shapes such as KnotPlot configurations and ideal
geometric configurations. We compare the sets of observed subknots to knot types obtained by changing
crossings in the classical prime knot diagrams. Building upon this analysis, we study the sets of subknots in
random configurations of corresponding knot types. In many of the knot types we analyzed, the sets of
subknots from the ideal geometric configurations are found in each of the hundreds of random
configurations of the same global knot type. We also compare the sets of subknots observed in open protein
knots with the subknots observed in the ideal configurations of the corresponding knot type. This
comparison enables us to explain the specific dispositions of subknots in the analyzed protein knots.

S
tudies of 3-D trajectories of polypeptide chains forming knotted proteins reveal that more complex knots
frequently contain simpler knots and slipknots1–3. For example, some subchains of a static configuration
polypeptide chain forming the 61 knot can be classified as forming the 41 knot, while a polypeptide chain

forming the 52 knot has subchains forming 31 knots3. It seems reasonable that as a portion of a knotted chain is
shortened, the associated knot type should be progressively simplified until reaching the unknot, 01. However,
why subchains of 61 knots should form 41 knots and subchains of 52 knots should form 31 knots is much less
evident. Here we study the question: ‘‘What are the knot types of the subchains that are contained in a config-
uration of a complex knot type?’’ We call the knot types arising from subchains subknots of the configuration.
Although this question was stimulated by studies of linear knots formed by the polypeptide chains of knotted
proteins, we study it here for subknots formed in two special classes of closed chains: the KnotPlot chains
[Scharein, R. G. KnotPlot. (1998) Available at: http://www.knotplot.com/] which visually reflect the structural
regularity of the classical prime knot presentations and preserve the knot types’ symmetries4,5 and the ideal knot
configurations6–13 whose structural properties reflect the spatial nature of knotted magnetic flux lines and of
knotted macromolecules6,14–21. We compare the sets of subknots to the knot types obtained by changing crossings
in minimal knot diagrams for the knot types, the so-called predecessor knots22,23. We then compare the subknots
seen in these regular configurations to the subknots seen in random configurations. Building upon this study, we
consider linear polypeptide chains and discuss what the resulting information tells us about the presence of
certain knotted subchains within a knotted polypeptide chain.

Results and Discussion
The disk matrix reporting the knot type of every subchain in a closed chain. Taylor and later King et al.
introduced square and triangle-shaped matrices in which the cells report the knot types of the subchains of a
linear chain2,24. This type of matrix, however, does not adequately reflect the circular periodicity found in a closed
chain and, thus, is not well-suited to report the knot types of subchains for closed, circular chains. To overcome
this problem, we introduce a disk matrix (see Fig. 1) that reports the knot type of every subchain in a fixed
embedding of a circular polygonal chain. It is helpful to think of the disk matrix as being composed of cells
delimited by longitude lines radiating from the center of the disk and concentric latitude circles with increasing
radius. The matrix cells close to the center of the disk represent very short subchains (starting from one segment),
whereas cells bordering the rim of the disk represent long subchains (missing just one segment). The longitudinal
position of a cell indicates the position of the midpoint of the associated subchain and the latitude indicates the
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length, in number of segments, of the associated subchain. A chain
composed of 100 segments, for example, has a matrix with 99 latitude
and 100 longitude lines where the Greenwich longitude (i.e. positive
x-axis) corresponds to subchains whose center point is the first vertex
of the polygonal chain. The numbering of longitude lines goes in
a counter-clockwise direction in our matrix. Colors of the cells in
the matrix indicate the dominant knot type of the corresponding
subchains, i.e. the knot type most frequently resulting from a
uniform closure procedure of the open chain (see Refs. 3, 25–28
and the Materials and Methods section). The intensity of a given
color reflects how frequently this dominant knot type occurs among
the tested closures3,28. Fig. 1 shows the disk matrix reporting the two
knot types occurring in subchains of the symmetric trefoil knot
configuration shown in the center of this disk matrix. The poly-
gonal trefoil knot, 31, consists of the center-lines of 47 cylindrical
segments. This trefoil configuration has a three-fold rotational
symmetry that one also can see in the symmetry of the disk matrix.
Near the center of the matrix, we have entries corresponding to short
subchains. These entries are colored gray (see the color scale at the
right of Fig. 1) indicating that the dominant knot type is the unknot,
01, for the closures of these short subchains. As one moves away from
the center and closer to the edge of the disk matrix, the individual cells
represent subchains that have sufficient length to form trefoil knots as
the dominant knot type upon closure. These cells are colored red to
indicate the trefoil knot. Notice that cells close to the border between
the zones of the 31 knot and the unknot have colors of decreased
intensity (red and gray, respectively). This border effect indicates
that the corresponding subchains show a decreasing preference to
form the indicated knot types as the closures also create increasing
numbers of other knot types, for example those knot types that
dominate the other side of the apparent border. Since the knot
configuration, a KnotPlot trefoil, is spread out it takes quite a bit of
length to realize the global knot type. Later we analyze random
configurations, in which the subknots are more localized (i.e. the
coloring starts much closer to the center of the disk matrices) and
where there is a more diverse spectrum of subknots. Note that we only
see unknot and trefoil subchains in this highly regular trefoil knot due
to its relatively simple spatial structure.

For each knotted configuration, there is a shortest length at which
the global knot is realized. The minimal length subchain or subchains
realizing the host knot is called the knot core29 and is usually deter-
mined by the cell(s) closest to the center of the shortest subchain
having the global knot type. In the right panel of Fig. 1, one such cell
corresponding to a knot core is outlined in black with the corres-
ponding subchain shown nearby. In this panel, the cells colored blue

and green represent the subchains resulting from progressively
shortening the subchain from each end one segment at a time (repre-
sented by the blue and green ‘‘pacmen’’ in the central figure) starting
from the same initial scission. The black cells represent the result of
simultaneously removing a segment from both ends, thereby short-
ening the chain by two at each step and giving the dashed pattern.
Note that the centers of the chains resulting from progressively
removing segments from one end define a spiral path moving from
the rim global knot to the center unknot. The direction of the spiral
reflects the choice of the end that is being trimmed.

KnotPlot configuration subknots and predecessor knots. Fig. 2
shows disk matrices for closed chains forming several other knot
types. These knotted chains are configurations created using KnotPlot
and are configurations resulting from computations that mimic
the action of Coulomb forces on charged elastic fibers forming a
given knot type. We chose this group of knot configurations for
our initial study because they reflect symmetries of the knot
types and the configurations have a projection that looks very
similar to the minimal crossing diagrams of the knot types4,5. We
analyze the polygonal configurations determined by the
centerlines of these tubes, taking into account that our tubes
are not smooth but composed of many small cylinders.

We continue our analysis with the KnotPlot figure-eight knot, 41

(Fig. 2A). The figure-eight knot, 41, is a twist knot having unknotting
number one5, as does 31 (which is both a twist knot and a torus knot).
Thus one crossing change can change directly either of them to the
unknot30–32. This feature is visible in the disk matrix by the direct
passage from the global knot type to the gray colored zone as the
length of the subchains gets shorter.

Fig. 2B shows the disk matrix for the 51 knot, another torus knot.
Subchains of the 51 knot are capable of forming the 31 knot type. Of
course, subknots forming the unknot are always observed since any
polygon with fewer than six edges (and, thus, subchain with four or
fewer edges) is unknotted33. The KnotPlot configuration of the 51

knot has a toroidal five-fold symmetry that can be seen in its disk
matrix. The unknotting number of the 51 knot is two, which also is
visible in the disk matrix, since to pass from the green colored 51 zone
to the zone where the subchains only form unknots, one needs to pass
through the zone of subchains forming 31 subknots.

The next example (Fig. 2C) is the 52 knot, a twist knot (as are 31

and 41). Twist knots always have unknotting number equal to one.
Again, as in the case of disk matrices for the 31 and the 41 knots, one
can pass directly from the global knot zone to the unknot zone. One
also can pass through the 31 intermediate zone on the way to the zone

Figure 1 | A guide to disk matrices reporting the knot type of every subchain in a polygonal chain forming a KnotPlot trefoil knot. The left panel shows

the disk matrix obtained for the polygonal axial trajectory of a symmetric configuration of a trefoil knot (shown in the center of the matrix). Similar

matrices for other knots are presented in Figs. 2–6. The right panel and the drawing between the two panels are intended to explain the principle of the

matrix. For the explanation see the main text. The underlying brick wall pattern of the matrix is a consequence of the fact that the longitudinal position of

the cell indicates the position of the center vertex of the represented chains. For subchains with even numbers of segments, the centers of these subchains

fall at a vertex. For subchains with odd numbers of segments, the centers lie at the middle point of a segment.
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of unknots. The disk matrices we have computed for the KnotPlot
configurations (and later ideal knots) with the unknotting number
equal to one always showed a direct passage from the zone of the
global knot to the zone of the unknot. It is tempting, therefore, to
conjecture that this is always the case for knot types with the unknot-
ting number one. The disk matrix of the 52 knot shows that, as the
chain forming the 52 knot is shortened, it can transition either to a 31

knot or to an unknot. This resembles the situation in which a min-
imal diagram of the 52 knot is subject to single crossing changes22.
The knots resulting from single crossing changes are either 31 knots
or unknots.

Knot types arising from individual crossing changes performed on
a minimal crossing diagram of knot type K have been called prede-
cessors of K22 since they typically have a smaller minimal crossing
number than the knot type K. To be more precise, in Ref. 22 the
objective was to distinguish predecessors of various generations aris-
ing from the classical knot presentations. The first-generation pre-
decessors are the knot types that are obtained by a single crossing
change in a minimal crossing diagram of a given knot, whereas the
second-generation predecessors are obtained by single crossing
changes performed on minimal diagrams of the first-generation pre-
decessors, etc. Diao et al.23 showed that starting from any minimal
diagram of a given alternating knot, one always obtains the same set
of first-generation predecessors due to that fact that any such dia-
gram is related to any other by a simple transformation known as a
‘‘flype’’. For non-alternating knot types, different minimal diagrams
can produce different sets of first-generation predecessors. As a con-
sequence, the sets of predecessors for non-alternating knot types
depend on the actual knot diagrams chosen and therefore the set
of predecessors for non-alternating knot types is not a topological
invariant. For this reason, we focus our analysis on alternating knot
types that do not have non-alternating predecessors.

The knot 75 was specifically discussed by Diao et al.23 and was
shown to have 31, 51, and 52 knots as first-generation predecessors.
The second-generation predecessors arising from a single crossing
change in minimal diagrams of 51 knots are 31 knots, those arising

from 52 knots are 31 knots and unknots, and those arising from 31

knots are always unknots. Finally, the third-generation predecessors
arising from the 31 knots that have come from 51 or 52 subknots are
also unknots. Fig. 2D shows the disk matrix of the KnotPlot config-
uration of the 75 knot. We see that the 31, 51, and 52 knots also form
first-generation subknots. First-generation subknots can be recog-
nized easily in the disk matrices as having territories that can be
accessed directly from the territory of the global knot while advan-
cing radially toward the center of the matrix. We also see that the 31

knot, in addition to being a first-generation subknot, is a second-
generation subknot that arises by truncating subchains forming the
51 and 52 knots. Finally, we see that unknots can emerge as second- or
third-generation subknots from first- or second-generation sub-
knots, respectively. Interestingly, the disc matrix of the 75 knot also
indicates the predecessor knots which are more likely to appear after
randomly changing a crossing in a minimal crossing diagram of the
75 knot. The 52 subknots share the longest border with the global
knot 75 and three of the seven crossing changes to the 75 minimal
diagram result in 52 knots. Meanwhile, the 31 and 51 predecessors
each appear in two of the seven crossing changes23.

Encouraged by the observed degree of agreement between the
subknots and the predecessor knots coming from the minimal cross-
ing diagrams, we compared the KnotPlot configuration subknots to
the set of predecessors of all knot types with up to 10 crossings for
which the set of predecessors is defined (see above). For knot types
with up to seven crossings, the set of observed subknots (of all gen-
erations) correspond to the set of predecessor knots (of the corres-
ponding generation). However, as the knots increase in complexity,
there is an increasing number of cases where one observes subknots
that are not present among the set of predecessors as well cases where
some of predecessor knots are not present among the subknots (see
Table 1). Interestingly, the predecessor knots that are not present
among the subknots belong to the predecessors of second and higher
generations. We will discuss later how we might find these higher
order predecessors within these configurations. The 810 knot
(Fig. 3A) is the first example where we see subknots that are not

Figure 2 | Disk matrices for KnotPlot configurations of the 41 (A), 51 (B), 52 (C) and 75 (D) knots. The KnotPlot configurations of the corresponding

knots are presented over centers of their disk matrices.
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predecessors. In addition to the predecessors 63, 31#–31, 51, 52 31,
231 and 01, the KnotPlot 810 configuration also contains a 75 subknot
(indicated with an arrow).

Ideal configuration subknots. Ideal knot configurations are defined
by the axial trajectories of uniform diameter tubes that reach the
minimum length necessary to form a given knot type6–13 and have
been shown to have properties that correspond to those found in
knotted magnetic flux lines and knotted macromolecules6,14–21.
Visually, one observes that these configurations are more compact
than KnotPlot configurations as a consequence of the minimization
of the amount of ‘‘rope’’ used to create the knot.

Fig. 3B shows the disk matrix for the ideal 810 knot. All of the
predecessor knot types (i.e. 63, 31#-31, 52, 51 131, 231 and 01) occur
while the 75 knot does not occur.

This result suggests that the reduction of the 3-D trajectory to the
necessary minimum required to build a given knot reduces the pres-
ence of subknots which are not predecessors. Indeed we observe fewer
non-predecessor subknots in ideal configurations than in KnotPlot
configurations. However, three 10-crossing knot types (1069, 1097,
and 10114) have subknots that are not predecessors. For example,
the ideal (1069) has a subknot 73 that is not among the predecessors
of that knot. Analyzing this case more closely we noticed that
although there are subchains of the ideal 1069 configuration that form
73 knots more frequently than any other knot types upon the uniform
closure procedure, the fraction of closures forming 73 knots is around

20%. This observation prompted us to consider a more discriminat-
ing class of subknots, which we call the majority subknots, consisting
of knot types that are formed in at least 50% of the closures for some
subchain. Interestingly, all of the majority subknots observed in the
analyzed ideal and KnotPlot configurations belong to the set of pre-
decessors of the corresponding knot types. We then analyzed whether
all predecessor knots are observed among the majority subknots of
ideal knots. Some predecessors are not represented amongst the
majority subknots but only for predecessors of second and higher
generations. All first-generation predecessors are present among the
majority subknots of ideal knots. This is not the case, however, for the
KnotPlot configurations where some of the first-generation predeces-
sors do not reach the strict criterion of 50% closures (see Table 1).

Among KnotPlot and ideal knot configurations of all prime knots
through 10 crossings, only 31 and 41 do not contain subknots other
than the global knot and the unknot. Furthermore, all KnotPlot and
ideal knot configurations contain either a 31 or 41 subknot.

An analysis of second- and higher-generation predecessors and
subknots. In all but one of the ideal configurations of knot types with
nine or fewer crossings for which the predecessors are defined, 67 in
total, we found that the set of predecessor knots and the set of
subknots of the ideal configurations were the same. Fig. 4 shows
the disk matrix of the one exceptional case, an ideal 919 knot. This
positive 919 knot has a 277 knot as one of its first-generation
subknots. The predecessors of the 277 knot are 41, 231, and 01.

Table 1 | Agreement between the sets of predecessor knots and the sets of subknots observed in KnotPlot and ideal configurations with
increasing numbers of crossings. For most of the analyzed knots, all observed subknots in the disk matrices of KnotPlot and ideal config-
urations belong to the set of predecessor knots of the corresponding global knot type. However, as the crossing number increases some of the
KnotPlot and ideal configurations have subknots that are not predecessor knots of the global knot type. When one considers majority
subknots (i.e. subknots that achieve at least 50% frequency in some subarc using our closure algorithm), then all of these subknots belong to
the sets of predecessor knots of the corresponding global knots. If one concentrates on the knot types forming predecessor knots of the first
generation then they are visible as subknots in the disk matrices of the KnotPlot and ideal configurations of the corresponding global knots

number of crossings 3 4 5 6 7 8 9 10
# alternating knot types with predecessors 1 1 2 3 7 18 35 92

KnotPlot all subknots # predecessors 1 1 2 3 7 16 27 58
some subknots 1 predecessors 0 0 0 0 0 2 8 34
all majority subknots # predecessors 1 1 2 3 7 18 35 92
first generation predecessors # subknot set 1 1 2 3 7 18 35 92
all first generation predecessors # majority subknot set 1 1 2 3 7 18 32 78
some first generation predecessors 1 majority subknot set 0 0 0 0 0 0 3 14

Ideal all subknots # predecessors 1 1 2 3 7 18 35 89
some subknots 1 predecessors 0 0 0 0 0 0 0 3
all majority subknots # predecessors 1 1 2 3 7 18 35 92
all first generation predecessors # subknot set 1 1 2 3 7 18 35 92
all first generation predecessors # majority subknot set 1 1 2 3 7 18 35 92

Figure 3 | Comparison of disk matrices for KnotPlot (A) and ideal knot (B) configurations of the 810 knot. Notice that the 75 knot is visible as one of the

subknots in the disk matrix of the KnotPlot configuration (indicated with an arrow), whereas the ideal knot configuration does not contain this subknot.

The KnotPlot and ideal knot configurations of the 810 knot are shown over the center of their disk matrices.
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However, the 231 subknot is not observed as a second-generation
subknot of the ideal 919 configuration.

We are, therefore, led to ask, ‘‘Why do the first-generation sub-
knots usually agree with the subknots of ideal configurations but not
always those of the second-generation?’’ This behavior, at least to
some extent, comes from differences in the approaches of determin-
ing predecessors versus subknots. In particular, predecessors are
obtained by a distributive process whereby one crossing is changed
in the minimal diagram and then the minimal diagram for the new
knot type is analyzed to find the second-generation predecessors.
This process is akin to changing one crossing and then changing
any other crossing. On the other hand, the analysis of subknots only
looks at subchains that are obtained by further trimming subchains
that form the given subknot. Thus, the subknot search can be thought
of as being a processive process since removing subarcs of increasing
length behaves like removing nearby crossings in an ordered fashion
as one moves through the configuration. The distributive and pro-
cessive processes differ in important ways. For example, one does not
investigate the subknots that could be revealed if the chain were
trimmed at two different portions of the knot. Of course, we cannot
open the chain at two (or more) different places using the uniform
closure technique3,28 because there would be four (or more) end-
points of the chain.

To simulate the distributive process, we analyzed the ideal config-
uration of the 919 knot to see if we could find the second-generation
231 knot that emerges from the first-generation 277 predecessor.

We took one representative 277 knotted subarc from each of the two
regions of the 919 that were shown to be 277 knots. The regions and
the configurations are seen in Fig. 4. We then closed each of the two
configurations in one of the closure directions that yields a 277 knot
and did our subarc analysis on these configurations. We see that both
configurations indeed contain 231 subknots. We used this proced-
ure to search for eight different second- and higher-generation pre-
decessors that did not appear as subknots in the disk matrices for
ideal configurations. In each case the distributive process, such as the
one shown in Fig. 4, revealed the predecessors as subknots of lower
order subknots.

Analysis of the subknots found in random configurations of a
given knot type. With the examples above, we have developed an
understanding of subknots arising from the classical knot
projections, from KnotPlot knots, and from ideal knots. We now
ask: ‘‘In random configurations, is there a common set of subknots
for a given knot type? Furthermore, is the set of subknots related to
the set of subknots and predecessors from our previous analysis?’’ Of
course, in the case of random configurations, we expect many
different subknots, but could there be a common set?

We generated 100,000 random equilateral polygons composed
each of 100 segments and analyzed the configurations forming eight
or nine crossing knot types that we had analyzed. We chose eight and
nine crossing knot types because they have a number of subknots/
predecessors and sufficiently large sample sizes.

Figure 4 | A procedure that reveals all second-generation predecessors. Two different subchains that form 277 knotted arcs in the ideal configuration of

the 919 knot are closed using the underlying idea of closure at infinity whereby two parallel rays are placed at the endpoints of the analyzed subchain.

Instead of extending the rays to infinity, the rays are cut as soon they leave the the convex hull of the analyzed subchain and then are closed with an

additional segment, yielding a configuration equivalent to the closure at infinity. The corresponding subchains are shown at the center of the

corresponding disk matrices. After checking that the closure produced the desired 277 knot, the polygonal chains were analyzed to determine their

subknots. Note that, in each case, the ‘‘extracted’’ 277 knot contains 231 subknots even though the 231 is not among the subknots of the ideal 919.
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We start the discussion of random conformations with an analysis
of random configurations forming the 91 knot type. The ideal sub-
knots, KnotPlot subknots, and predecessors are all 71, 51, 31, and 01

and we detected 27 configurations of 91 knots (right or left-handed).
Each of these configurations showed the presence of all of these knot
types as subknots although, as expected, a number of additional
subknots are also visible. Fig. 5 shows one of these random 91 knots
and its associated disk matrix. We see that the 71 knot occurs as a
first-generation subknot from which 51 subknots emerge and which,
in turn, give rise to 31 subknots. We also see additional knot types,
some of which have a higher minimal crossing number than the
global knot. These more complicated subknots frequently arise as
subknots in random configurations but appear for only very shorts
intervals of length and are visible only on a small total area of the disk
matrix. Furthermore, the more complicated subknots do not appear
as subknots of the KnotPlot or ideal configurations and thus are
specific to the random configurations instead of being potentially
conserved. In the great majority of the configurations of the random
non-trivial knots, we see all of the ideal subknots. For example, in
each of the 228 configurations of 81 knots, we always saw the sub-
knots 61, 41, and 01. And, in each of the 220 random configurations of
82 knots, we always saw the subknots 62, 51, 41, 31, and 01.

There are a total of 3334 samples from eight-crossing knot types
and 1451 samples from nine-crossing knot types, for a total of 4785
samples. Of these, 4697 (<98.16%) of the samples contained the ideal
subknots of all generations. When some of the ideal subknots are not
detected in the random configurations, we believe that this often is
caused by the fact that the random configurations have many edges
that pass very close to other edges. Our analysis will have difficulty
detecting all of the transitions in such situations because we only
analyze subarcs ending at vertices. Therefore, the removal of a single
segment may have the effect of changing several crossings and we can
pass directly to higher generation subknots.

While the KnotPlot subknots (90.91%) and predecessors (98.04%)
both have good agreement with the subknots of random configura-
tions, the best agreement is with the ideal subknots (98.16%). For the
random configurations of some knots types, there are only a few

cases where an ideal subknot is not present in a random configura-
tion and we can examine whether refining the image will show the
additional knot types. For example, among 228 configurations of
684 knots, we found only one configuration that did not show each
of the ideal subknots after our standard analysis. When we repeated
the analysis after dividing each segment of the same configuration
into five equal size segments, we detected the subknot.

There are, however, instances where this finer resolution did not
reveal all of the ideal subknots. The most striking case of this phe-
nomena was provided by random configurations of 816 knots, where
15 out of the 64 analyzed configurations did not contain the first-
generation 52 knot. Refinement helped in only one case but not in the
remainder of the cases. Therefore, this suggests that at least for some
alternating knots, it is possible to have configurations that do not
show all of the ideal subknots, and in particular even the ideal first-
generation subknots. We note that all 64 analyzed configurations of
the 816 knots showed the presence of the remaining first-generation
predecessors, i.e. 63, 41 and 31. Thus it is possible that the majority of
the predecessors are always present in any random configuration of a
given knot type but others may occur less frequently. On the other
hand, even if thousands of tested random configurations of some
knot type show a common set of subknots, it is possible that there are
rare configurations of this knot type that do not contain all of these
subknots. While the predecessors and subknots of ideal configura-
tions appear to be good predictors of subknots in random configura-
tions, it is an open question as to whether there even is a common set
of subknots for all configurations of a given knot type. If there is a
common set of subknots and it does not match the predecessors or
ideal configuration subknots, is there some other way to describe
them?

What can circular chain subknots tell us about protein knots?
Triangle and rectangle-shaped matrices have been used to report
the knot type of the subchains of linear chains, e.g. in the analysis
of polypeptide chains in searching for knotted and slipknotted
proteins2,3,24. In the case of more complex proteins structures form-
ing 61 and 52 knots, trimming the entire polypeptide from its natural
C-terminal-end produces non-trivial subknots 41 and 31, respectively,
whereas trimming from the N-terminal end immediately produces
unknotted subchains3. Does such a difference between directions of
trimming also occur in the case of circular knots? If so, what is the
position of an opening that would allow trimming in one direction to
produce different subknots than trimming in the other direction?
Fig. 6A shows the disk matrix for the ideal configuration of the
61 knot.

Analyzing the disk matrix of the 61 knot, we see that initial scis-
sions can have three different consequences when the knot is
trimmed in the two different directions. There are regions where
trimming from either end of an initial scission results in passages
from the 61 global knot to the 41 subknot before passing to the
unknot. These regions are indicated with a red arc near the rim of
the matrix in Fig. 6. There are other regions (green) where trimming
from either end results in a direct passage from the 61 global knot to
unknots. Finally, there are regions (blue) where trimming of one end
results in a passage to the 41 subknot whereas trimming of the other
end results in a passage to the unknot. We also indicate the location
of the representative cuts for these three categories of regions in the
configuration of this 61 knot. For a scission in each of these regions,
we computed the triangular matrix used in the analysis of knotted-
ness of linear chains such as those formed by the knotted proteins3.
One can see that one of the three categories of scissions leads to the
situation in which trimming of one end creates a 41 subknot before an
unknot is created, whereas trimming of the other end results in a
direct passage from a 61 knot to the unknot (see the right triangular
knotting matrix in Fig. 6). Note that the regions where the initial
scission followed by trimming of one end results in a 41 subknot

Figure 5 | A random 91 knot and its disk matrix. Notice the presence of

the predecessors 71, 51 and 31 as first, second, and third-generation

subknots, respectively. Notice also the presence of several more

complicated subknots, which consume a small amount of the area of the

disk matrix. For the knot types with more than 10 crossings, we use the

Dowker-Thistlethwaite notation where the leading letter (n or a) tells

whether the knot type is non-alternating or alternating, respectively, and

the knot types are indexed within the non-alternating and alternating

classes.
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whereas trimming of the other end results in unknots are placed
where the interwound regions end and the apical loops begin. For
the ideal 52 knot, there are also three different regions where initial
scissions can result in qualitatively different triangular matrices.

A comparison of the triangular matrices obtained after processive
trimming of proteins forming 61 and 52 knots (the 61 case is shown in
Fig. 6) provides deep insights into the protein structure. With respect
to subknots observed by trimming either end, proteins forming 61

and 52 knots produce triangular matrices resembling those observed
in ideal knots in which one of the terminal loops is cut so that one end
still passes through the other terminal loop. Similar conclusions
regarding the location of the polypeptide ends in these proteins have
been reached by direct analysis of the knotted protein structures3.
However, it has not yet been recognized that this particular location
of ends is required to achieve the critical property that the trimming
of one protein end leads to direct passage to trivial subknots, whereas
trimming of other end leads to passages to 41 or 31 subknots, respect-
ively, as is the case of proteins forming the 61 and 52 knots3.

Methods
The disk matrices for a given polygon are created as follows. For each open arc of the
polygon (i.e. consecutive set of edges), we create a number (either 100 or 20) of closed
polygons and determine the knot type for each of these closures. The numbers 20 and
100 correspond to the number of closure directions analyzed. To make one closure for
an open arc, we create a long line segment (designed to move well outside of the
convex hull of the original knot) and place the line segment at both of the arc’s
endpoints. We then connect the free ends of these added segments to create a closed
knot. The 20 directions correspond to the vertices of a dodecahedron. In such a case,
the knot type corresponding to each direction is weighted by 0.05 since the dodeca-

hedron is perfectly uniformly distributed. For the 100 directions, we generated a
roughly uniform set of points/directions on the unit sphere using Martin’s poly-
hedra34. We then computed the Vornoi diagram of that point set on the sphere and
weighted each direction based on the percentage of the unit sphere consumed by the
Vornoi cell containing the direction. For the ideal, KnotPlot, and random config-
urations, we used 100 closures. When we refined some of the random polygons for
closer analysis, we used 20 closures and then verified the results in the critical regions
using 100 closures.

The knot types of the closures are determined using a combination of two tech-
niques. We first use software written by one of the authors (EJR) to encode the
crossings of a projection of the polygon. Next the crossing code is simplified
(potentially) using Thistlethwaite’s unraveller program [Thistlethwaite, M. unravel-
ler. (2004) Personal communication]. We then compute the HOMFLYPT poly-
nomial35 using Ewing and Millett’s lmpoly program36. Note that the HOMFLYPT
polynomial is not a perfect knot invariant (i.e. multiple knot types can share a
common HOMFLYPT polynomial35). We look up the chiral knot types corres-
ponding to the given HOMFLYPT polynomial via a pre-computed table of polyno-
mials. Secondly, we use Thistlethwaite’s knotfind algorithm [Hoste, J. &
Thistlethwaite, M. Knotscape. (1999) Available at: http://www.math.utk.edu/,mor-
wen/knotscape.html], which generates a ‘‘canonical Dowker code’’, that we can look
up in other tables, to determine a knot type. The knotfind computation is not sensitive
to chirality but determines the exact non-chiral knot type. Combining the
HOMFLYPT and knotfind information, we can determine the exact chiral knot type
for most configurations of knot types with 16 or fewer crossings.

In this study, we analyzed ideal knots, KnotPlot knots, and random knots. The ideal
knot configurations were computed using the software Ridgerunner [Cantarella, J.,
Piatek, M. & Rawdon, E. Ridgerunner. (2012) Available at: http://www.
jasoncantarella.com/wordpress/software/ridgerunner/], a constrained gradient des-
cent algorithm12 for minimizing the ropelength9,11,37,38 of a knotted polygon. To
reduce the computation time, the ideal configurations from Ref. 12 were reduced
(using the splining algorithm splinevect [Cantarella, J. vecttools. (2012) Available at
http://www.jasoncantarella.com/wordpress/software/vecttools/]) so that their num-
ber of vertices was approximately equal to the minimum ropelength. We then used
Ridgerunner to tighten the configurations. The KnotPlot configurations are freely
available from the software KnotPlot [Scharein, R. G. KnotPlot. (1998) Available at:
http://www.knotplot.com]. The random configurations were created using a vari-
ation of the Hedgehog algorithm39. We generated 100,000 configurations with 100
edges and the knot types were determined using the techniques described in the
previous paragraph.
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