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Understanding the mechanisms underlying distributed pattern formation in brain networks and its content
driven dynamical segmentation is an area of intense study. We investigate a theoretical mechanism for
selective activation of diverse neural populations that is based on dynamically shifting cellular resonances in
functionally or structurally coupled networks. We specifically show that sub-threshold neuronal
depolarization from synaptic coupling or external input can shift neurons into and out of resonance with
specific bands of existing extracellular oscillations, and this can act as a dynamic readout mechanism during
information storage and retrieval. We find that this mechanism is robust and suggest it as a general coding
strategy that can be applied to any network with oscillatory nodes.

T
he brain forms a complex interconnected network in which spatio-temporal patterns of neuronal activity are
thought to underlie its information processing. However, basic questions remain unanswered. What aspects
of this patterning represent the information content? How do these network wide representations robustly

emerge out of the dynamical properties of individual neurons? How are distributed features dynamically bound
together, while at the same time segmented out from the rest of the network, to form a coherent representation?
These questions not only pertain to the brain, but also to the formation of distributed representations in any
network. In terms of neuronal processing, many proposed coding schemes are based on either the firing rate or
the temporal structure of spikes in response to a stimulus1–3. Correlations within these activity patterns lead to
network rewiring, where the connections between neurons encoding the same functional pattern are strength-
ened. However, it is unclear how these regions of enhanced connectivity or biased input can lead to virtually
instantaneous, dynamically evolving, and robust separation of activity patterns, which in turn encode for func-
tionally diverse information content, while embedded within the same interconnected group of neurons.

Single neurons integrate input to generate action potentials, however they can also display damped sub-
threshold oscillations giving them complex dynamics and sensitivity to temporal patterns of input. The ability
to resonate at particular frequencies has been observed in many experimental preparations4,5. The natural
frequency has been shown to be voltage dependent and it can shift at both depolarized and hyperpolarized
membrane potentials6–8. This phenomenon was reported in various cell populations such as hippocampal pyr-
amidal neurons6,7 and pyramidal cells of the amygdala olfactory cortex8. In the case of hippocampal pyramidal
cells, the underlying ionic mechanisms are related to a slow hyperpolarization-activated cation current (often
referred to as Ih current), a slow activating potassium current (so called M-current as it acts through muscarinic
receptors), and an instantaneously activating, inwardly rectifying potassium current. Interestingly, these mechan-
isms are activated differentially when a cell is hyperpolarized (Ih is activated) or depolarized (IM is activated). In all
cases, however, voltage gated sodium channels played a central role, as application of tetrodotoxin (TTX)
abolished the sub-threshold oscillations6,8. The observed resonance shifts range from a couple of Hz to more
then 10 Hz.

At the same time oscillations of large neuronal populations have been observed with local field potentials (LFP)
or EEG measurements9–11, and these oscillations are classified into discrete frequency bands spanning single to
tens of Hertz. These brain rhythms have been implicated in various cognitive functions12,13. However, the
influence of these oscillations on individual neuronal activity patterns or network wide activity has remained
unclear14. Sub-threshold oscillatory input through synaptic or ephaptic coupling provides feedback between brain
oscillations in the local field potential and individual neurons15. This idea is experimentally supported by findings
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that oscillations in the visual system can affect downstream proces-
sing, as seen in the phase locking of neurons in the LGN to the 50 Hz
oscillations in the input received from the retina16.

We propose a novel mechanism that links the voltage-dependent
resonance frequency shifts of individual neurons with the large scale
oscillatory rhythms observed in the brain to selectively activate neur-
onal ensembles. We hypothesize that sub-threshold depolarization
from synaptic coupling or external input can shift neurons into and
out of resonance with specific bands of extracellular oscillations and
this resonance shift can act as a mechanism to selectively activate
functionally diverse neural populations. Thus a given oscillatory
band acts as a readout carrier for neurons that are selectively depo-
larized and shifts their resonance frequency into that band. We
investigate this mechanism for memory storage and retrieval but it
could also pertain to rapid attention switching17–19. We show that this
is a robust mechanism that works within broadly defined known
biological constraints14,20 and can explain experimentally observed
neuronal dynamics during the storage and retrieval processes21–23. It
also provides a mechanism for dynamic signal separation within a
network that can change rapidly as a function of external input and
network structure, or both. It provides flexibility and easily combines
patterns of external stimuli with intrinsic structure for emergent
readout of activity patterns. The proposed mechanism is not limited

to neuronal networks but it is a universal dynamical mechanism that
can be more generally applied to other networks. As we show below,
the only two required features are that the network is composed of
oscillatory nodes whose natural frequencies vary as a function of the
input magnitude and a readout frequency.

Results
To explore this pattern separation mechanism in the brain context,
we investigated maximally reduced neuronal networks fitting the
above criteria. Namely, we constructed networks composed of 400
Resonate-and-Fire neurons24. These neurons are essentially damped
oscillators that emit an action potential when the voltage reaches a
threshold. In addition, the neurons have a current dependent res-
onance frequency and are driven by a weak (sub-threshold) external
oscillatory current (see Methods).

We impose the experimentally observed voltage dependent res-
onance frequency shift6–8 by Eq. (2), (see methods) and observe the
resonance phenomena as we vary the driving frequency of the sub-
threshold oscillatory input current (Fig. 1). The firing frequency of
neurons preferentially increases when the driving frequency matches
the resonance frequency of the neuron. The cells shift their resonance
in response to the applied current input (Fig. 1a). In a network, this
additional current input to a single neuron can arise from co-activa-
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Figure 1 | Intrinsic resonance frequency shifts is based on current input and allows for selective activation of regions of a network. (a) Single RF neuron

firing frequency response to varying additional external current (Isub) and driving frequency of sub-threshold current input. (b) The average resonance

frequency v in a network with (blue) and without (black) resonance frequency shift (d 5 40 and d 5 0, respectively). A sub-network (dashed lines)

with additional coupling from synaptic multiplier (s 5 4), has a shifted average resonance frequency from neurons outside of the heterogeneity

(solid line). (c) Resonance curves of network firing across driving frequencies, shows a shift in resonance for the network heterogeneity (s 5 4). For

non-oscillatory current input (A 5 0), resonance is abolished. (d) Example raster plot of network activity for sub-threshold driving frequency of 20 Hz. A

subset of the network, Neurons 1–200, have an enhanced coupling multiplier of s5 4 and are selectively activated by the sub-threshold oscillatory input.
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tion of the neurons having higher synaptic coupling. We refer to
regions of the network containing additional synaptic connectivity
as network heterogeneities. Neurons within network heterogeneities
receive additional sub-threshold current input from their synaptic
connections. This current shifts the resonance frequencies of neurons
within the heterogeneity to higher frequencies (Fig. 1b), separating
the response frequencies of the heterogeneity from rest of the network
(Fig. 1c), and thus allowing for selective activation of the heterogen-
eity for matching driving frequencies (Fig. 1d). Thus, even though
all neurons in the network are driven with the same sub-threshold
oscillatory input current representing ongoing brain rhythms, the
resonance frequency shift allows higher connectivity regions to sepa-
rate out from the rest of network in their firing rate profiles.

Figure 1c depicts the network wide resonance curves (i.e. mean
firing frequency within the given neural population) when there is no
cellular resonance frequency shift (d 5 0) and with current depend-
ent resonance frequency shift (d 5 40) for two different coupling
strengths (coupling multipliers s 5 1 and s 5 4, please refer to
methods section below). We observe a significant shift of the network
response towards higher driving frequencies with increased coupling
strength, when the neuronal resonance frequency is current-depend-
ent. At the same time the shape of the resonance curves changes
significantly, and can be understood by considering the distribution
of resonance frequencies in the network. The response of the network
region with lower coupling is narrower but taller indicating, on one
hand, higher response specificity to the frequency of the driving
oscillation, and at the same time an increased network response
magnitude in terms of an elevated mean network firing frequency.
This is due to the fact the variance in the resonance frequencies of the
network of neurons increases significantly with network coupling
strength (error bars on Fig. 1b) because of the higher variability in
the total input the neurons receive. This in turn causes some neurons
to be in resonance with the driving current while others remain out of
resonance, which makes the network response as a whole change
gradually and achieve lower overall values. The network achieves
maximal response when the driving frequency matches the res-
onance frequency of most neurons in the network. This variation
in the resonance frequencies of neurons in the network also explains
the asymmetry in the resonance peak. When the driving frequency is
high there are fewer neurons that resonate with the driving oscillat-
ory current (note the widest distribution of resonance frequencies is
at the falling phase of the network resonance curve, Fig. 1b). Their
number quickly increases as the driving frequency is lowered. For
intermediate values of driving frequency there is a finite pool of
neurons that resonate and activate the network-wide response.

This separation mechanism is robust across a wide range of para-
meters. We quantified the separation mechanism with two metrics,
the peak-to-peak distance DP and the resonance firing frequency
difference DF (please refer to Figure 1c). We explored the separation
of network activation for various network connectivity strengths as a
function of the network topology, strength and frequency of external
oscillatory current, noise level and magnitude of activity dependent
resonance shift. The network topology is varied using the small world
network paradigm25, with additional network heterogeneities added
in the coupling weight within neuronal subgroups of the network.

To better understand the workings of the proposed mechanism,
we quantify the signal separation, bothDP andDF, for various system
parameters (Fig. 2). To investigate the sole effect of synaptic strength
on signal separation for different simulation parameters, we elimi-
nated the connections between the heterogeneity and the rest of the
network, which we refer to as disconnected networks. For both met-
rics (DP and DF), values above zero denote significant separation; all
error bars represent 1 standard error of the mean, and all means are
averaged over 4 simulations. As expected, the peak-to-peak separa-
tion increases with larger values of the resonance frequency shift d
(not shown). Both measures report separations of several Hz for

varying values of d. Results presented in Figure 2 are for disconnected
networks, therefore the effects on separation are due to disparate
connectivity strengths alone. The separation mechanism is not lim-
ited to particular resonance frequencies of the neurons. However, the
measures report weaker separation at higher resonance frequencies
(Fig. 2a). The peak-to-peak distance increases while the resonance
firing frequency difference decreases (Fig. 2b, c) for higher coupling
weight within the network heterogeneity or higher driving noise. The
first is due to the fact that both of these quantities provide additional
activity levels (or current) to recipient neurons increasingly shifting
their resonant frequency away from the baseline. However since
neurons can have a variable number of inputs, stronger coupling
increases the spread of instantaneous resonance frequencies, which
widens but reduces the height of the resonance peak. We have also
investigated the size of the external oscillatory current required to
observe signal separation. We report its magnitude (Fig. 2d) as a ratio
to a minimal constant threshold current needed to generate a spike.
Robust signal separation appears for oscillatory amplitude as low as
0.1 of the threshold current, well within those observed experiment-
ally15,26 (Fig. 2d).

We then investigated how the signal separation changes for two
interconnected regions as a function of the network topology and the
number of connections (Fig. 3). We vary the network topology from
local to random coupling by changing the connection rewiring prob-
ability25. We find that this separation mechanism is effective across
various network connectivity parameters. Both separation measures
are only marginally influenced by the rewiring probability, showing a
small decrease of separation for increasingly random networks. This
is due to the fact that for more random networks there are relatively
fewer connections within the functional subgroups while the sub-
groups are more tightly interconnected. At the same time, peak-to-
peak separation increases for a higher radius of connectivity, as it
provides additional input variance between the neurons within the
heterogeneity and outside of it.

The above results indicate that we see a robust separation in the
frequency response of the neurons forming the network heterogen-
eity from the rest of the network. It has been shown that hippocampal
memory formation both in animals and humans is accompanied by
increased power in the theta band oscillation as well as phase coher-
ence of neuronal activity with oscillations at that frequency21–23. We
hypothesize that the experimentally observed increase in power, for
example of theta during memory consolidation, as well as the
increased phase coherence of neuronal activities with that band,
can be explained by our resonance readout mechanism, as it is well
established that the resonating oscillators lock to driving oscillatory
signals27. To that effect we investigated the difference in the power
spectrum of the average activity within and outside of network het-
erogeneities. We compared the power spectrum of the average activ-
ity within the network heterogeneity to the rest of the network and
found a notable increase in power when the driving oscillation is in
resonance with the network heterogeneity (Fig. 4a). To better under-
stand the increase of power around the driving frequency, we mea-
sured changes in the phase locking between the neurons within and
outside of the heterogeneity as a function of driving frequency. To
quantify the phase locking we computed the instantaneous phase of
the network activity. Using the phase difference between the network
activity and the sub-threshold driving oscillation, we calculated the
Mean Phase Coherence (MPC)28, and found a substantial increase in
mean phase coherence between the driving oscillation and the het-
erogeneity at its resonant peak (Fig. 4b). Here we depicted the mean
phase coherence as a function of the driving frequency for the het-
erogeneity (blue line), for the rest of the network (green line), and for
the difference between the two (black line). We observe that the mean
phase coherence between the network firing and the driving oscil-
lation is relatively highest at the raising phase of the network res-
onance curve peaks for both the heterogeneity and the rest of the

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8851 | DOI: 10.1038/srep08851 3



network. Thus the proposed resonance frequency shift mechanism
separates out the cell activities within a network heterogeneity for a
significant range of driving frequencies in both their firing rate and
phase coherence with ongoing oscillations. It is interesting to note

that the mean phase coherence drops rapidly on the falling phase of
the resonance curve. This again can be attributed to the large het-
erogeneity in cellular resonance frequencies, with relatively few neu-
rons driving the network-wide response.
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We have shown that current dependent resonance shifts can sepa-
rate out regions of a network with higher coupling in both their firing
frequency and phase locking to sub-threshold oscillatory input. We
then investigated the response time of the network to new patterns of
input in order to understand how long the network takes to form
separated representations in response to shifting resonances. Here
the timescale is set by the frequency of the oscillatory input and can
potentially be directly compared with experimental findings mea-
suring response time to the incoming stimulus29–31. We investigated
the timescale of pattern formation by observing the response time
required to reach the significantly elevated firing rates observed in
the resonance curves. Specifically, to probe this onset time of
enhanced resonant firing, we applied an additional sub-threshold
current input during the simulation and measured the time delay
between this input and the significant change (see methods) in neur-
onal firing rate (solid black lines in Fig. 5). As before, we simulated
the sub-networks having two strengths of coupling constants s. We
found that the response time critically depends on the relative posi-
tion (in frequency space) of driving frequency with respect to net-
work resonant curve (Fig. 5a). The network response time to the
external input on the rising portion of the resonance curve (Fig. 5b)
is significantly faster than on the falling portions (Fig. 5c,d). The
shifted resonance curve of the heterogeneity (high s) relative to
the rest of the network (low s) results in the rise and decline portions
of their resonance curves to occur for different driving frequencies.
Therefore, we observe that for driving frequencies where the res-
onance curves overlap (Fig. 5c) and the neurons in the heterogeneity
are on the upward sloping portion of their resonance and the neu-
rons outside of the heterogeneity are on the downward portion, the
response times are widely different. (Fig. 5c inset).

This variation in the timescale for response times can be explained
by the behavior of the network’s mean phase coherence at different
driving frequencies, and by the resonance frequency distribution.
When the mean phase coherence is large and a significant number
of neurons are active (i.e. they are in resonance), even a small per-
turbation in the current input drives a rapid network response, as the
active neurons synchronously respond to perturbation. Here the
response happens within a single cycle of the driving oscillation.
However, if the neurons are largely desynchronized the rapid res-
ponse to the current perturbation is not observed and the slow drift in
the network response can be attributed to slow changes in the average
cellular resonance frequencies due to the current input. This large

variation in the response times potentially provides an additional
mechanism of signal separation.

We have shown a potential mechanism for ensemble activation in
simplified excitatory only networks. However, inhibition can poten-
tially play an important role in further separating the activity of the
functionally disparate network regions. To illustrate this we formed
and coupled an additional network of 400 inhibitory Integrate-
and-Fire32 neurons to the existing excitatory network such that the
activity of the heterogeneity and rest of the network are mutually
inhibitory. We varied the strength of the inhibitory coupling and
found that inhibition enhances the separation between the activated
patterns (Fig. 6). This effect is not surprising as the inhibitory neu-
rons are activated by the corresponding resonating excitatory popu-
lation and inhibit other excitatory neurons, driving their resonance
frequencies away from the driving frequency at the same time. To
quantify the strength of inhibition in relation to the strength of
excitation, we show the separation between activated patterns as a
function of the ratio of the mean total inhibitory to excitatory inputs
that the cells receive over time. The ratio of one corresponds to a
balanced network (Fig. 6).

Inhibition can play additional, critical role within this framework.
For the resonance frequency shift mechanism to be a general coding
strategy, it has to be successfully applied to separate multiple com-
peting neuronal representations. We show that separate heterogene-
ities can be selectively activated and dynamically switched through
the use of targeted lateral inhibition (see methods). Excitatory neu-
rons within competing heterogeneities mutually inhibit each other so
that activation of one heterogeneity shifts the resonance of another
heterogeneity away from the frequency of driving oscillation. Figure 7
shows an example network with two heterogeneities of identically
enhanced synaptic coupling (s 5 4). In this case, the heterogeneities
do not overlap and share basic excitatory connectivity (s 5 1) bet-
ween each other and across the rest of the network. In addition, there
are targeted inhibitory connections originating at one heterogeneity
and targeting neurons in the other heterogeneity. Sub-threshold input
applied to a subset of neurons within each heterogeneity selectively
enhances the firing rate in that heterogeneity, but no enhanced firing
occurs when input is applied to regions of the network outside
of either heterogeneity (Fig. 7a,b). Thus, the heterogeneities can be
selectively and dynamically activated. Similar strategy (targeted
inhibition) could possibly be applied to multiple and overlapping
representations.
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The resonance shift mechanism not only selectively activates com-
peting heterogeneities, but also dynamically controls switching the
activation between heterogeneities. Activation of one heterogeneity
blocks the activation of the other in a winner takes all fashion
(Fig. 7c). We change the fraction of stimulated neurons (i.e. the
neurons are driven with additional sub-threshold dc current) in
heterogeneity 2, while the number of stimulated neurons in hetero-
geneity 1 remains constant (Fig. 7c,d). The heterogeneity 1 remains
activated without significant change until the number of stimulated
neurons in heterogeneity 2 exceeds that of heterogeneity 1. At that
time there is a rapid switch in activation between the heterogeneities
as heterogeneity 1 completely deactivates while heterogeneity 2 is
fully activated. Thus, resonance shifts facilitated by targeted inhib-
itory coupling can separate network activity patterns and dynamically
switch between activated network regions through sub-threshold
input bias. Finally, in Figure 7d, we show that these results are robust
against independent network realizations.

Finally, we show that the neuronal representation can also be dis-
tributed throughout the network and the resonance frequency shift can

act as a feature binding mechanism for such a distributed representa-
tion. We illustrate how such a representation can be formed based on
external input and easily retrieved based on intrinsic network dynamics
(Fig. 8). Initially, for a network with no additional coupling (i.e. no
stored memory), a small additional sub-threshold current bias is given
to a population of neurons spatially distributed in the network. The
source of this additional current could be activation from sensory
input. This current shifts the resonance frequency of neurons receiv-
ing the additional current into resonance with the driving oscillation
(Fig. 8a). The distributed population is activated, forming a functionally
correlated ensemble. Learning rules can strengthen these connections
creating a structural heterogeneity that can later be reactivated with the
same resonance frequency shift mechanism when no biasing current is
present. We heuristically show the effect by artificially strengthening
the connectivity between the same neuronal populations (Fig. 8b).

Discussion
It has long been assumed that input from our sensory environment
affects neuronal activity, which alters the strength of the synaptic
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connections between neurons, forming an interactive feedback
between network structure and its activity patterns. However, little
is known about how large scale network activity results from mod-
ifications in neuronal coupling strength and network connectivity, or
the role of oscillations in information processing. Here we provide a
robust mechanism for spatial temporal pattern formation and sepa-
ration based on the interaction of resonance phenomena in indi-
vidual neurons, large scale oscillatory rhythms, and heterogeneities
in network connectivity.

We demonstrated that regions of higher coupling can provide
additional current to neurons within a network heterogeneity, shift-
ing their resonance curves and leading to differential activation prop-
erties in their firing frequency and phase locking with dynamically
changing sub-threshold input. In addition, the fast response times of
the model networks to dynamically shifting resonances is similar to
the timescales for enhanced firing frequencies observed in the brain
during pattern identification tasks29–31.

These networks do not need to be limited to excitatory connec-
tions only; in fact the separation mechanism is enhanced by inter-
actions with inhibitory neurons, which can allow for separation and
switched between multiple representations. The described mech-
anism works well within known biological constraints of the
brain14,15 and reproduces a number of experimental findings in terms
of neuronal dynamics during memory retrieval21–23.

Until now two, to some extent competing, population coding
strategies have been proposed: rate33 and spike-timing (synchrony)
dependent9,34,35 coding mechanisms. Neuronal activity patterns indi-
cative of both of these schemes have been observed. Rate-coding is
generally easy to explain and intuitive to understand as greater supra-
threshold input can provide higher frequency rates. While under-
standing of the spike-timing dependent mechanisms underlying the
formation of content dependent, network wide, brief, and synchron-
ous population bursts remains elusive. It is also unclear how rate
coding can provide the content dependent, dynamic pattern separa-
tion36 needed for brain information processing.

The mechanism that we propose, based on sub-threshold input
dependent resonance frequency shift, provides the theoretical solu-
tion to these inconsistencies and, furthermore, it links the two coding

mechanisms together. Neurons that are in resonance with a given
input oscillation will fire with higher frequency rates and also will
phase lock to the oscillation, generating increased synchrony among
themselves. Thus an input dependent resonance frequency shift pro-
vides means for dynamic content dependent grouping in frequency
as well as phase domains.

While it clearly remains to be seen whether this mechanism plays a
role in brain’s information processing, in general it is not limited to
biological neuronal networks but it provides a universal dynamical
mechanism for information processing that can be applied to any
network with oscillatory nodes.

Finally, it is worth noting that we used a linear dependence of
resonant frequency on input. There are indications that this depend-
ence could be non-linear due to type of transition from spiking to
non-spiking neuronal state, specifically for type II neuronal excit-
ability (subcritical Hopf bifurcation)37–39.

Methods
Network of Modified Resonate-and-Fire Neurons. The dynamics of each neuron is
described by Resonate-and-Fire Neurons24 modified with a current dependent
resonance frequency with the following equations:

dxi

dt
~bxi tð Þ{vi tð Þyi tð ÞzIi

ext tð Þ ð1Þ

dyi

dt
~vi tð Þxi tð Þ{byi tð Þ

where

vi tð Þ~vi
ozdIi

s tð Þ ð2Þ

and

Ii
s tz1ð Þ~ aIi

s tð ÞzIi
ext

1za
ð3Þ

Here xi is the internal current and y is the voltage of ith neuron in the network andvi

is the resonance frequency (or eigenfrequency) of the ith neuron. It shifts from its
intrinsic value vo

i and is proportional to the current input Is
i, with proportionality

constant d (Eq. (2)). Is
i is a slowly changing function (a 5 105) of the current input

term Iext
i in Eq. (1), which in turn is defined as the sum of the synaptic coupling and

sub-threshold oscillatory input current:

Ii
ext tð Þ~sCsyn

X
j
SijIj

syn tð ÞzIinput ð4Þ

where

Iinput(t)~A sin(2pft)zIsub ð5Þ

Here Csyn is the strength of synaptic coupling, s is an additional weight multiplier to
represent heterogeneities in network connectivity strength, Sij is the adjacency matrix,
and Isyn

j is excitatory post-synaptic current input. We model Isyn
j with a double expo-

nential pulse that lasts approximately 15 ms. Eq. (5) describes the sub-threshold
oscillatory input current, where A is the amplitude of oscillations, f is the driving
frequency, and Isub is sub-threshold external current. When the voltage reaches
threshold, the current and voltage variables are reset to 0, and the neuron cannot receive
input for a 5 ms refractory period. The neurons are additionally driven by noise; we set
the voltage variable yi above threshold with a given probability pN. For all simulations
unless otherwise stated, the parameters are b 5 21, vo 5 100 (corresponds to
,16 Hz), d 5 40, s 5 4, Csyn 5 5, A 5 3, Isub 5 10, a 5 105. Eq. (1) is integrated using
Euler’s method, with a time step of h 5 1025. Four hundred neurons are connected into
a 1D sparsely connected networks using the Small-World25 framework, with connec-
tivity radius R 5 3 and rewiring probability p 5 0.1 unless otherwise stated.

Modeling the Inhibitory Network. To study the potential impact of inhibitory
neurons on the proposed pattern separation mechanism, we coupled an inhibitory
network of 400 integrate-and-fire32 neurons to the excitatory resonate-and-fire
networks. For simplicity we chose to use the integrate-and-fire model, where the
dynamics of inhibitory neurons are given by:

dvk

dt
~{RvkzCsyn

X
j
SkjI

j
syn tð Þ ð6Þ

Where vk is the voltage of the kth inhibitory neuron, R is the membrane leak
constant, Csyn is the strength of synaptic coupling, Skj is the adjacency matrix between
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Figure 6 | Firing rate difference DF (dashed line) and the peak-to-peak
distance DP (solid line) as a function of inhibitory coupling strength.
Inhibitory network strength is shown as a ratio of the inhibitory synaptic

input to excitatory synaptic input (see methods). The separation

mechanism is enhanced for networks in the balanced state (Inhib/Excit

input ratio 5 1), and also for larger inhibitory to excitatory input ratios,

even with weaker resonance frequency shift (results shown are for d 5 10).

Values for Inhib/Excit input ratio are given for the peak of the resonance

curve (18 Hz driving frequency).
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the kth inhibitory neurons and the jth other neurons in the network (where j spans
both excitatory and inhibitory neurons) and Isyn

j is the input current received. All
parameters are the same as for the excitatory network with the following excep-
tions. Csyn is negative for inhibitory synapses. Network connectivity between
inhibitory neurons is random, excitatory to inhibitory connections are local, and
inhibitory to excitatory connections target randomly the whole network except the
heterogeneity itself. To identify to what degree the excitation and inhibition are
balanced in the network, we quantify the inhibitory network strength as a ratio of
the average inhibitory synaptic input to average excitatory synaptic input that
excitatory neurons receive integrated over a 3 second time window of the
simulation.

Targeted Inhibition. For the simulations on dynamic switching between competing
heterogeneities, the effect of inhibition was modeled with direct, targeted inhibitory
connectivity between the cells belonging to different heterogeneities. That is, all

neurons within one heterogeneity had weak, targeted inhibitory connections, of
strength Csyn 5 2.5, to all cells within the second heterogeneity.

Calculation of Phase and Mean Phase Coherence. We created continuous signals of
the network activity within and outside of the heterogeneity, by collapsing all spike
trains within given region into one aggregate spike train and convolving each signal
with a Gaussian function of 10 millisecond width. To quantify the phase locking we
computed the instantaneous phases of the network activity and the sub-threshold
oscillatory input using the equation:

w tð Þ~ arctan
~s tð Þ
s tð Þ

� �
ð7Þ

where the instantaneous phase w(t) for each signal is found using the Hilbert
transform ~s tð Þ of the signal s(t) defined as:
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Figure 7 | Resonance Frequency shift mechanism can selectively activate multiple competing heterogeneities through lateral inhibition. (a) Example

raster plot shows selective switching between heterogeneities for a driving frequency of 25.5 Hz. Neurons with IDs 50 to 150 belong to one heterogeneity,

while neurons with IDs 250 to 350 are in a second heterogeneity. Between 5 and 15 seconds of the simulation heterogeneity 1 is shifted into resonance with

sub-threshold input applied a randomly chosen subset of 50% of neurons in that heterogeneity. Similarly, Heterogeneity 2 is shifted into resonance

with sub-threshold input, between 20 and 30 seconds of the simulation. As a control, a region outside of both heterogeneities (IDs 150 to 250) receives

identical sub-threshold input between 35 and 45 seconds in the simulation, and results in no enhanced firing rate. (b) Corresponding firing rate responses

of regions of the network to sub-threshold input shows multiple heterogeneities can be selectively activated. (c) Targeted inhibition can dynamically and

rapidly switch activation between heterogeneities. Heterogeneity 1 is activated by sub-threshold stimulation of 50% of neurons belonging to that

heterogeneity; the x-axis denotes the percentage of stimulated cells in second heterogeneity. The activation of heterogeneities switches rapidly as number

of stimulated neurons in heterogeneity 2 grows. (d) Same as (c) averaged over four network representations, and error bars represent 1 standard error of

the mean. Example shown for driving frequency of 21.5 Hz.
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~s tð Þ~ 1
p

p:v:
ðz?

{?

s tð Þ
t{t

dt ð8Þ

The p.v. denotes the Cauchy principal value. The Mean Phase Coherence (MPC) is
given by:

MPC~
1
N

XN{1

j~0

eiDw jDtð Þ

�����
����� ð9Þ

where Dw is the phase difference between the instantaneous phase of the network
activity signal and the instantaneous phase of the sub-threshold oscillatory input
current, N is the number of timesteps in the simulation, and Dt is the step size.

Calculation of Firing Rate Response Time. Neurons were driven with a
subthreshold oscillatory input with constant frequency and given an additional
subthreshold current step 10 seconds into the simulation to shift their resonance. To
quantify the onset of firing, we calculated the average firing rate over a moving time
window of 500 ms. Similar results were observed for 250 and 750 ms time-windows.
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