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An infinite three dimensional (3D) crystal can be constructed by an infinite number of parallel 2D (hkl)
crystal planes (CPs) coupled to each other. Based on lattice model Hamiltonian with the hopping between
the nearest neighbor (1NN) CPs and all possible neighbor hoppings within each CP, we analytically prove
that a (hkl) cut crystal will not accommodate any surface states if the original infinite crystal has the
reflection symmetry which results in the forward transfer matrix F to be equal to the backward one B, named
as F-B dynamical symmetry. We also study the effect of the longer range couplings among the nNN (n . 1)
CPs and surface relaxation on our conclusion and find that the small perturbation from both factors has no
effect on our conclusion based on the perturbation theory. Thus our model may have the potential for
studying surface states in some cut crystals with low-index surfaces. Our result may be helpful to visually
predict which cutting direction in some non-topological crystals is unfavorable to generate surface states.

E
dge/surface and interface states for 3D and 2D crystals, possessing some novel physical properties, have
been attracting considerable attention in recent decades. Many interesting and prominent physical phe-
nomena are tightly related to the existence of edge or surface states, such as quantum Hall effect1,2, quantum

spin Hall effect3–6, topological insulator (TI)7–12, topological superconductor (TSC)13–18 and topological Anderson
insulator (TAI)19,20. Gapless edge or surface states that exist in TIs result from the spin-orbit coupling (SOC),
which is highly attractive in recent studies. Besides the interests in the topological states, the study of surface states
emerging in some crystals, such as ferroelectric ABO3 crystals21 and some semiconductors (i.e., Si, Ge), has also
been focused on for a long time due to their potential applications. The presence of surface states provides a low
dimensional (LD) surface band to be filled with some mobile electrons. If the surface band is partially filled, the
mobile electrons in the surface band can strongly couple with the surface softened phonon modes, which may
result in the surface reconstruction such as Si and Ge (111) surfaces22,23. Therefore, if one could have a near-perfect
surface with the small relaxation, it would be better to find an appropriate direction to cut the crystal and expect
that no surface states emerge. Some ab initio calculations for ABO3 Perovskite (001) surfaces have shown that
there are no surface states and the surface relaxations are small24,25. Existence/absence of surface states may greatly
change surface physics properties. Thus the study of surface states in such non-topological insulators and
semiconductors as well as semi-metals (i.e., graphene) is quite important due to their significant applications.
Surface states created in such semiconductors and insulators can also induce some new physical phenomena. As is
well known, the electric conduction along domain surfaces and domain walls in ferroelectric materials has
recently attracted intense studies21,26 due to the possibility of creating and controlling some nano-scale 1D/2D
conductive paths in wide band gap insulators. For many of them, the SOC does not play a key role and can be
negligible. It is also shown that the existence/absence of surface states is sensitive to the cutting surfaces.
Theoretical studies have reported the existence/absence of surface states based on some simple models with a
few electron modes (orbits) per unit cell and the 1NN and/or 2NN hopping27–29. We would extend the model to be
more general and closer to some real materials that have no strong SOC and/or strong correlation effect. For
experimentalists, it would be useful if there is an intuition tool that can qualitatively tell which cutting direction
can be unfavorable or favorable for generating surface states. This work may give insight into the underlying
relationship between the existence/absence of surface states and the crystal symmetry. We will start from a general
model Hamiltonian at the level of single-particle approximation. In the following, we will prove that there should
not be any surface states in (hkl) cut crystals with the hopping between the 1NN CPs when the original infinite
crystal has the reflection symmetry for every (hkl) CP which means the forward hopping matrix F to be equal to
the backward one B (F 5 B). For the conventional materials without SOC, if the structure arrangement of all
parallel crystal planes has the reflection symmetry, it does satisfy the dynamical symmetry F 5 B.
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As is well known, the strong 2NN coupling is favorable to the
existence of surface states. However, for some crystal families such
as some conventional insulators or semiconductors with negligible
SOC as well as semi-metal (i.e., graphene), the 1NN coupling can be
dominant if the Miller index (hkl) of the cutting surface is low. But
the 2NN and even much longer range couplings can be compatible
with (even larger than) the 1NN one for some materials with high-
index (hkl) surfaces. In this paper, we will prove a conclusion (‘‘the-
orem’’) for the model with the hopping between the 1NN CPs.
However, the nNN (n . 1) hopping among CPs is able to result in
the presence of surface states, which we will discuss in the later
section, and the surface decoration may be a good way to manipulate
surface states. Based on the perturbation theory, we further dem-
onstrate that the weak longer range hopping and small surface
relaxation have no effect on our conclusion.

Results
Model Hamiltonian. In general, an infinite 3D crystal can be
described by an infinite number of parallel 2D CPs which are
periodically arranged one by one with coupling. The direction of
CPs can be denoted by Miller index (hkl) where h, k and l can be
arbitrary integers. A semi-infinite crystal with the (hkl) cutting
surface is called as the (hkl) cut crystal. Firstly we only take into
account the model with the hopping between the 1NN CPs, where
all possible neighbor hoppings within each CP are included. It would
be a reasonable model to some crystals with low-index surfaces
where the coupling between the 1NN CPs can be dominant and
the couplings among the nNN (n . 1) CPs are much weaker than
that between the 1NN CPs. For a semi-infinite crystal, its each CP is
still a crystal with the lower dimensionality. Thus, the Fourier
transformation can be applied to each CP since the wave vector

I
kjj

within each CP is a good quantum number. Taking the diagonal
representation of the Hamiltonian for each CP, the effective
Hamiltonian can be described as follows:

H~
X

i§1
Yz

i (Hni|niYizFni|niz1Yiz1zBni|ni{1Yi{1), ð1Þ

whereYT
i ~(y

(1)
i (

I
kjj), y

(2)
i (

I
kjj), � � � , y

(ni)
i (

I
kjj)) and fy(a)

i (
I
kjj) : a~

1,2, � � � ,nig is the second quantized Fermionic wave function of the
ath electron mode in the ith crystal plane. Fni|nj (Bni|nj ) represents the
ni 3 nj forward (backward) hopping matrix from the plane Pi to its
1NN CP Pi11(Pi21) and (ni,nj) can be any finite positive integers.
Hni|ni ~ diagfv1(

I
kjj), v2(

I
kjj), � � � , vni (

I
kjj)g and the boundary

condition is {Yi 5 0 : i , 1} From now on, we omit the symbol
I
kjj

for simplicity. The above Hamiltonian is general and each unit cell of
every CP contains many atoms (and maybe different) and each atom
can also contribute many different atomic orbits. Thus the model
Hamiltonian is reliable for some crystals with low-index surfaces.
The conclusion is phrased as follows:

Conclusion (Theorem). Based on the above model Hamiltonian
with the hopping between the 1NN CPs and all possible neighbor
hoppings within each CP, any low index (hkl) cut crystal with
negligible SOC will not allow any surface states if the original
infinite crystal has the reflection symmetry for every (hkl) CP.

The above conclusion also covers the case of 2D/1D crystals, in
which the ‘‘surface’’ represents the atomic chain/point. In our fol-
lowing demonstration, the transfer matrix approach30,31 is applied.
The crystals with the reflection symmetry are only one of two types:
Type I: ‘‘...-P-P-P-P-...’’ in Fig. 1a and Type II: ‘‘...-P-Q-P-Q-...’’ in
Fig. 1b where P and Q represent CPs. The same P (Q) represents
exactly the same CP while Q ? P means that P and Q are different
CPs. The bar ‘‘-’’ roughly describes the distance between the 1NN
CPs. The same ‘‘-’’ means the same distance. Since Type II can be
transformed into Type I by simple mathematical calculations, thus

we at first concentrate our attention on the proof of Type I and then
turn back to Type II.

Before presenting the proof of the above conclusion, we provide a
definition of ‘‘surface state’’ at first. Surface states such that they
propagate along the direction of the boundary surface and their
amplitudes decay exponentially in distance normal to the boundary
surface. In terms of the transfer matrix language, the surface state is
defined by the following decay relation:

Yiz1=Yij j~c~e{ba
v1,

aw0, bw0, i§1,

(
ð2Þ

where b is a decay rate and a is the distance between the 1NN CPs.
When c 5 1 (b 5 0), it corresponds to the extended mode and
must associate with the bulk state. Furthermore, since our model
Hamiltonian is general, it also includes some particular case that
can consist of two decoupled sub-lattices A and B. Then Hamil-
tonian H can be decomposed into two decoupled parts: H 5 HA 1

HB Meanwhile we also assume that the sub-lattice B is not only
decoupled from A HAB 5 0 but it also has no coupling among
CPs. Then we have

HB~
P

i§1 Y
z
i,BHnB|nBYi,B,

HA~
P

i§1 Y
z
i,AHnA|nAYi,A

zYz
i,AFnA|nAYiz1,AzYz

i,ABnA|nAYi{1,A:

8><
>: ð3Þ

Thus fYi,B(
I
kjj) : i§1g are localized in the ith CP and have no pro-

pagation among CPs. Such states, even like fy(j)
1,B(

I
kjj)=0,

y
(j)
i,B(

I
kjj)~0 : iw1g, should be excluded from surface states. Here

we focus on surface states such that their amplitudes decay exponen-
tially in distance from the boundary plane.

Proof for Type I. For the simplest case, each CP has only single
electron mode that corresponds to one atomic orbit per unit cell.
At the level of the 1NN hopping approximation, the study of surface
states in this case is exactly the same as that of edge states in the semi-
infinite 1D single orbit atomic chain. As is well known, no edge states
exist in the semi-infinite 1D atomic chain for both Type I and II when
the forward hopping constant equals to the backward one31. Thus, we
will take into account the case that each P contains n (.1) electron
modes. For a cut crystal ‘‘P-P-P-P-...’’ in Fig. 1a, it is not difficult to
obtain following quantum dynamical equations (QDEs):

En|nYi~Fn|nYiz1zBn|nYi{1, i§1, ð4Þ

where En3n 5 diag{E1, E2,..., En} and {Ea 5 E 2 va : a 5 1,2,..., n} E is

Figure 1 | Two type structures for the crystals with the reflection
symmetry. (a) Type I ‘‘...-P-P-P-P-...’’. (b) Type II ‘‘...-P-Q-P-Q-...’’.
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the eigen energy of electron waves propagating in the crystal. {va : a
5 1, 2,..., n} are energies of eigen-modes renormalized at each CP.
The elements of Fn3n, Bn3n and {va : a 5 1,2,..., n} are

I
kjj dependent.

When the original infinite crystal has the reflection symmetry for
each CP, we have Fn3n, Bn3n. Eq.(4) can be rewritten as

En|nYi~Fn|nDYi, DYi~Yiz1zYi{1: ð5Þ

The matrices Fn 3n and En 3n are hermitian with the dimen-
sionality n. Here we adopt the dimensional reduction method
to reduce the dimensionality n in Eq.(5) to 1. We will prove
that no surface waves accommodate in such a cut crystal for
any energy E. Since we are not sure that Em 3m and Fm 3m

(m , n) are always hermitian in the dimensional reduction pro-
cess, here what we assume is that En 3n and Fn 3n are arbitrary
square matrices and are not limited to be hermitian from the
beginning so that the following demonstration can be used
repeatly in the dimensional reduction. But it is still applicable
to the hermitian Fn 3n and En 3n.

Proof for n . 2 in Type I. By means of the dimensional reduction
method, we will reduce the dimensionality n in Eq.(5) into 1 or 2. Let
us first consider an energy such that E: det(En 3n) ? 0. Since det
(En3n) ? 0, we can obtain from Eq.(5)

Yi~(E{1
n|nFn|n)DYi, i§1: ð6Þ

In the matrix theory, it is known that a square matrix (E{1
n|nFn|n) can

be decomposed into a Jordan matrix via a similarity transformation
Un|n : Jn|n ~ U{1

n|n(E{1
n|nFn|n)Un|n ~

Xs

i~1
Ji(li) where Ji(li)

is the Jordan canonical block and its form is

Ji lið Þ~

li ci

0 li

0 0

P 0

0 0

0 0

P ci

0 li

0
BBB@

1
CCCA, ci ~ 0 =0ð Þ, ð7Þ

where the parameter ci 5 0 or ci ? 0 depends on whether the matrix
(E{1

n|nFn|n) is a diagonalizable one or not and li is the eigenvalue of
(E{1

n|nFn|n). Now we have

Y
0

i~Jn|nDY
0

i, Y
0

i~U{1
n|nYi, Y

0

0~0: ð8Þ

In terms of the property of the Jordan matrix Jn3n and from Eq.(8),

we can reach immediately for y
(n)0

i

y
(n)0

i ~lsDy
(n)0

i , y
(n)0

0 ~0, ð9Þ

where ls describes the effective coupling of the nth eigen mode
between the 1NN CPs. Eq.(9) is exactly the same as the transfer
matrix equation of 1D atomic chain with the single electron mode.
It has been known that there are no edge states for any energy E no

matter whether ls 5 0 or ls ? 031. Thus we arrive at fy(n)0

i ~0 : i§1g
for surface states. After back-substituting fy(n)0

i ~0 : i§1g into
Eq.(8), we find that surface states are also impermissible for the

(n 2 1)th mode, yielding fy(n{1)0

i ~0 : i§1g: After step by step,
we obtain fY0

i~0 : i§1g for surface states that result in
fYi~Un|nY

0

i~0 : i§1g: Hence no surface states are allowed for
det(En3n) ? 0.

Next let us think over some energy such that E: det(En3n) 5 0.
Now we apply a Jordan transformation Vn3n to the matrix En|n :
EJ

n|n~V{1
n|nEn|nVn|n and have

EJ
n|nY

0

i~F
0

n|nDY
0

i, Y
0

i~V{1
n|nYi, Y

0

0~0, ð10Þ

where F
0

n|n~V{1
n|nFn|nVn|n. EJ

n|n~
Xs

i~1
Ji(li) where we have

arranged such that the sub-matrix J1 contains l1 5 0. Without loss of
generality, here we can assume the first block is a two-order Jordan
sub-matrix at first. For other cases where the order of J1(l1 5 0)is one
or greater than two, we can do similar demonstrations as we do for a
two-order Jordan block. The derivation can proceed by considering
two scenarios:

1) Suppose F
0

11=0. We can obtain from the first row of Eq.(10)

Dy
(1)0

i ~ (c1y
2ð Þ0

i {
Xn

a~2
F
0

1aDy
að Þ0

i )=F
0

11: ð11Þ

Substituting Eq. (11) into Eq. (10), we can arrive at

E(1)
(n{1)|(n{1)Y

00

i ~ F(1)
(n{1)|(n{1)DY

00

i , ð12Þ

Figure 2 | Energy spectrum of the armchair edged graphene with the 1NN hopping t1 and the different 2NN hopping t2. Note that surface states

emerge in figures (a, b, c), while figures (d, e, f) show the absence of surface states. (a) t2 5 0.16t1. (b) t2 5 0.18t1. (c) t2 5 0.2t1. (d) t2 5 0.02t1. (e) t2 5

0.04t1. (f) t2 5 0.06t1.
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where Y
00T
i ~(y

(2)0

i ,y
(3)0

i , � � � ,y(n)0

i ) and fF(1)
ab ~F

0

ab{F
0

a1F
0

1b=

F
0
11 : a,b~f2,3, � � � ,ngg. Thus, we have reduced the dimen-

sionality n in Eq.(10) into n21.
2) Next suppose F

0

11~0. Now we focus on the first column matrix
elements of the matrix F

0

n|n. If they are all zero, the reduction of
the dimensionality in Eq.(10) is already reached. Thus what we
assume here is that there exists some b such that F

0

b1=0 and b ?
1 then we have

Dy
(1)0

i ~(lcy
(b)0

i zccy
(bz1)0

i {
Xn

j~2
F
0

bjDy
(j)0

i )=F
0

b1: ð13Þ

After substituting Eq.(13) into Eq.(10), we can get

H(n{1)|(n{1)Y
00

i ~F
00

(n{1)|(n{1)DY
00

i , ð14Þ

where c [ (1, 2, � � � , s) and fF 00lj~F
0

lj{F
0

l1F
0

bj=F
0

b1, l [f1,2,

� � � ,b{1,bz1, � � � ,ng, j~f2,3, � � � ,ngg. Elements in the
matrix H(n21)3 (n21) are functions of energies {Ea : a 5 1,2,...,
n} and hopping constants. F

00

(n{1)|(n{1) is a reduced effective
hopping matrix and depends on the energy E. As a result, the
dimensionality n in Eq.(10) has been reduced to n21. If the

determinant of E(1)
(n{1)|(n{1)(H(n{1)|(n{1)) is nonzero, we can

follow the similar steps from Eq.(6) to Eq.(9) to prove the

absence of surface states. If the determinant of E(1)
(n{1)|(n{1)

H(n21)3 (n21) is zero, we will continue to reduce the dimension-
ality n21 in Eq.(12) (Eq.(14)) to n22 by means of the similar
steps from Eq.(10) to Eq.(14). If necessary, we can do more
reductions similar to above and eventually reduce the dimen-
sionality in Eq.(10) to 1 or 2. Meanwhile, we can see that other

modes fDy
(l)
i : l~2,3, � � � ,n(l~3,4, � � � ,n)g are either the lin-

ear combinations of fy(j)
i ,Dy

(j)
i : j~1 (j~1,2)g or can be

decoupled as local modes when the dimensionality in Eq.(10)
is reduced to 1(2). No surface states exist for the dimensionality
1 (as well known) when the forward hopping constant is equal
to the backward one, neither for the dimensionality 2, as will be
proved in the following.

Proof for n 5 2 in Type I. When n 5 2, Eq.(5) is rewritten as

E2|2Yi~F2|2DYi,Y0~0, ð15Þ

where YT
i ~(y

(1)
i ,y

(2)
i ) and assuming E232 and F232 are general

matrices in order to cover the previous case where the
dimensionality in Eq.(10) is reduced to 2 when n . 2 and det
(En 3n) 5 0. To ensure the validity of the proof for any energy E
and any crystal structures, we must discuss all possible matrix
structures of E232 and F232. At first, note that when det(E232) ? 0

or det(F232) ? 0 we obtain fy(1)
i ~y

(2)
i ~0 : i§1g for surface states

by the use of the similar steps from Eq.(6) to Eq.(9). Next, think over
the special case where det(E232) 5 0 and det(F232) 5 0. We apply a
Jordan similarity transformation U232 for E232 then Eq.(15) can be
written as

J
0
2|2Y

0

i~F
0
2|2DY

0

i, Y
0

i~U{1
2|2Yi,

J
0
2|2~U{1

2|2E2|2U2|2~
l1 c0

0 0

� �
,

8><
>: ð16Þ

where F
0

2|2~U{1
2|2F2|2U2|2 and {l1, c0} can be zero or nonzero.

We further examine the following three possible situations:

i) l1 5 0 and c0 5 0. We can apply the Jordan transformation
again to F

0

2|2 and since det (F2|2)~ det (F
0

2|2)~0, Eq.(16)
becomes

02|2~J
00

2|2DY
00

i , Y
00

i ~W{1
2|2Y

0

i,

J
00
2|2~W{1

2|2F
0
2|2W2|2~

a1 c1

0 0

� �
:

8><
>: ð17Þ

When a1 5 0 and c1 5 0, fDy
(1)00

i , Dy
(2)00

i g fully decouple and
become local modes within each CP. When a1 ? 0 and c1 5 0,

Dy
(1)00

i ~0 corresponds to an extended mode and Dy
(2)00

i is
decoupled as the local mode within each CP. When a1 5 0

and c1 ? 0, Dy
(2)00

i ~0 means the non-existence of surface states

and Dy
(1)00

i becomes the local modes without propagation
among the CPs.

ii) l1 5 0 and c0 ? 0. At first, we note that when F
0

21=0 or F
0

22=0,

y
(1)0

i and y
(2)0

i become local modes within each CP or are zero
solutions for surface states. Next, consider the special case
where F

0

21~0 and F
0

22~0, then we get from Eq.(16)

c0y
(2)0

i ~ F
0

11Dy
(1)0

i z F
0

12Dy
(2)0

i : ð18Þ

When F
0

11~0, Eq.(18) turns into c0y
(2)0

i ~ F
0

12Dy
(2)0

i and we

obtain fy(2)0

i ~0 : i§1g for surface states. When F
0

11=0,

fy(1)0

i ,y
(2)0

i g are coupled together. If there are surface states

existing for fy(1)0

i ,y
(2)0

i g, we can have Dy
(1)0

i ~bDy
(2)0

i where b

is a non-zero constant. Then Eq. (18) becomes c0y
(2)0

i ~

(F
0
11bzF

0
12)Dy

(2)0

i that results in fy(2)0

i ~0 : i§1g for surface

modes, leading to fy(1)0

i ~0 : i§1g. Therefore, no surface states
can exist in the cut crystal.

iii) l1 ? 0 and c0 5 0. The proof is almost exactly similar to the case
{l1 5 0 and c0 ? 0 and we get the same conclusion. Up to now,
the conclusion has been analytically proved for cut crystals with
‘‘P-P-P-P-...’’.

Proof for Type II. In Type II, the crystal has two different CPs: P and
Q. We just discuss the Q cut crystal ‘‘Q-P-Q-P-...’’ in Fig. 1b since the
discussion for the P cut crystal will be similar. Now the QDEs for the
Q cut crystal are

E(P)
n|nYi~Fn|m WizWiz1ð Þ,

E(Q)
m|mWi~ Fn|mð Þz YizYi{1ð Þ, i§1,

(
ð19Þ

where {Wi 5 0m31,Yi 5 0n31 : i , 1} and the CP P has n modes and Q
has m ones. n and m can be equal or unequal. fE(P)

n|n, E(Q)
m|mg are

defined as E(a)
la|la

~diagfEa
1 ,Ea

2 , � � � ,E(a)
la
g, fEa

i ~E{va
i : i~1,2, � � � ,

lag and lp(Q) 5 n(m) when a 5 P(Q). After simple calculations,
Eq.(19) can be written as

E mznð Þ| mznð ÞPi ~ F mznð Þ| mznð ÞDPi,

E mznð Þ| mznð Þ~
2E Pð Þ

n|n {2Fn|m

{2 Fn|mð Þz E Qð Þ
m|m

 !
,

F mznð Þ| mznð Þ~
0n|n 0n|m

Fn|mð Þz 0m|m

� �
,

PT
i ~ YT

i ,W
0T
i

� �
,

8>>>>>>>>><
>>>>>>>>>:

ð20Þ

where W
0

i ~Wi zWiz1 and DPi 5 Pi11 1 Pi21. Now the Q cut
crystal structure ‘‘Q-P-Q-P-...’’ in Type II is equivalent to ‘‘P9-P9-P9-
...’’ in Type I with the dimensionality m 1 n. We can find
fPi~0,W

0

i~0,Yi~0 : i§1g for surface waves. fW0i~0 : i§1g
yield Wi 1 Wi11 5 0 : i $ 1 that further lead to {Wi 5 0 : i $ 1} for
surface states. Hence the conclusion is also valid for Type II. So far,
we have completed the proof of the conclusion for Type I and II.
From the above demonstration, we clearly know that Fn3n 5 Bn3n is
the key to the conclusion.
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Our conclusion is only valid at the level of the hopping approxi-
mation between the 1NN CPs. In some real materials, although the
longer range hoppings among the nNN (n . 1) CPs may be weak for
some materials with low-index surfaces, they always exist.
Meanwhile, the surface of real cut materials is imperfect and the
surface relaxation is always unavoidable near the surface, even sur-
face reconstruction. Thus here we study the effect of both factors on
our conclusion.

Effects of the longer range hopping and surface relaxation. At first,
we focus on the effect of the longer range hoppings among the nNN
(n . 1) CPs in the absence of surface relaxations. When they are
much weaker than that between the 1NN CPs for the crystals with
low-index surfaces, their effect can be estimated in terms of the
perturbation theory. In the case, QDEs for a cut crystal with Type I
can be written as

En|nYi ~
Pm

a~1 la{1F að Þ
n|nDaYi,

DlYi ~Yizl zYi{l, l ~ 1,2, � � � ,m, i § 0,

(
ð21Þ

where {Yi 5 0 : i , 0} and l characterizes the order of the small
perturbation. The boundary surface is set at the zeroth layer. The
terms fF að Þ

n|n : a~2,3, � � � ,mg result from the longer range hopping
among CPs. F að Þ

n|n represents the n 3 n hopping matrix from one CP
to its ath neighbor CP. According to the gradual development spirit of
the perturbation theory, we can set

Yi~
X

b~0
lbY

bð Þ
i : ð22Þ

Inputting Eq.(22) into Eq.(21), we obtain

lc : En|nY
(c)
i ~

Pcz1
a~1 F(a)

n|nDaY
(cz1{a)
i ,

i:e:, l0 : En|nY
(0)
i ~ F(1)

n|nD1Y
(0)
i ,

l1 : En|nY
(1)
i ~ F(1)

n|nD1Y
(1)
i z F(2)

n|nD2Y
(0)
i ,

8>><
>>: ð23Þ

where {b, c 5 0, 1, 2 }. From Eq.(23), we can obtain fY(0)
i ~0 : i§0g

for surface states from the above discussion. After back-substituting
fY(0)

i ~0 : i§0g into Eq.(23), we get En|nY
(1)
i ~F(1)

n|nD1Y
(1)
i . As

demonstrated above, we can reach fY(1)
i ~0 : i§0g. After step by

step, we also can get fY(l)
i ~0 : i§0, l~2,3, � � �g and further have

{Yi 5 0 : i $ 0} for surface states. Thus, surface states in crystals with
the reflection symmetry are not allowable when they are much
weaker than that between the 1NN CPs. When l becomes large,
the perturbation theory will be invalid and as a result surface states
can emerge even if the crystal has the reflection symmetry (see the
example of armchair edged graphene shown in the following
section). In practice, the longer range hoppings within the CP may

be large, but they are usually small among CPs for some crystals with
low-index surfaces and can be regarded as a perturbation.

It is similar to consider small surface relaxations. Here we assume
there are surface relaxations from 0th to (j 2 1)th layer CP and ener-
gies of eigen modes renormalized at each CP are unchanged at the
level of the hopping approximation between the 1NN CPs, then we
obtain QDEs

En|nYi~
X

k~i+1
(Fn|nzlL(i,k)

n|n)Yk, ð24Þ

where L(i,k)
n|n is from the small surface relaxation between the 1NN

CPs and non-zero matrix when 0 # i # j. We input Eq.(22) into
Eq.(24) and receive

lb : En|nY
(b)
i ~

P
k~i+1 (Fn|nY

(b)
k zL(i,k)

n|nY
(b{1)
k ),

i:e:, l0 : En|nY
(0)
i ~Fn|nD1Y

(0)
i , i§0,

(
ð25Þ

where {b 5 0, 1, 2, … } and fY cð Þ
k ~0 : cv0g. As it has been done

in the absence of surface relaxations, we can obtain fY(l)
i ~0 :

i§0, l~0, 1, 2, � � �g step by step. Thus, the small surface relaxation
has no impact on our conclusion. So far, it is known that the weak
longer range hopping and small surface relaxation cannot influence
our conclusion, but they have the effect on the bulk states.

Discussion
In application of the conclusion, we can give some examples to
support our demonstration and see its availability for qualitatively
predicting the presence or absence of surface states in some materi-
als. Firstly, we can easily check armchair edged graphene with the
1NN hopping t1 only has no edge states since it has ‘‘P-P-P-P-...’’ type
structure, consistent with the previous theoretical analysis32. We also
study the effect of the 2NN hopping t2 on surface states in terms of
the exact diagonalization method where t2 is taken in the region
0.02t1 # t2 # 0.2t1

33,34 and find that surface states can appear
for the ratio t2=t1 [ 0:16, 0:18, 0:2ð Þ in Fig. 2a–c, but not for
t2=t1 [ 0:02, 0:04, 0:06ð Þ in Fig. 2d–f. Thus the longer range hopping
among CPs is able to induce surface states if it is strong enough and
not regarded as a perturbation, compatible with our demonstration.
Furthermore, the type structure of zigzag edged graphene is ‘‘P 5 P-P
5 P-...’’ where the F-B symmetry is broken, thus it is in favor of the
existence of edge states, shown in the zero mode result31. Secondly, let
us further address ABO3 Perovskites since they are very much
important in device applications. Ab initio calculations of ABO3

Perovskite (001) surfaces have shown no surface states24,25. The
SOC and/or correlation effect in these materials do not play an
important role and as a result they are suitable for our model.
From the structure symmetry analysis of ABO3 Perovskites such as
PbTiO3, we predict that the semi-infinite c-cut ABO3 in the para-

Figure 3 | Crystal structures of ABO3 materials at the para-electric and ferroelectric phases. (a) c-cut PbTiO3 at the para-electric phase. (b) c-cut PbTiO3

at the ferroelectric phase. (c) c-cut YMnO3 at the ferroelectric phase.
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electric phase have no surface states at the level of the 1NN hopping
approximation since its type structure is ‘‘P-Q-P-Q-...’’ in Fig. 3a,
consistent with ab initio calculations24,25. But we can find that surface
states may appear in the above c-cut ABO3 with the polarization
along the c-axis since it breaks the F-B symmetry in Fig. 3b.
Another example is the c-cut ferroelectric YMnO3 in Fig. 3c which
has the hexagonal structure. It has surface states due to the F-B
asymmetry, compatible with the previous study21.

In conclusion, based on lattice model Hamiltonian with the hop-
ping between the 1NN CPs and all possible neighbor hoppings
within each CP, we have proved that there will not be surface states
in a (hkl) cut crystal if the original infinite crystal has the reflection
symmetry about each (hkl) CP. Meanwhile we also consider the
effect of the longer range hoppings among the nNN (n . 1) CPs
and surface relaxations on our conclusion. For some types of crystals
(not like ionic crystals) with low-index surfaces, the longer range
hoppings are weak enough and can be regarded as a perturbation,
then they have no effect on our conclusion. It is also shown that small
surface relaxations have no impact on our conclusion. In fact, the F-B
dynamical symmetry (Fn3n 5 Bn3n) is the key in our demonstration.
For the crystals without SOC and/or strong correlation effect, we find
that different cutting surfaces of the same crystals may have the dif-
ferent behavior for the existence of surface states. Moreover, our proof
can be extended to Fn3n 5 eidBn3n where d is a k-dependent or zero.
Our model in the above demonstration, in some sense, is much closer
to real materials than previous simple ones. Thus our conclusion may
be helpful to visually predict which cutting direction of the crystals is
unfavorable for generating surface states in future research. Finally, we
would also mention that our model is limited. In practice, surface
states can exist on low index metal surfaces of FCC and BCC ele-
mental metals such as Ag, Nb and Fe where SOC and/or strong
correlation effect are/is dominant35–37. Thus our model is invalid for
the crystal with strong SOC or/and strong correlation effect, such as TI
and TSC. Although our conclusion may have the potential for pre-
dicting the absence of surface states in some cut crystals, a criterion for
the presence of surface states still remains to be investigated.

Methods
We started from a lattice model Hamiltonian at the level of effective single-particle
approximation and analytically proved that there should not be surface states in a cut
crystal with F-B symmetry. The Jordan matrix property and transfer matrix approach
were also used to reduce the dimensionality of QDEs. Furthermore, we also extend
our method to present the more general argument for the effect of the coexistence of
the weak longer range hopping and small surface relaxation. What we assume is that
there exist small relaxations from 0th to (j 2 1)th layer CP and the weak longer range
hoppings among the nNN CPs (2 # n # m) and energies of eigen modes renorma-
lized at each CP are slightly changed due to atomic relative movement at each CP,
then we can obtain QDEs

(En|nzlL(i)
n|n)Yi~

Pm
a~1 la{1f(F(a)

n|nzlL(i{a,i)
n|n )Yi{a

z(F(a)
n|nzlL(i,iza)

n|n )Yizag,

(
ð26Þ

where {Y
i
5 0 : i , 0} and fF(a)

n|n : a~1,2, � � � ,mg come from the coupling between
the aNN CPs. L(i,i+a)

n|n is from the small surface relaxation between the aNN CPs and

L(i)
n|nresults from small relaxations within each CP. Substituting Eq.(22) into Eq.(26),

we obtain

lc : En|nY
(c)
i ~ {L ið Þ

n|nY
(c{1)
i z

Pcz1
a~1 fF

(a)
n|nDaY

(cz1{a)
i

zL i,i{að Þ
n|n Y(c{a)

i{a zL i,izað Þ
n|n Y(c{a)

iza g,
i:e:, l0 : En|nY

(0)
i ~ F(1)

n|nD1Y
(0)
i ,

l1 : En|nY
(1)
i ~ F(1)

n|nD1Y
(1)
i z F(2)

n|nD2Y
(0)
i {L ið Þ

n|nY
(0)
i

zL(i,iz1)
n|n Y

(0)
iz1 zL(i,i{1)

n|n Y
(0)
i{1,

8>>>>>>><
>>>>>>>:

ð27Þ

where fY(c)
i ~0 : cv0g. As demonstrated in the absence of both factors, we can

arrive at fY(l)
i ~0 : i§0,l~0,1,2, � � �g step by step and find that the small per-

turbation from both factors has no impact on our conclusion.
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