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Prediction of new disease indications for approved drugs by computational methods has been based largely
on the genomics signatures of drugs and diseases. We propose a method for drug repositioning that uses the
clinical signatures extracted from over 13 years of electronic medical records from a tertiary hospital,
including .9.4 M laboratory tests from .530,000 patients, in addition to diverse genomics signatures.
Cross-validation using over 17,000 known drug–disease associations shows this approach outperforms
various predictive models based on genomics signatures and a well-known ‘‘guilt-by-association’’ method.
Interestingly, the prediction suggests that terbutaline sulfate, which is widely used for asthma, is a promising
candidate for amyotrophic lateral sclerosis for which there are few therapeutic options. In vivo tests using
zebrafish models found that terbutaline sulfate prevents defects in axons and neuromuscular junction
degeneration in a dose-dependent manner. A therapeutic potential of terbutaline sulfate was also observed
when axonal and neuromuscular junction degeneration have already occurred in zebrafish model.
Cotreatment with a b2-adrenergic receptor antagonist, butoxamine, suggests that the effect of terbutaline is
mediated by activation of b2-adrenergic receptors.

D
iscovery of unknown indications or biological targets for approved drugs (i.e., drug repositioning) has
several advantages over new drug development, especially when reusing drugs with known safety profiles.
The precise prediction of new therapeutic indications using computational methods could accelerate the

drug-development process and has been used to generate new repositioning opportunities1. Including our own
previous attempt2, gene expression-based computational discoveries typically originate from an analysis of the
molecular signatures of drugs and diseases3. Integrating various types of genomics information has also been used
for computational analysis of drug repositioning4. Previous studies to reposition drugs have exploited the
relationships between drugs and diseases based on related molecular information.

Recently, a few studies have applied phenotypic profiling of the entire human system, such as drug-induced
side effects, for drug repositioning5. Long-term observations of the therapeutic effects of arsenic trioxide
yielded a new indication for acute promyelocytic leukemia6. Meanwhile, we and others have proposed a
method based on a ‘‘guilt-by-association’’ (GBA) approach, which uses the known therapeutic indications
of drugs to predict new indications based on pairwise relationships between diseases and associated sets of
drugs7. However, to our knowledge, extensive and direct clinical cohort-based approaches to drug reposition-
ing, such as the physiological and phenotypic screening of diseases and drugs in human individuals, have not
yet been attempted.

Electronic medical records (EMRs) contain digitally recorded medical and pathophysiological data, including
the results of laboratory tests of serum, urine, and other samples, e.g., the blood glucose levels in diabetic patients.
As indicated in our previous study, analysis of laboratory test results in EMRs can determine the clinical character
of diseases and their responses to drugs8–10. Here, we describe the development of a generalized method for drug
repositioning, which uses the laboratory test results from EMRs, in addition to genomics signatures from public
resources. As a proof-of-concept, we applied this approach to reposition a drug widely approved for asthma, to
amyotrophic lateral sclerosis (ALS) and validated the approach with experiments in a model of ALS.
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Results
Drug repositioning using electronic medical and genomics data.
We designed a novel algorithm for drug repositioning, referred to
as clinical and genomics signature-based prediction for drug
repositioning (ClinDR) that utilizes both clinical data from EMRs
and genomics data from public resources (Table 1). We used the
clinical profiles of drug-treated and diseased patients in a 13-year
EMR dataset from the tertiary teaching hospital of Ajou University.
The objective of ClinDR is to identify hitherto unknown indications
for drugs used to treat known diseases using known drug–disease
associations for similar drugs and diseases. In this model, the basic
assumption is that similar drugs can be used to treat similar diseases.
We first represented known drug–disease associations as a bipartite
network where diseases or drugs are nodes, and the edges between
them represent potential therapeutic drug use (Fig. 1A). For known
drug–disease associations, we combined the drug medication records
in our EMR database and known indications from a public
database11. In summary, 691 drug nodes, 425 disease nodes, and
17,716 edges for drug–disease associations were prepared.

To calculate the disease–disease similarities at a clinical level, we
compared the distributions of laboratory test results between disease
pairs before any drug administration (Methods; Fig. 1B). Using each
type of laboratory test, we computed a p-value for the distribution of
results between disease pairs using a Wilcoxon rank-sum test. In this
test, stronger p-values for results between disease pairs indicate
higher similarity for laboratory test results between the diseases.
For the drug–drug similarities, we used the degree of change in
laboratory test results after administration of individual drugs.
Subsequently, we prepared a single similarity matrix for drug–drug
or disease–disease pairs by selecting the maximum values for the
generated similarities among the diverse types of laboratory tests
(Fig. 1C). It is important to note that we normalized the p-value
similarities using a rank method to reduce heterogeneity across dif-
ferent types of laboratory tests before generation of a single similarity

matrix. The main types of laboratory tests based on their coverage of
drugs and disease are shown in Table 2.

We also graded the similarities of disease or drug pairs on diverse
genomics data including Gene Ontology terms and disease- or drug-
related protein networks (Fig. 1D). Genomics level similarities were
represented by selecting the highest-ranking normalized p-value
similarities, such as those for protein interactions (Methods; Fig. 1E).

Using the known drug–disease network and the drug and disease
pair similarities at the clinical and genomics levels, ClinDR was used
to calculate a final score for each edge between a drug and a disease to
determine whether the corresponding edge is a candidate for repo-
sitioning (Fig. 1F).

Analysis of clinical similarities for drug or disease pairs. For drug
or disease similarities, we used diverse types of laboratory tests
separately to reflect different clinical characteristics of drugs and
diseases. Clustering results from the similarities between drugs or
between diseases showed that distinct types of laboratory test results
produced different groups of related diseases or drugs (Fig. 2A). For
example, erythrocyte sedimentation rate (ESR) levels, which are an
indicator of inflammation12 showed that diseases similar to acute
nephritic syndrome (i.e. renal inflammation) included blood cell
disorders and infectious diseases, such as leukemia, anemia and
mycobacterial infections (Fig. S1A). When ESR levels were used,
diseases related to immune mechanisms were clustered together
(20 immune related diseases among 22 clustered diseases; hyper-
geometric test p 5 4.2 3 e226; Fig. S1B). For total cholesterol level,
which is widely used to detect metabolic or cardiac abnormalities,
diseases related to endocrine and circulatory diseases were clustered
together (51 endocrine disorders among 100 clustered diseases; p 5

3.43 3 e239; Fig. S1C). Likewise, changing levels of glutamic
oxaloacetic transaminase activity during drug therapy clustered
similar drug classes together, including blood-forming organ and
cardiovascular system-related drugs (31 drugs are B or C drug

Table 1 | Summary of the data used

Omics class Features Total no.

Clinical data Total no. of cases 1,011,055a

Total diagnosis code types (KCD6) 10,874
Total diagnosis types (ICD10) with OMIM disease ids 425*
Total no. of diagnosis records 2,788,135
Total drug medication types (drug order/ATC codes)b 5,350/1,003
No. of drug medication records 8,693,995
Total laboratory test types 246
Total no. of laboratory test records 9,494,169
Total no. of cases with laboratory test records 313,347
Mean laboratory tests per case 30.2

Genomic data Total no. of diseases (OMIM disease ids) 17,986
No. of disease-related genes 11,804
No. of diseases that matched diagnosis codes (ICD10) 1,096
Total drug types (ATC codes)c 1,615 (691**)
No. of drug-related genes 14,466
Total no. of protein–protein interactionsd (PPIs) 123,726
Selected no. of PPIs (physical interactionse) 112,988
Total no. of human genes 42,130
No. of GO terms (related genes) 12,015 (17,919)
No. of GO terms with evidence codesf (related genes) 6,868 (8,671)

aOne case was an admission–discharge event for a patient.
bThe medication order was determined by the drug order code. The ATC code denotes the chemical compound name of a drug.
cData resources: DrugBank (download date: 2011.10.23), CTD (download date: 2011.10.23), and STITCH (download date: 2011.10.23).
dData resources: HPRD (download date: 2012.01.05), BioGrid (download date: 2011.12.27), IntAct (download date: 2011.11.20), MINT (download date: 2012.01.05), and DIP (download date:
2011.10.30).
ePhysical interactions were determined by the PSI-MI codes: physical interaction (MI:0218), direct interaction (MI:0407), and physical association (MI:0915).
fGO evidence codes (EXP, IDA, IPI, IGI, and IEP).
*Total number of diagnosis codes used for further analysis of disease–disease similarities.
**Total number of drugs used for further analysis of drug–drug similarities.
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Figure 1 | Overview of ClinDR. (A) Construction of a drug–disease network. Known associations between drugs (circle nodes) and target diseases

(square nodes) are represented as a bipartite network (black lines). We utilized existing drug prescription records in our EMRs and public drug indication

resources to generated standard known drug-disease associations. (B) Calculation of drug–drug and disease–disease similarities using clinical signatures,

such as distribution or pattern of laboratory test results under drugs or diseases related conditions. For disease pair similarity ClinDR uses the absolute

values of individual types of laboratory test performed before any drug treatment. For drug pair similarity, ClinDR uses the changing pattern of laboratory

test results during the corresponding drug medication. Then, ClinDR finds the maximum similarity scores across diverse types of laboratory test (C).

(D–E) Calculation of drug–drug and disease–disease similarities using genomic signatures. (F) Prediction of final score (f(e) . h, true) between the query

indication (i.e. between drug a and disease a) using the combined clinic and genomic similarity matrixes from (C) and (E). The similarities between drug

pairs or disease pairs are represented as edge widths. Pc(e) and Pg(e): the maximum score of a query indication (e) using clinical (Pc(e)) and genomic

(Pc(e)) data, respectively. bi: a similar drug to a. bi: a similar disease to a.
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class of Anatomical Therapeutic Chemical classification system
(ATC) codes among 45 clustered drugs; p 5 3.17 3 e212; Fig. S1D).

ClinDR performance assessment. We evaluated the performance of
ClinDR against other methods. We used (i) the complete set of
ClinDR features; (ii) ClinDR using only genomics signatures; and
(iii) a GBA algorithm7 based on a tenfold cross-validation scheme

using 17,716 known associations. ClinDR outperformed other
methods, more so when it included the clinical signatures of drugs
and diseases (Fig. 2B). Using a threshold (final score . 0.9), we found
3,891 new indications for 226 drugs and 55 diseases that were pre-
viously not known to be associated (Fig. S2). The new indications had
a high degree of overlap with current clinical trials for discovery of
new indications in ClinicalTrials.gov (p 5 3.0 3 e207; Fig. S3) and the

Table 2 | Summary of the similarity analysis of disease pairs and drug pairs

Type of similarity Features Frequency

Clinical signatures Disease–disease Total laboratory test typesa 246
Selected laboratory test typesb 11
No. of laboratory tests at diagnosis pointsc 2,703,258 (408,722d)

Drug–drug Total laboratory test types 246
Selected laboratory test typese 9
No. of laboratory tests after medicationf 9,494,169 (28,234g)

Genomic signatures Disease–disease Total no. of GO termsh 6,868
Total no. of genes used in the network analysisi 11,804

Drug–drug Total no. of GO termsh 6,868
Total no. of genes used in the network analysisi 14,466

aThe laboratory test type was determined by the target protein or molecule detected by the serum/urine analysis, such as the total serum cholesterol concentration.
bWe analyzed selected laboratory test results from 246 test types based on the total patient coverage ($40%). Eleven laboratory tests were selected: erythrocyte sedimentation rate (EST), platelet count,
activated partial thromboplastin time (aPTT), AC glucose value, and the GOT, GPT, alkaline phosphatase, total cholesterol, sodium, chloride, and total CO2 concentrations.
cThe laboratory test results were prepared before the administration of drugs.
dFinal number of results used. About 95% of the test results were filtered out because of the absence of matched OMIM disease IDs for diagnosis codes and a lack of patient coverage.
eThe selection criteria were: 1) coverage of total drugs $30%; and 2) total observed cases .1,000. Nine laboratory test measures were selected: platelet count, AC glucose value, and the GOT, GPT,
alkaline phosphatase, total cholesterol, sodium, chloride and total CO2 concentrations.
fThe laboratory test results were prepared for drug-free and drug-treated patients.
gThe laboratory results were selected based on these criteria: 1) assigned drug order codes with ATC (Anatomical Therapeutic Chemical classification system) codes and assigned PubChem IDs; 2) #5 drug
treatments; and 3) the laboratory test points were prepared before and after drug administration events.
hIn the present study, we determined the disease–disease and drug–drug similarities based on the distances between GO terms. The detailed methods used to calculate the GO-based similarity measures are
described in the Methods section.
iIn the present study, we determined the disease–disease and drug–drug similarities using a network-based membership scoring function. The detailed methods used to calculate this similarity measure are
described in the Methods section.

Figure 2 | Clustering of drug- or disease-pair similarities of clinical data and performance evaluations. (A) Hierarchical clustering of Wilcoxon rank

sum test for disease-disease and drug-drug pairs by distinct laboratory test results. (B) Bar chart for the 10-fold cross-validation of ClinDR with/without

clinical physiome signatures and the GBA method. The GBA method presents deterministic results, without AUC. (C) The enrichment test of novel

ClinDR repositionings with clinical trials in ClinicalTrials.gov.
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overlap was higher than that found for other predictive models
including ClinDR based on genomics signatures alone (Fig. 2C).
Moreover, the predictions covered various classes of drugs (Fig. S4).

Among the new indications predicted, one example was terbuta-
line sulfate (TS) as a potential drug for amyotrophic lateral sclerosis
(ALS) treatment. From the EMR-based similarity matrixes, TS dis-
played the highest similarity with ursodeoxycholic acid (UDCA;
similarity 5 0.995; Fig. 3). Moreover, Kawasaki syndrome was the
most similar disease to ALS (similarity 5 0.99). As seen in our EMRs,
UDCA has been used to treat Kawasaki syndrome because UDCA
regulates apoptosis13,14. Based on the combined score of clinical and
genomics data, ClinDR predicted that TS was the highest ranked
candidate for repositioning among all drugs without a former asso-
ciation with ALS (final score . 0.9).

Terbutaline sulfate as a candidate for ALS therapy. We validated
the potential therapeutic effect of TS in an in vivo zebrafish model of
ALS, in which overexpression of mutant TDP-43 (Q331K) produces
motor axon degeneration and defective neuromuscular junctions
(NMJs)15. Treatment of the zebrafish containing TDP-43 mutant
mRNA Tg (olig2:dsred2) with TS at 9 hours postfertilization (hpf),
before the onset of axonal outgrowth, significantly prevented defects
in axons and NMJ degeneration in the zebrafish model of ALS in a
dose-dependent manner (p 5 2.4 3 e213; Fig. 4A, B). Zebrafish
injected with the mutant mRNA that were treated with 1 mM TS
had virtually normal motor axons and NMJs. Moreover, TS was also
able to recover function of dysregulated motor neurons in this model
of ALS (Fig. 4C). Treatment of the zebrafish injected with TDP-43
with 1 mM TS at 36 hpf and 48 hpf, by which time axons and NMJ
degeneration already occurred, significantly rescued motor axon and
NMJ at 72 hpf (p 5 2.1 3 e211; Fig. 4C, D).

Moreover, simultaneous treatment of the zebrafish model of ALS
with butoxamine (BTX), a b2-adrenergic receptor antagonist, and TS
(b2-adrenergic receptor agonist) resulted in motor axon defects sim-
ilar to those of untreated zebrafish injected with mutant TDP-43
mRNA (p . 0.05; Fig. 4E, F). This suggests that cotreatment with

BTX inhibits the therapeutic effect of TS on the TDP-43 mutation
induced ALS-like phenotype of the zebrafish. Together, these data
suggest that the therapeutic effect of TS on the TDP-43 mutation
induced ALS-like phenotype in the zebrafish is mediated by activa-
tion of b2-adrenergic receptors.

Discussion
Here we propose ClinDR as a method for predicting new indications
for approved drugs based on known indications for similar drugs,
and diseases inferred from both clinical signatures from large-scale
EMR databases and genomics signatures. ClinDR outperformed pre-
vious approaches including models based on genomics similarity.
We predicted 3,891 new indications for 226 drugs and 55 diseases,
and the new indications significantly overlapped with the current
clinical trials for new indications. Importantly, an in vivo validation
of our predictions suggested that the asthma drug TS is a promising
candidate for ALS treatment.

ALS is a lethal neurodegenerative disease with few therapeutic
options. To our knowledge, riluzole is the only drug approved for
ALS that presents prolonged survival trends, and there is a limited
understanding of the related therapeutic mechanism16. Our study
predicted an indication for the approved drug, TS, which is known
as a b2-adrenergic receptor agonist, and has been used as a fast-acting
bronchodilator. By co-treating our model of ALS with BTX, a
b2-adrenergic receptor antagonist, we suggested that the efficacy of
TS in our model might be associated with b2-adrenergic receptor
activation.

ClinDR integrate diverse clinical and molecular-level signatures
for drugs and diseases to generate drug-drug and disease-disease
similarity. Zhang et al17 suggested an optimization method for integ-
rating drug and disease associated signatures (called DDR) using
different weightings for each of data sources, such as phenotypic
terms and gene ontologies for interested drugs and diseases.
Interestingly, Zhang and colleagues suggested phenotypic knowledge
of drug and disease as major contributors to predict novel indications
of drugs using their method. Zhang et al used knowledge-base

Figure 3 | Schematic view for the repurpose prediction of terbutaline sulfate for ALS. ClinDR predict terbutaline sulfate (TS) as a promising

candidate for ALS by drug-drug and disease-disease similarity analysis. Presented scores in between TS and Ursodeoxycholic acid (UDCA), and ALS and

Kawasaki syndrome were analyzed similarity values using clinical signatures from EMRs (0.995 for the similarity between TS-UDCA pair and 0.99 for the

disease pair similarity between ALS and Kawasaki syndrome). By integration of clinical (Pc) and genomic signature based predictions (Pg), TS was

determined as a repositioning candidate for ALS therapy.
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Figure 4 | Experimental validation of terbutaline sulfate repurposing for ALS. (A, C, F) All panels show lateral views of Tg(olig2:dsred2) spinal cords of

zebrafishes, with anterior to the left and dorsal to the top. (A) Terbutaline sulfate (TS) prevent motor axon and neuromuscular junction degeneration of

ALS model (d–f). In normal conditions, treatment with TS (c) had nonlethal effects compared with the untreated condition (a). Mt TDP indicates mutant

TDP-43 mRNA-injected model and WT means wild type (i.e. normal). (B) Statistical analysis of panel A. Axonal defects indicate fragmentation and

reduced lengths of axons. Data were obtained from 4 myotome segments from each of 10 control and 10 TS-treated models. (C) TS rescues the ALS

phenotype. Mt TDPs had abnormal motor axon phenotypes at 36 h postfertilization (hpf) (b) and 48 hpf (f) compared with WTs (a, c). These models had

clear motor axon and neuromuscular junction (NMJ) defects at 72 hpf (e, g). Mt TDP with 1 mM TS at 36 hpf (c) and 48 hpf (g), respectively, rescued

motor axon and NMJ defects at 72 hpf (d, h). (D) Statistical analysis of panel C. (E) Inhibition of therapeutic effect of TS by beta2-adrenergic receptor

antagonist, Butoxamine (BTX). In normal conditions, treatment with BTX had no effects compared with the untreated condition (a, c). Co-treatment

with TS and BTX inhibits therapeutic effect of TS on ALS phenotype of Mt TDP model (b, d–f). (F) Statistical analysis of panel E. Data was obtained from

8 control and 8 terbutaline sulfate and/or BTX-treated models.
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information including known target proteins of drugs, phenotypic
terms of disease and gene ontologies. In contract to this, ClinDR uses
laboratory test results for drugs and diseases to detect phenotype
associated signatures from human individuals and multiple molecu-
lar genetic signatures from public resources as well. The predictions
using ClinDR are mainly based on similarities of drug-drug and
disease-disease pairs via various clinical measures (i.e. physiological
aspect) in human subjects. Currently, optimal integration of clinical
measures with weighting values remain as challenging issues due to
the heterogeneity of disease phenotype and drug responses in real
clinical board. However, depends on our knowledge, ClinDR is an
initial attempt for linking between human derived clinical (i.e,
EMRs) and molecular-level signatures for drug repositioning.

We used laboratory test results to identify similarity of disease and
drug pairs. Further analysis of EMRs may identify the relationships
between the laboratory test results and patient phenotypes. The
integration of multiple EMR databases across various hospitals
remains a challenging issue. Nevertheless, our initial analysis of a
single EMR database suggests that clinical records from EMRs are a
promising resource for drug repositioning, and can be integrated
with genomics data.

Methods
Dataset. The clinical data were derived from a 13-year inpatient EMR database at a
tertiary teaching hospital, Ajou University Hospital in Korea. The EMR database
included the admission date, discharge date, drug prescription, and laboratory test
results from January 1, 1998 to March 31, 2010 (Table 1). The data were anonymized
to protect patient privacy and confidentiality. The EMR analysis protocols were
reviewed and approved by the Ajou University Hospital institutional review board.
The hospital’s information system allowed a patient’s diagnosis and therapeutic
records to be digitally recorded, and our database system had access to all hospital
departments. The database contained .8,693 K drug prescriptions and .115 M
laboratory test results from .1 M hospitalizations of 530 K individual patients. In a
similar manner to previous work4, the genomic data were extracted from various
databases including protein-protein interaction networks and gene ontology terms
(see Supplemental methods for details).

Similarity measures for drug- and disease-pair using clinical data. (i) Drug–drug
similarity using EMR data. The EMR database contained drug prescription records,
including the administration time points and various laboratory test results for
patients during hospitalization. We tracked the administration records and any
changes in the laboratory test results to profile the physiological variations in each test
result after drug treatment by calculating the maximum differences, as described in
our earlier studies8,9, as follows:

Fk
d,p~Max Qk

d,p
� �

{Min Qk
d,p

� �
, Where Qk

d,p

�� ��§2 ð1Þ

where Qk
d,p represents the result for the k-th type of laboratory test for the p-th

hospitalization case after d-th drug administration. Based on the maximum difference
of Qk

d,p, we computed the drug-induced change with the d-th drug treatment for the
k-th type of laboratory test, Fk

d,p. Using a Wilcoxon rank sum test, we calculated the
degree of similarity between the two drug-induced physiological distributions for a
drug pair as the p-value for the corresponding laboratory test type. Finally, the
normalized ranks of the p-values for all drug pairs were used as drug–drug similarity
measures to reduce the heterogeneity of the p-value distributions for different
laboratory tests. We assume that different laboratory tests may be related to specific
physiological characteristics of distinct diseases or drugs. Thus, we calculated the
similarity degree of disease or drug pairs using each test type separately. For the
sparseness of laboratory test results, we here only used major types of laboratory test
based on their high coverage of drug prescribed patient ($0.3) having more than two
test results during drug administration ordered (jQk

d,pj$ 2) (Table 2). Since only 1 K
of cases prescribed one single drug, we selected cases which include less than five drug
prescription records to maximize drug associated laboratory results with reduced
expected disruptions of a drug induced laboratory test results by other drugs
(Table 2).

(ii) Disease–disease similarity using EMR data. We compared the physiological state
distributions in disease conditions with the laboratory test results before drug
administration, as follows:

Rk
p,x~ diagnose pð Þ,drug start pð Þð Þ

Where xƒdrug start pð Þ
ð2Þ

where Rk
p,x represents the result for the k-th type of laboratory test for the p-th

hospitalization case at time x, and diagnose(p) indicates the disease condition of the p-
th case. In addition, drug_start(p) represents the initial time of drug administration

for case p. The time resolution of our EMR data was one day. Most drugs were
prescribed after diagnosis, so we also included laboratory test results recorded on the
same date as drug initiation; i.e., x # drug_start(p). In equation (2), this study utilized
diagnose(p) as a single diagnose code, which was assigned before the initial drug
prescription recorded, and all of diagnose record missing cases were filtered in pre-
process procedure of our EMR database. Although equation (2) determines various
diagnose states including multi-morbidity condition, we independently utilized
diagnose(p) as a single diagnose code for each case to generate distribution of disease
associate laboratory test results to prepare larger number of cases for each disease. In a
similar manner to the drug–drug similarity analysis, the normalized ranks of the
Wilcoxon rank sum test p-values were used to generate a similarity matrix for all
disease pairs.

Similarity measures for drug- and disease-pair using genomic data. (i) Proportion
of overlap between the PPI networks of drug-drug or disease-disease pairs. The PPI
network modules of each drug or disease were explored using the drug or disease-
related genes in our datasets (Supplemental methods). A drug or disease-related
network was produced based on the first neighboring nodes of the seed genes. Based
on our previous work, we determine similarity of disease related networks using
normalized overlapping proportions of compared networks18. The statistical
significance of our similarity measure was measured as the p-value based on the
background distribution of 1000 randomly permuted tests. Finally, the normalized
ranks of the p-values were used to represent the drug–drug or disease-disease
similarity, with a range of [0, 1].

(ii) GO-based similarities of drug-drug or disease-disease pairs. The semantic similarity
scores between drug or disease-related genes were quantified according to Resnik19.
The similarity scores were transformed by rank normalization, with a range of [0, 1].

Prediction of drug indications using similarity measures and the bipartite
network of known drug–disease associations. ClinDR applied four steps to calculate
the edge values using the similarity information based on: i) the clinical signatures,
and ii) the genomic signatures; before iii) computing a final prediction value by
integrating the edge scores from the genomic and clinical signatures; and iv)
determining the edge label (i.e., true or false) using a given threshold. Suppose that we
have a set of source drugs, S 5 {s1, s2, …, sm}, and a set of target diseases, T 5 {t1, t2, …,
tn}. We add an edge eij between drug si and disease tj where a whole set of edges
denotes a bipartite network of drugs and diseases E 5 {e11, …, eij, …, emn} with the
corresponding binary labels of the edges L(eij) (0 5 false, 1 5 true). ClinDR represents
the edge label of a given drug–disease node pair using a classification rule f(eij) . h R
L(eij) 5 1, where f(eij) is the final predicted edge value. The detailed process used to
compute f(eij) was as follows.

(i) Calculating an edge score between a drug and a disease using the clinical data.
Suppose that SimLABS, and SimLABT is the similarity matrix of all drug–drug and
disease–disease pairs based on the clinical signatures (i.e. laboratory test results).
There are various similarity measures based on different laboratory tests, so
SimLABS and SimLABT are computed using the maximum similarity rank values
among the different tests for individual drug or disease pairs. Thus, SimLABS(si,
sp) means the similarity value between two drug nodes si and sp (si, sp g SimLABS)
based on the clinical physiomic signatures, while SimLABT(ti, tq) is the similarity
value between two disease nodes tj and tq (ti, tq g SimLABT). Using similarities
between disease-disease and drug-drug pairs, Pc calculated edge scores between a
queried pair of drug and disease (si and tj) as follows:

Pc~maxsi ,tj ,sp ,tq gMean SimLABS si,sp
� �

,SimLABT tj,tq
� �� �:w sp

� �� �

where gMean~geometric mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SimLABS si,sp

� �
|SimLABT tj,tq

� �q� �

L epq
� �

~1,w sp
� �

~1{e{log10 D spð Þð Þ

ð3Þ

where si g SimLABS, tj g SimLABT, sp g SimLABS, tq g SimLABT, and L(epq) is
an edge label between sp and tq. L(epq) is 1 if there is a known drug indication
between sp and tq, but otherwise it is 0. D(sp) is the degree of the drug node sp in a
given bipartite network of drugs and diseases. Equation (3) calculates the max-
imum similarity for drugs and diseases in the known drug–disease association
pairs by incorporating the degrees of the drug nodes. Since a drug having current
clinical trial reports in ClinicalTrial.gov (http://clinicaltrials.gov/) displayed larger
number of disease indications (p-value of Wilcoxon rank sum test 5 2.27e-08),
ClinDR gives weighting scores (w(sp)) for a drug node with various disease
indication in equation (3) and (4), respectively. The equation of w(sp) was
established by the distribution for the number of indications for known drugs,
which have clinical trial reports as depicted in Supplemental Figure S5.

(ii) Calculating an edge score between a drug and a disease using genomic data. Suppose
that SimGENS, and SimGENT is the similarity matrix of all drug–drug and disease–
disease pairs based on the genomic signatures. Two types of genomic similarity
measures can be derived from the GO terms and the PPI network analysis, SimGENS,
and SimGENT, which are calculated using the maximum similarity rank value
between them. Thus, SimGENS(si, sp) means the similarity value between two drug
nodes si and sp (si, sp g SimGENS) based on the genomic signatures, while
SimGENT(ti, tq) is the similarity value between two disease nodes tj and tq (ti, tq g
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SimGENT). In a similar manner, we calculated the similarity-based Pg (edge score
between drug and disease) using genomic signatures of drugs and diseases:

Pg~maxsi ,tj ,sp ,tq gMean SimGENS si,sp
� �

,SimGENT tj,tq
� �� �:w sp

� �� �
where gMean~geometric mean

L epq
� �

~1,w sp
� �

~1{e{log10 D spð Þð Þ
ð4Þ

where si g SimGENS, tj g SimGENT, sp g SimGENS, tq g SimGENT, and L(epq) is an
edge label between sp and tq. L(epq) is 1 if there is a known drug indication between sp

and tq, but otherwise it is 0.

(iii–iv) Final prediction of the edge value and label. Using the edge values predicted
from the clinical and genomic signatures, ClinDR derived the final edge value by
integrating the Pc and Pg scores. The final edge value f(eij) was calculated using the
following equation:

f eij
� �

~Pc eij
� �

=cos Pc eij
� �

{Pg eij
� �� �

ð5Þ

f eij
� �

wh?L eij
� �

~1, otherwise L eij
� �

~0 ð6Þ

where h is the threshold of the final edge value. The object of ClinDR is identification
of similar drug and disease pairs among know drug-disease indications using clinical
signatures (Pc) and genomic features (Pg) as well. In equation (5), the higher score is
mainly derived by the larger Pc, and minimum difference between Pg and Pc (Pc – Pg).
We introduced cosine function to generate gradual determination of threshold for
f(eij) in equation (6) (f(eij) . h). The value range of f(eij) is from 0 to 1.8 based on our
computational simulation. The value of h was determined where ClinDR yielded
maximum prediction performance in our 10-fold cross-validation scheme. L(eij) has a
Boolean value of 0 for false and 1 for true, depending on the drug indication between a
drug and a disease. In the model comparison, genomic and clinical models had edge
scores of either Pg or Pc.

Prediction assessment and novel predictions. We used a 10-fold cross-validation to
evaluate the performance of ClinDR using a prepared set of drugs and diseases (see
Supplemental Methods for details).

Experimental validation in zebrafish. Details of experimental validation used are in
the Supplemental Methods.
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