
Bridging topological and functional
information in protein interaction
networks by short loops profiling
Sun Sook Chung1,2*, Alessandro Pandini2*{, Alessia Annibale3,4, Anthony C. C. Coolen3,4,
N. Shaun B. Thomas1 & Franca Fraternali2,4

1Department of Haematological Medicine, King’s College London, UK, 2Randall Division of Cell and Molecular Biophysics, King’s
College London, UK, 3Department of Mathematics, King’s College London, UK, 4Institute for Mathematical and Molecular
Biomedicine, King’s College London, UK.

Protein-protein interaction networks (PPINs) have been employed to identify potential novel
interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental
principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions
of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and
examined the occurrence of common biological functions in loops extracted from a cross-validated
high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic
feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths.
Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of
interactions with high resilience. The identification of this core and the analysis of loop composition are
promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods.
More than 96% of loops share at least one biological function, with enrichment of cellular functions related
to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the
design of targeted experiments for functional phenotype detection.

I
n the last two decades PPI Networks (PPINs) have been analysed with a wide range of statistical and math-
ematical tools1 to address biological questions related to the evolution of different species2,3, the identification
of disease related proteins and interactions4–6 and more recently, the process of drug discovery7–9. Many of

these studies pointed out that essential protein interactions in cellular mechanisms in healthy and diseased states
are often imputable to few connected nodes in the network10. Therefore PPIN analysis can represent a powerful
tool in biomedical research, allowing for the identification of crucial target proteins to manipulate or treat the
observed functional phenotypes. However, exploiting this potential requires carefully validated PPI11,12 data and
the ability to identify a minimal set of proteins that are best suited for drug targeting.

During the years, high-throughput experimental methods to map PPIs have constantly improved: mapping of
binary interactions by yeast two-hybrid (Y2H) systems13 and mapping of membership and identity of protein
complexes by affinity- or immuno-purification followed by mass spectrometry (AP-MS)14, recently extended to
large scale biochemical purification of protein complexes and identification of their constituent components by
MS (BP-MS)12. At the same time, theoretical tools and more advanced experimental techniques have highlighted
limits in the quality of the data and have stimulated renewed efforts to improve their quality. The current
challenges of network biology are in the identification of standardised approaches to reduce methodological
biases11,12, to increase data reproducibility15 and to assess the scope and limitations of PPIN models16,17. This has
been paralleled by computational efforts to improve algorithms and methodologies for larger datasets and for data
integration of different types of cellular networks4. A paradigmatic example is represented by studies comple-
menting PPINs with 3D structural data18–20.

Particularly important for the identification of experimental biases and of truly relevant biological information
is the problem of finding a reference (null) model for network analysis21,22. Indeed, each property calculated from
PPINs should be compared with a corresponding family of reference random graphs21. It is essential to prove that
specific values of network properties are statistically different from random and can be safely related to biological
functions4. Indirectly, this procedure can be used to identify experimental biases by network comparison11.
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Several approaches were developed to extract meaningful prop-
erties from PPINs using graph theory23. These properties can be
broadly classified according to the level of detail: global properties
describing the features of the whole network or local properties
encompassing only parts of the network. The former include mea-
sures of connectivity (average degree, degree distribution, average
shortest paths)23, measures of grouping (average clustering connec-
tivity)23, and measures of the relationship between nodes (assorta-
tivity coefficient23, degree-degree correlation11,21). The latter include
indices aimed at identifying sub-networks defining functional mod-
ules24, recurring patterns of connected nodes25, fully connected
groups of nodes (cliques)26, induced subgraphs (graphlets)27 or sim-
plified representations of subgraphs (Power Graphs)28.

Among all local properties, motifs have been particularly exploited
as they have been demonstrated to be associated with biological
functions and their interactions are modified in diseases29. They act
as building blocks of cellular networks30. Different definitions (and
motif types) have been proposed, all of them generally assume that a
motif is a pattern appearing more frequently than expected given the
network31. They were initially detected in transcriptional regulatory
networks31 and later in different types of cellular networks30. Motifs of
two, three and four proteins have been classified and associated with
specific regulatory functions in accordance with their transcriptional
patterns29. In addition, there is evidence from previous studies that
motifs related to functional units can be successfully mined from
PPINs functional units26,28.

A specific type of motif is represented by loops, defined as non-
intersecting closed paths in PPINs. These were shown to be
functionally critical in particular cases12,32, but no exhaustive invest-
igation has been performed to assess their biological relevance or the
relationship between loop length and biological functions. To the
best of our knowledge, no study has so far estimated if PPINs are
consistently enriched in loop motifs compared to randomised net-
works with similar properties and under comparable topological
constraints.

This study demonstrates that short loops of length three, four and
five are of critical importance in PPINs by a) assessing their statistical
significance compared to randomised networks with the same degree
and degree-degree correlation and b) evaluating their specialised
biological role through functional annotation. In detail, we calculated
the number of short loops in a set of PPINs from different organisms
and estimated their resilience and statistical significance by compar-
ison with a tailored graph ensemble generated by Markov chain
graph dynamics. We investigated the relationship between the vari-
ation in loop number upon randomisation and the initial topological
properties of the networks. We characterised the composition of
loops resilient upon randomisation. Finally we used Gene
Ontology (GO)33 and KEGG34 pathway annotation to identify pref-
erentially represented functions in loops of different lengths for the
human PPINs.

Results
The results are presented according to a two-fold scheme of invest-
igation: a) statistical relevance of short loop motifs with respect to
random models; b) functional enrichment in short loops.

Number and essentiality of short loops in PPINs. Survey of the
occurrence of loops in PPINs. We selected a set of 30 PPINs from
the literature (Table 1 and Methods) to cover a range of source
organisms and experimental techniques. The set includes early
milestone studies on model organisms35 as well as one of the most
recent high-confidence human PPIN12. The number of short loops of
length 3, 4, 5 and 6 in each of PPINs was counted using the Loop-
length bounded Depth First Search algorithm (Methods). In all cases
the number increases with loop length nearly exponentially
(Table 1). No significant correlation is seen between loop numbers

and any of the topological properties of the network, except for the
first eigenvalue of the graph adjacency matrix (Supplementary Table
S1). This property is related to the occurrence of hub nodes,
suggesting that networks richer in hubs have also more loops. The
unusual value of zero for loops in S. cerevisiae XII could be related to
the quality of this specific network.

Short loops are an intrinsic property of PPINs. Previous studies
demonstrated the importance of defining reference (null) models
for network analysis. Ideally an analytical formulation for such mod-
els would guarantee a statistically reliable comparison21,22. Such ana-
lytical formulation is not currently available for short loops, therefore
we introduced a reference model by a process of randomisation of the
original network using Markov Chain Graph Dynamics (MCGD;
Methods), rewiring the network under topological constraints to
generate a tailored ensemble of random graphs directly comparable
to the original one. To obtain null models characterised by each
network, two sets of constraints were selected: a) the degree distri-
bution and b) the degree distribution and degree-degree correlation.
Such constraints provide an avenue to independently test the influ-
ence of the degree-degree correlation on the number of loops and on
their change upon randomisation. In this respect our previous
study11 demonstrated its usefulness in detecting experimental biases
embedded in PPINs. The degree-degree correlation is related to the
assortativity. This is simply the Pearson coefficient of the degree-
degree correlation distribution (Supplementary Material).

For all datasets we performed five independent simulations of
MCGD of 100 x number of interactions (NI) edge swapping moves,
measuring the number of loops of length 3, 4, 5 and 6. The extent of
randomness was monitored by measuring the Hamming distance
between the original and the randomised networks. In all simulations
the distance dropped to less than 0.02 within the first 10 x NI steps,
confirming that no memory of the global structure in the original
network was retained during MCGD. Therefore the randomisation
process effectively removes the local structure of the original net-
work. After this initial change, the number of loops generally stabi-
lised to a constant value when the simulations reach convergence to a
fully randomised state. Figure 1a–d report the variation in the num-
ber of loops during MCGD for a H. sapiens PPIN12 (Supplementary
Figure S1 for all other networks). The low variability across the
replicas (error bars in the figures) confirms the reproducibility of
the MCGD procedure. The trend of variation is the same indepen-
dently of loop length. The number of loops decreases steeply within
the first 10 x NI steps under both constraints. However, the reduction
is smaller when the degree-degree correlation is constrained (blue
line), suggesting that the wiring of the original network is influenced
by this topological property. The structure of these loops may be
dependent on the connectivity of the surrounding nodes and the
relative degree-degree distribution. Conversely, this implies that
the information contained in such properties may be associated with
the occurrence of loops in the original network. However the degree-
degree correlation is insufficient to fully reconstruct loop wiring in
networks due to the lack of correlation between this property and the
number of loops (Supplementary Table S1).

Short loops are related to the quality of the PPIN. The trend of change
in the number of loops during MCGD is similar for different loop
lengths in the same network. Therefore, for simplicity we focused our
comparative analyses on loops of length 3. These are related to the
clustering coefficient commonly used to characterize the structure of
networks (Supplementary Material). To assess effects of the different
data sources, we compared the human PPINs obtained by different
methods. Figure 1e–h shows the variation in loop counts for PPINs
from Y2H36,37, AP-MS38 and database integration20, which have dif-
ferent trends during MCGD analyses. The constraint of the degree-
degree correlation keeps the number of loops closer to that of the
original network, supporting that this topological property is related
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Figure 1 | (a–d) Number of loops of length 3–6 in the H. sapiens V (BP-MS) network during randomisation. The number of loops per edge during

Markov Chain Graph Dynamics (MCGD) is reported for loops of length 3 (a), 4 (b), 5 (c) and 6 (d) in the H. sapiens V (BP-MS) network.

Simulations were performed under two set of constraints: 1) degree distribution {k} (red line) and 2) both degree distribution {k} and degree-degree

correlation {k,k9} (blue). (e–g) Number of loops of length 3 in four different H. sapiens networks during randomisation. The number of loops per edge

during MCGD is reported for loops of length 3 in four human PPINs from different experimental techniques and research groups: H. sapiens I (e), II (f),

III (g) and VI (h). Colour coding as in Figure 2a. Details on network properties, experimental techniques and related literature references are reported in

Table 1.
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to the entire topological wiring. The observed trends in changing the
number of loops during MCGD are more similar for related experi-
mental sources. In line with our previous results11, Figure 1e–h high-
lights that the information from degree-degree correlation is
sensitive to the different experimental biases reflected in the derived
PPINs11. This suggests that the quality of the PPINs may have a
strong effect on the number of loops and on their variation upon
randomisation.

While highly variable at first glance, the trends of loop numbers
upon MCGD can be classified into few general patterns by compar-
ing the number of loops in the original network and in the two
randomised ensembles obtained by MCGD (Methods). Four distinct
patterns were detected in our simulations, which are represented in
the schematic shown in Figure 2a. The number can increase under
both constraint sets (purple frame top left), increase in one case and
decrease in the other (pink frame top right), or decrease in both cases
(cyan/green frame bottom panels). For the first two patterns, impos-
ing only a constraint on the degree distribution generates an increase
in the number of loops and this is always steeper than with the more
stringent constraint of the degree-degree correlation. When
decreases in the number of loops are detected for both constraint
sets this could be steeper (cyan) or flatter (green) in the presence of a
constraint affecting the degree-degree correlation term.

Few networks show irregular patterns under MCGD (grey labels
in Table 1), but in general the pattern of change in loop number is
consistent for networks from the same experimental source
(Table 1). This suggests that the quality of the initial network or some
of its topological properties may play a role in defining the evolution
of loop wiring under randomisation. To investigate these aspects we
performed a Principal Component Analysis (PCA) on the variables
describing some typical topological properties of networks
(Methods). A projection of the networks in the space defined by
the first two PCs is reported in the biplot in Figure 2b. The direction
of the original variables in this space is indicated by orange arrows
and the networks are colour-coded according to the pattern colours
in Figure 2a. The plot confirms that the degree-degree correlation is

an effective index to discriminate between networks from different
experimental sources11, but it also highlights the role of the network
size (n. edges) and the relationships between nodes (assortativity/
average eigenvector centrality) in defining different behaviours
under randomisation. There is a clear separation between the net-
works with a specific pattern (green) from the others. Interestingly,
these correspond to the networks generally considered of higher
quality11,12. The pattern associated with these high quality networks
shows that a constraint on the degree-degree correlation is helpful in
preserving some of the original loops (higher number of resilient
loops in the green frame of Figure 2a).

Resilient loops have functional importance. It is particularly relevant to
identify and characterise how many and which loops are preserved
upon randomisation with a constraint on the original degree-degree
correlation. In the high-confidence human PPIN (BP-MS)12, in general
13–18% of loops were retained after randomisation (Supplementary
Table S2). Specifically, the common ones across the replicas account for
8,342 and 219,217 loops of length 3 and 4 involving 58 and 60 proteins
respectively. The sub-network of proteins including only these loops
shows a highly connected set with a predominance of ribosomal pro-
teins and RNA processing proteins (Figure 3). This suggests an essen-
tial core set that may be resilient due to its functional importance.
Indeed, these proteins and their interactions in resilient loops are con-
sistent with cluster structures detected by computational methods such
as MCODE39 and Cluster One40 (Supplementary Table S3–5, Figure
S2). In addition, while these methods mainly identify the ribosomal
protein complex as the most important cluster, with inclusion of few
additional proteins, the set of resilient loops after MCGD includes a
sensibly larger number of critical accessory proteins (Supplementary
Table S6) connected to the ribosomal complex supporting the hypo-
thesis of an important functional role for short loops. The detection of a
resilient loop set could complement cluster analysis in the functional
annotation of core sets in PPINs.

The resilient loops contain proteins that are known to interact and
have functions in transcription, hnRNA splicing and translation.
Specifically, the ATP-dependent helicase, DHX9 is involved in

Figure 2 | (a) Representative of four recurrent trends in the change of loop number during randomisation. Four distinct and recurring trends were

identified in the change of loop number during MCGD: (Purple frame; top left) increase under both constraint conditions (e.g. M. loti network);

(Pink frame; top right) increase under constraint on {k} and decrease under constraint on both {k} and {k,k9} (e.g. H.sapiens VIII); (Cyan frame) decrease

under both constraints with a steeper reduction under constraint on {k} and {k,k9} (e.g. C. elegans II); and (Green frame; bottom right) decrease under

both constraints with a steeper reduction under constraint on {k} (e.g. H. sapiens VI). Colour coding as in Figure 1. (b) Network classification by Principal

Component Analysis. Biplot of the first two principal components (PC1-2) of the measured network topological properties. The 30 PPINs are reported as

circles numbered according to Table 1 and colored according to the trend in change of loop numbers (Figure 2a). Vectors representing the original

variables included in the PC analysis are projected into the PC1/PC2 plane and reported as oranges arrows. Details on network properties are reported in

Table 1.
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unwinding double-stranded DNA and in RNA-dependent processes
in all three of these functions41. Additionally, DHX9 binds another
protein on the list, ILF3, to regulate gene expression42. ILF3 and ILF2
interact and are core components of the NFATc transcription factor,
which regulates gene expression during T cell activation, including the
IL2 gene43–45. DHX9 is also a component of the coding region deter-
minant (CRD) complex containing HNRNPU that stabilises MYC
mRNA46 and is required for the translation of mRNA containing
the 59 post-translational control element sequence47. A number of
ribonucleoproteins in the U2 snRNP splicing complex recognise the
39 splice site for hnRNA48. These include U2AF1, U2AF2, SF3A1 and
HNRPM and each of these, together with NCSTN and DHX9 were
independently identified in soluble nuclear protein complexes12. The
diversity of proteins and their functions suggests that resilient loops
are not limited to the predominant ribosomal proteins but also include
other protein interactions governing functional processes of the cell.

Functional specialisation of short loops in PPINs.
Short loops have a high degree of functional consensus. The evidence
for functional importance of specific short loops suggests that in
general loop motifs may perform dedicated biological functions.
This was shown for regulatory networks29 but no exhaustive study
has been performed on PPINs. In this study, a human PPIN of 622
soluble protein complexes detected by BP-MS12 was employed to
investigate the biological function of short loops. The original study
reported some examples of relations between protein complexes,
evolutionary conservation and disease. This study presents a
comprehensive functional analysis of short loop interactions in the
BP-MS network in comparison with other human PPINs.

We reasoned that if all the proteins in a loop share a common
function or process, the loop might be the essential unit delivering
that function or process. To test this hypothesis we annotated the
proteins with GO terms33 and defined the concept of functional
consensus (Figure 4). This is the percentage of common terms
among all proteins in a loop, independently of the level in the GO
hierarchy. The results of the functional consensus analysis are
reported in Figure 5. The barplot in panel 5a shows the fraction of
loops having a specific percentage of common GO terms in the BP-
MS network of protein complexes12. The majority of short loops
share at least one biological function. This confirms that the degree
of functional consensus is generally high (Figure 5a). To address the
influence of highly connected complexes and the effects of including
other human PPINs, additional datasets were examined (Figure 5b–
d). First, we removed all proteins of the large ribosomal subunit to
reduce possible biases towards this large set of extensively interacting
proteins with well-annotated functional terms (Figure 5b). Secondly,
we generated an integrated human PPIN (Figure 5c) from datasets
obtained with different detection methods such as BP-MS12, Y2H49,
database collection50, and the 3D interactome database19. Finally, we
measured the functional consensus for the integrated human PPIN
obtained after excluding data from BP-MS (Figure 5a). The results
demonstrate that the extent of functional consensus is not biased by
highly connected complexes (Figure 5a–b) or by the network source
(Figure 5a and 5c). The statistical significance of these results was
verified by a resampling randomisation test. The results in Figure 5e–
g show the distribution of the percentage of functional consensus and
demonstrate that loops in PPINs are significantly enriched in pro-
teins with shared functional consensus annotations compared with a

Figure 3 | Sub-network of resilient loops preserved after randomization of H. sapiens V network. The network of proteins and interactions included in

loops of length 3–4 preserved after MCGD in the H. sapiens V network. Only loops consistently preserved in five independent simulations are reported.

A core set of ribosomal proteins was detected and is reported in grey in the figure.
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random set. These data confirm that the enrichment in functional
specialisation of loop motifs is a property of PPINs.

Short loops are enriched in biological functions associated with specific
cellular mechanisms. In addition to the high degree of functional
consensus in short loops, specific biological functions are more
highly represented in short loops compared to the original network.
Figure 6a describes the frequency of functional terms for the network
and loops of different lengths. Three distinct trends were identified:
Trend 1 is associated with a group of GO terms enriched in loops
compared with the overall network. In contrast, Trend 2 is a group of
terms with higher occurrence in the network. Trend 3 shows a
remarkably similar percentage of occurrence in short loops, which
decreases with the loop length (12 6 2%, 7.1 6 0.7%, 3.8 6 0.4%).
These results suggest a complementarity between the occurrence of
GO terms in the network and in motifs. As for the analysis of func-
tional consensus, the calculation was replicated after excluding the
highly connected 60S ribosome complex (Figure 5b). Interestingly,
only two trends are visible in this case (Figure 6b). All terms of Trend
3 have a higher occurrence in the network, but as a part of Trend 1
(now combined in Trend 4). On the other hand, the frequencies of
the remaining terms of Trend 1 decrease and follow Trend 2 (now
combined in Trend 5). Figure 6c summarises these changes and
reports the number of terms in each of the groups (detailed terms
in Supplementary Table S7). The comparison of terms in the network
and short loops shows that biological functions are more enriched if
proteins in the network are associated with global processes such as
‘‘organismal process’’ and ‘‘developmental process’’ but also a few
specific functions such as ‘‘DNA-templated transcription’’ and its
regulation (terms in Trend 2 and about half of the terms in Trend
5), while ‘‘nucleobase-containing compound metabolic process’’
including ‘‘mRNA metabolism’’, ‘‘gene expression’’, and ‘‘viral

Figure 4 | Example of functional consensus in a loop of length 3.
Functional consensus was defined as the percentage of GO terms shared by

all the proteins in a loop. An example is reported for the loop of length 3

including ACTR1A, DCTN2 and MCM7. Common terms are reported in

the central circle. The functional consensus is calculated as the percentage

of common GO terms (see the main text for details).

Figure 5 | Functional consensus in loops of length 3–5 in the human PPINs. The barplots in panel (a–d) report the fraction of loops of length 3, 4, and 5

by percentage of functional consensus binned at intervals of 25%: (a) H. sapiens V (BP-MS) network; (b) H. sapiens V (BP-MS) without the largest

complex of ribosomal proteins; (c) integrated human PPIN obtained by combining H. sapiens IV, H. sapiens V (BP-MS), H. sapiens VII and H. sapiens

VIII; d) integrated human including only H. sapiens IV, H. sapiens VII and H. sapiens VIII. The density plots in panel (e–g) report the comparison for the

distribution of functional consensus in loops of length 3 (e), 4 (f) and 5 (g) with corresponding randomised samples (Methods for details).
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processes’’ always emerge in short loops independently of the pres-
ence of highly connected ribosomal proteins (28 of Trend 1).
However, biosynthetic processes including ‘‘RNA biosynthetic pro-
cess’’, ‘‘protein complex subunit organization’’, and ‘‘localization
functions’’ involving ‘‘transport’’ and ‘‘protein localization’’ are par-
ticularly enriched in short loops but strongly affected by the inclu-
sion/removal of ribosomal proteins (half of terms in Trend 5 deriving
from Trend 1). Some groups of functions such as ‘‘cell cycle’’ regu-
lation processes and ‘‘antigen processing’’ are enriched in loops when
the ribosomal proteins are excluded (Trend 4 from Trend 3). Overall,
these results indicate that short loops perform specialized functions
complementary to the ones performed by complex protein commun-
ication pathways distributed across the whole PPIN, which include
metabolism, cell growth and death, and immune functions. This
suggests that loops can be used to extend or predict the functional
annotation in PPIN or in pathway analyses. For example, Figure 7
presents the KEGG34 pathway of cell cycle regulation annotated with
the proteins from short loops of length 3 and 4 with the GO term ‘‘cell
cycle’’ (Supplementary Table S7–8). The sub-network of short loops
is strongly wired to the KEGG pathway throughout the cell cycle
stages, although only a small number of proteins (in red) map
directly to the pathway. Loop proteins extend the scope of the
KEGG annotation: some of the proteins and their interactions have
a role in connecting to functional components of the cell cycle such as
DNA replication, DNA repair, DNA damage checkpoint, and struc-
tural maintenance of chromosomes (clusters in green backgrounds).
Also, several proteins interconnect proteins from different functions
or different phases of the cell cycle such as MSH2 and MSH6, DNA
mismatch repair proteins, belonging to a loop with PCNA and
RAD21.

These results suggest a scenario in which specific functions are
delivered through local, short range units and regulated by large long

range modules. This is in line with an emerging vision of PPINs as a
modularized system composed by sub-networks of proteins (i.e.
communities) of different sizes where the interplay of local motifs,
such as loops, collaborate to regulate the entire network through a
complex set of interactions.

Discussion
Several strategies can be used to identify a minimal group of nodes in
a graph by either extracting clusters under specific topological con-
straints20,51 or by selecting nodes consistently with an annotated
property. A different approach is based on looking for pre-existing
simplified motifs that can be computationally detected relatively
easily31. Previous studies reported the detection of motifs based on
their overrepresentation within networks52 or their occurrence in
pre-compiled representative subgraph sets (Power Graphs28 or
Graphlets22). Our contribution differs from previous approaches
on three levels. First, we directly counted the occurrence of motifs
independently from the local subgraph environment of the motif.
Secondly, we selected a specific motif type, non-intersecting closed
loops, of different lengths without imposing specific interaction pat-
terns (i.e. feed-forward loops). Thirdly, we estimated the statistical
significance of motifs by comparison with tailored random graph
ensembles21 with comparable topological constraints, instead of
using a general random model. Among the different motifs, short
loops have a two-fold advantage: their relevance can be directly
validated with information-theoretic approaches and their func-
tional unity can easily be challenged by targeted experiments, such
as selective knockout or siRNA/RNAi silencing experiments.

The inclusion of loop motifs in PPINs can be explained by their
ability to perform specialised functions. We demonstrated this by
annotating the proteins in a series of human PPINs with GO terms

Figure 6 | Frequency of GO terms in loops of length 3–5 and in the network of H. sapiens V (BP-MS). The plots report the relative frequency (in %) of

GO terms in the network and in loops of length 3, 4 and 5: (a) H. sapiens V (BP-MS) and (b) H. sapiens V (BP-MS) without the largest ribosomal

complex. The values for each GO term are coloured according to their trend: higher frequencies in the loops than in the network (Trend 1 in red and Trend

4 in purple); higher frequency in the network (Trend 2 in blue and Trend 5 in orange) and lower frequencies in the loops with a consistent value

independent by the loop length (Trend 3 in green). The relationship between terms before and after the removal of ribosomal proteins is summarised in

the diagram in panel (c).
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and then by estimating the degree of consensus in the functional
terms for each loop. The results showed that, statistically, proteins
in a loop are specialised to perform common functions. While pre-
vious studies demonstrated functional specialisation for specific reg-
ulatory motifs31 or loops in specific cellular sub-networks53, this is the
first comprehensive analysis covering loops of different lengths, net-
works from different species and extensive functional annotation.
Moreover, these specialised functions are highly enriched in the loops
compared to the overall network, while it is the opposite for regula-
tory functions. This suggests a model of cellular life in which regula-
tory processes are distributed over the network and they cover single
functions that are performed by simple local motifs. This is consistent
with a previous study reporting that local motifs are critical for the
delivery of biological functions and their tendency to aggregate in
functional units is not a trivial effect of statistical enrichment54.

Overall our results show evidence of three important roles of loop
motifs in PPINs: first, loops contribute to define the wiring and
topological properties of the network; second, they have a critical
role in performing dedicated biological functions; and third, they can
provide an indirect measure of the quality of the network model.

Evidence for a specific role of loops in defining the wiring of the
networks was demonstrated by comparative analysis of their occur-
rence in PPINs from different species and from different experi-
mental sources. In particular, we tested the effect of constraining
the degree-degree correlation11,21 during a randomisation process.
Indeed, the information contained in this topological measure fur-
ther contributes in defining the occurrence and structure of loops as
previously shown for other network features11. We suggest that loops
contain unique information on the biology of the system. Indeed we
found that their number and resilience under randomisation are
related to the quality of the underlying network: higher quality (i.e.
more biologically consistent) networks have similar proprieties
regarding loop occurrence and resilience. Therefore, we reinforce
the importance of core units in PPINs, but different from previous
reports6,55 we demonstrate here that these units are composed of
geometric short loop motifs. To quantify this we implemented a
novel and efficient protocol that can be extended to the study of other
network motifs under different topological constraints.

Evidence for the functional role of loops was shown by the analysis
of common terms after GO annotation. We found that generally

Figure 7 | Example of annotation enrichment of the cell cycle pathway by inclusion of loops of length 3. The diagram reports the KEGG cell cycle

pathway (yellow background) annotated with the proteins and interactions from loops of length 3 that have a ‘‘cell cycle’’ GO term. Loop proteins

mapping directly onto the KEGG pathway are represented in red boxes. Large functional complexes and the cell cycle stage-specific complexes are

highlighted by green backgrounds.
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loops have a functional purpose, as shown by the consistency of GO
terms associated with their proteins. Indeed, proteins are recruited to
form a complex to perform a set of specific biological functions and
loops may act as the basic unit to build more complex assemblies54.
Additionally, a high degree of functional consensus may be exploited
to predict biological processes of partially annotated protein com-
plexes56,57. More interestingly, loops of different lengths show a
slightly different enrichment for some terms, but strong differences
in functional annotation when compared with the remaining pro-
teins in the network. We found that the most resilient group of loops
is associated with essential functions that include transcription, splic-
ing and translation. By comparing different human PPINs we also
found that functional consistency decreases with the decrease in
network quality. This is in line with recent evidence55 that during
the years the human interactome from published data is becoming
more compact and less sparse. A defined functional core has emerged
with the increase in quality. This is also associated with the discovery
of a core sub-network of functional importance that is generally the
target of diseases6.

Therefore, our findings show convincing evidence for a practical
use of loops in investigating the quality of detected PPINs. As prev-
iously discussed, the network quality in terms of accuracy of deter-
mination correlates directly with a) the pattern of change in the
number of loops under randomisation, b) the degree of functional
consensus and c) the occurrence of resilient core modules after ran-
domisation. On the basis of this we suggest that newly determined
PPINs could be validated against recently published high quality
networks12 by comparison of their loop properties, measured against
a null model of network interactions.

We demonstrate here that PPI loops contain significant informa-
tion on functional mechanisms underlying the biology of the cell.
They can be instrumental in the identification of essential modules
delivering critical functions. Additionally they contribute to com-
plete/validate functional annotation and to extend the annotation
provided by pathway analysis, as shown in the case of cell cycle
proteins. Finally, their suitability for experimental targeting allows
for direct validation of predictions and identification of unannotated
proteins in complexes that are abnormal in specific diseases.

Methods
Data Set. PPINs are graph models where proteins are described by nodes and
interactions by edges. They are conventionally represented by binary matrices where
the presence (or absence) of interactions between each pair of proteins is recorded
with 1 (or 0). In this study self-interactions and duplicate interactions where removed.
A data set of 30 PPINs including 11 species was derived from the literature (Table 1).
The data set includes 25 PPIN previously described in a large-scale analysis study
from our lab11 and four recently published PPINs. The set includes nine eukaryotes
(Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Plasmodium
falciparum and Saccharomyces cerevisiae) and six bacteria (Campylobacter jejuni,
Escherichia coli, Helicobacter pylori, Mesorphizobium loti, Synechocystis and
Treponema pallidum). These interaction data were originally derived by six different
methods: Yeast-two-Hybrid (Y2H), Affinity Purification-Mass Spectrometry (AP-
MS), biochemical isolation of protein complexes by MS (BP-MS), Protein
Complementation Assay (PCA), database deposition, and data integration. The most
recently added PPINs include a network of human soluble proteins12 with high-
confidence physical interactions and three human 3D interactome networks18–20.

Algorithm for loop detection. The definition of a loop in this study is a closed path
without repeating nodes or edges (Supplementary Figures S5). To detect all loops in
the network, an algorithm based on depth-first-search (DFS) bounded by loop-length
was implemented in C. From a node assumed as an origin of a loop, a path is extended
in depth by adding two directly connected forward nodes. Then the connected nodes
are tested for existence of a common neighbour (directly interacting) node. Once
found, the common node is added to the loop and the extension step is performed
again until no common nodes are detected or the length of the path is equal to six. The
algorithm finds all possible loops of the network in power of loop-length time O(n?l)
where n is the number of proteins in the network and l is the loop length.

Degree-Constrained Graph Dynamics Based on Edge Swaps. We compare the
values of observables in our protein interaction networks with those observed in
suitable null models, i.e. random networks which share some properties of the
networks under study. We use two types of null models: random networks with the

same degree distribution as the original protein interaction networks and random
networks with the same degree distribution and degree-degree correlations
(Supplementary Material). Such tailored graph ensembles with controlled degree
distribution and degree-degree correlations constitute a significant improvement, as
null models, on the fully random graph ensembles, which assume degrees
uncorrelated and Poissonian distributed. These can generate highly sophisticated null
models by exact and unbiased algorithms. In addition, our method is efficient,
because it does not require preprocessing and runs in linear time compared to other
PPIN analyses methods58.

In order to generate the above null models we use rewiring algorithms that ran-
domise protein interaction networks, yet conserving the degrees of its nodes, by
repeated applications of edge swaps that act on quadruplets of nodes. Edge swaps are
proposed at each time step and accepted with an acceptance rate which ensures
convergence of the graph dynamics to equilibrium networks with controlled degree-
degree correlations (Supplementary Material).

The observables under study are monitored during the whole graph dynamics until
they stabilise to their equilibrium values, against which observations in the original
protein interaction networks are benchmarked. The use of two different null models,
random networks with the same degree distribution and degree-degree correlations
of the original PPINs and uncorrelated networks with the same degree distribution,
respectively, allow us to quantify the extent to which degree-degree correlations are
responsible for the behaviour that we observe in the PPINs.

Detection of changes in loop number during MCGD. In this study, tailored
ensembles of randomised graphs were generated by Markov Chain Graph Dynamics
to assess the difference in the number of loops between biological and random
networks of the same family21. To perform the randomisation preserving specific
topological features of the initial networks, the simulations were performed
constraining 1) the original degree distribution or 2) the degree distribution and
degree-degree correlation (previous paragraph for details). The changes in the
number of loops during MCGD showed a series of different patterns according to the
constraints, the loop length and the original network. These patterns were classified
into eight groups according to the number of loops in the initial network compared to
the final randomised network (higher/lower). Considering both simulations under
constraint 1) and 2), there are six possible trends. Four of these trends were detected in
the simulations and are shown schematically in Fig. 2a.

Classification of PPINs according to their topological properties. Principal
Component Analysis (PCA) was performed on a set of variables describing the
topological properties of the 30 PPINs in order to group them according their
network features. After correlation analysis, four independent variables were selected:
number of interactions, degree-degree correlation, assortativity, and the average
eigenvector centrality. These variables describe the size of the network, their
connectivity and the centrality of the nodes. The location of the networks in the space
described by the first two PCs was used to identify groups by visual inspection. The
grouping was then compared with the grouping associated to the pattern of decrease/
increase in number of loops after randomisation.

Analysis of functional enrichment by GO annotation. The recent high-confidence
human soluble protein interaction network12 was used for functional analyses. To
reduce possible biases from large assembled and extensively annotated proteins12, the
data set excluding the large ribosomal protein complex was also analysed. The
domain of ‘biological process’ in the GO vocabulary was used for the functional
analysis of each PPIN. The enrichment in functional annotation was recorded for the
set of proteins in short loops of different length compared to the remaining proteins in
the network. Additionally we defined the concept of functional consensus as the
fraction of annotated GO terms that are common to all the proteins in a loop. The
functional consensus can be considered a microscopic measure of functional
enrichment. In the analysis of the frequency of functional terms all general terms at
the top of the GO hierarchy were excluded as they are common to all annotated
proteins. GO terms with more than 4 different children terms at level 2 were excluded.

Software for network visualisation and statistical analysis. Loop-detection and
Markov Chain Graph Dynamics were implemented in C. Functional and statistical
analyses were performed using in-house python scripts, R 3.0.2, the Bioconductor59

packages Uniprot.WS and GO.db and QuickGO. Network images were generated
with Cytoscape 3.0.260.
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