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Uncovering topologically nontrivial states in nature is an intriguing and important issue in recent years.
While most studies are based on the topological band insulators, the topological state in strongly correlated
low-dimensional systems has not been extensively explored due to the failure of direct explanation from the
topological band insulator theory on such systems and the origin of the topological property is unclear. Here
we report the theoretical discovery of strongly correlated topological states in quasi-periodic Heisenberg
spin chain systems corresponding to a series of incommensurate magnetization plateaus under the presence
of the magnetic field, which are uniquely determined by the quasi-periodic structure of exchange couplings.
The topological features of plateau states are demonstrated by the existence of non-trivial spin-flip edge
excitations, which can be well characterized by nonzero topological invariants defined in a two-dimensional
parameter space. Furthermore, we demonstrate that the topological invariant of the plateau state can be read
out from a generalized Streda formula and the spin-flip excitation spectrum exhibits a similar structure of
the Hofstadter’s butterfly spectrum for the two-dimensional quantum Hall system on a lattice.

S
ince the discovery of topological insulators1–3 nearly ten years ago, topological states have attracted great
interests in condensed matter physics both theoretically and experimentally4–6. A hallmark feature of these
exotic phases is the appearance of gapless edge states which is robust against local perturbations as long as

the bulk gap is not closed. To characterize these states, global topological invariants rather than local order
parameters should be introduced. Although topological states based on band theory have been well understood,
till today the goal of searching topological states in strongly correlated systems remains fascinating and
challenging7–14.

While most of previous studies on topological states focus on either two-dimensional (2D) or three-dimen-
sional materials, recent researches on one-dimensional (1D) periodic and quasi-periodic systems have revealed
these systems exhibit non-trivial topological properties15,16 due to a nontrivial link between these 1D systems and
2D topological insulators15–21. Experimentally, using the propagation of light in photonic waveguides, topologic-
ally protected boundary states16 and phase transition are also observed18. The 1D quasi-periodic crystal can be
viewed as the simplest realization of a topologically nontrivial insulator. A crucial question is: for more general 1D
systems which inevitably suffer from strong quantum fluctuations, can topological states induced by the quasi-
periodic modulation survive in the strong correlated regime? If these states exist, they are undoubtedly the
strongly correlated topological states being persistently sought by condensed matter physicists. The existence
of powerful numerical methods for 1D correlated systems, e.g., the density matrix renormalization group
(DMRG) method, permits us to explore novel correlated topological states in a numerically exact way.

In this paper, we investigate the paradigmatic strongly correlated model, i.e., quantum Heisenberg model on a
1D quasi-periodic lattice. We report the findings of a series of non-trivial incommensurate magnetization
plateaus as consequence of the existence of large excitation gaps in quasi-periodic quantum spin chains. Quite
surprisingly, these incommensurate plateaus will approach to specific non-trivial irrational values which are
uniquely determined by the quasi-periodic modulation parameter in thermodynamic limit. The nontrivial
topological properties of the incommensurate plateaus are unveiled by using two independent methods, i.e.,
calculating the edge excitations and topological invariants, both of which are well established and have been
widely adopted in the study of topological states4,5,22. Under open boundary conditions (OBC), we find that these
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non-trivial plateaus can host robust edge spin-flip excitations which
connect the lower and upper excitation bands. Different plateau
states can be well characterized by topologically invariant Chern
numbers, which are defined in a 2D parameter space and are related
to the height of plateaus via a generalized Streda formula. It is inter-
esting that the spin-flip excitation spectrum of the quasi-periodic
Heisenberg model exhibits a butterfly-like structure, which resem-
bles the Hofstadter spectrum of the 2D quantum hall system.

Results
Incommensurate plateaus. We consider a general Heisenberg spin-
S chain with quasi-periodic geometry which is described by

H~
X

i

Ji Sx
i Sx

iz1zSy
i Sy

iz1zSz
i Sz

iz1

� �
ð1Þ

with

Ji~J 1{l cos 2paizdð Þ½ � ð2Þ

where we take the quasi-periodic modulation parameter a g (0, 1) as
an irrational number. The exchange strength Ji is quasi-periodic with
modulation strength l and phase factor d. The special case with l 5 0
reduces the Hamiltonian to the homogenous Heisenberg model. In
this work, we focus on the anti-ferromagnetic (AFM) couplings, i.e.,
J . 0 and jlj, 1. For convenience, J 5 1 is taken as the unit of energy.
First we study the magnetization process under magnetic field h which
couples to the z component of spins23,24. The magnetization per spin is

defined as mz 5 Sz/L with Sz~
XL

i
Sz

i being the z component of the
total spin and L denoting the lattice size. In Fig. 1 we demonstrate the
magnetization curves of quasi-periodic spin-1/2 Heisenberg chain with

three typical irrational numbers (a) a~

ffiffiffi
2
p

{1
2

, (b) a~

ffiffiffi
3
p

{1
2

, and

(c) a~

ffiffiffi
5
p

{1
2

for different chain length L 5 50, L 5 100, and L 5

200 under periodic boundary condition (PBC) calculated by the
DMRG method. As the modulation of exchange coupling is quasi-
periodic, there is a mismatch between the N-th and the 1st bond as we
apply this periodic boundary condition, which contributes to the finite

size effect. Except for the trivial plateaus at mp~+
1
2

corresponding to

totally polarization and ignorable minor plateaus due to finite system
size, we can clearly observe the emergence of a series of unexpected
large plateaus. For different chain lengths with a specific quasi-period
a, the widths and positions of the plateaus are nearly unchanged. Take

a~

ffiffiffi
3
p

{1
2

as an example. From bottom to top, all the plateaus are

{
1
2
z 0,

18
50

,
19
50

,
31
50

,
32
50

,1

� �
for L 5 50,

{
1
2
z 0,

36
100

,
37

100
,

63
100

,
64

100
,1

� �
for L 5 100, and

{
1
2
z 0,

73
200

,
74

200
,
126
200

,
127
200

,1

� �
for L 5 200. As shown in Fig. 1,

the positions of these magnetization plateaus are fairly close to some a-
dependent values, e.g., mz < 2S 1 (a, 2a, 1 2 2a, 1 2 a) for

a~

ffiffiffi
2
p

{1
2

, and mz < 2S 1 (a, 1 2 a) for a~

ffiffiffi
3
p

{1
2

and

a~

ffiffiffi
5
p

{1
2

, where S 5 1/2.

The above incommensurate magnetization plateaus for finite-size
systems, which approximate to the special values 2S 1 (a, 2a, 1 2

2a, 1 2 a), will tend exactly to these values in thermodynamic limit
L R ‘. For brevity, we mark these irrational plateaus from bottom to
top as Pa,P2a,P22a,P2a. Take a specific plateau Pa as an example. As a
is irrational, La is not an integer. Denote Nl and Nu as the nearest
lower and upper bound integer with Nl , La , Nu. In our spin
model, magnetization for the system with Nl or Nu up spins is ml

; 21/2 1 Nl/L or mu ; 21/2 1 Nu/L, respectively. Obviously, we
have ml , Pa , mu. For a finite chain with the length L, our DMRG
results show that the magnetization plateau is located at either ml or
mu for a given magnetic field as illustrated in Fig. 2. When the length
L increases, positions of magnetization plateaus exhibit damped

oscillations. For different a, e.g., (a) a~

ffiffiffi
2
p

{1
2

and (b)

a~

ffiffiffi
3
p

{1
2

, the positions of plateaus will definitely tend to Pa 5

21/2 1 a as limL R ‘ml 5 limL R ‘mu 5 Pa. In thermodynamic
limit, these incommensurate plateaus will eventually evolve into

irrational magnetization plateaus Pa. Further we define al:
Nl

L

and au:
Nu

L
, where al , a , au and limL R ‘ au 5 limL R ‘ al 5

a. I f we consider these rational al and au modulation of spin chains
with length L, commensurate plateaus at ml and mu appear25. Based
on the above discussion, we can conclude that magnetization pla-
teaus for the quasi-periodic spin chain are totally determined by the
irrational modulation parameter a.

Topological edge excitations for plateau states. The emergence of
magnetization plateaus reveals that there exist finite excitation gaps.
The size of the gap is proportional to the width of the plateau. When
the phase d is adiabatically changed, we find that these non-trivial
plateaus can host continuous edge spin-flip excitations which
connect the lower and upper excitation bands just like those for
general topological states under OBC. The adiabatical evolution of
phase d can be regarded as a generalized Thouless charge pump26

with H(d 1 2p) 5 H(d). Define the spin-flip excitation energy as
DESz ~ESzz1{ESz . The spin distribution for this excitation is
DrSz

~rSzz1{rSz
, where rSz

ið Þ~ yh jSz
i yj i with y and ESz the

ground-state wave function and energy in the total Sz subspace. In

the following, we focus on the case of a~

ffiffiffi
2
p

{1
2

, for which there

exist five excitation bands separated by four large excitation gaps.
From bottom to top, these gaps lead to magnetization plateaus Pa,

Figure 1 | Magnetization curves for quasi-periodic AFM Heisenberg

spin-
1
2

chains. Magnetization versus h for systems with l 5 0.8, d 5 0 and

different chain lengths under PBC. From left to right, (a) a~

ffiffiffi
2
p

{1
2

, (b)

a~

ffiffiffi
3
p

{1
2

, (c) a~

ffiffiffi
5
p

{1
2

. L 5 50, 100 and 200 are represented by solid

(green), dashed dotted (blue) and dashed (red) lines, respectively. The

horizontal dashed (black) lines denote the specific a-dependent values

discussed in the main text.
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P2a, P22a and P2a in magnetization curves. The adjacent bands are
connected by several in-gap excitation modes with adiabatical
change of d as shown in Fig. 3(a). Further, these in-gap modes
under OBC are edge modes considering the spin-flip distributions
are mainly localized at two ends of the chain as illustrated in Fig. 3(b)
and Fig. 3(c). Our numerical results show that once the edge modes
touch the bulk band, the distributions will change side. With no gap
closing on path, the cyclical change of d leads to windings of edge
modes around excitation gaps27. The winding numbers for these four
non-trivial plateau states are 1, 2, 22, and 21, respectively.

Quasi-periodic spin-1 chains. We have demonstrated the non-
trivial edge excitations of incommensurate plateau states for quasi-

periodic spin-
1
2

chains. In this part, we extend the study to the quasi-

periodic spin-1 Heisenberg model. As has been noticed by
Haldane28,29 based on the low-energy effective field theory, half-
odd-integer and integer spin chain systems exhibit quite different
behaviors. The well known Haldane’s conjecture for homogeneous
Heisenberg AFM model states that the low energy excitation is
gapless for half-odd-integer spins while gapped for integer spins.

Figure 2 | Finite size effect for magnetization plateaus. Magnetization plateaus of incommensurate AFM spin-1/2 Heisenberg chains versus the chain

length L for systems with d 5 0, l 5 0.8 and different a under PBC. (a) Pa plateau for a~

ffiffiffi
2
p

{1
2

and h 5 22.2; (b) Pa plateau for a~

ffiffiffi
3
p

{1
2

and h 5 21.

Here mDMRG represents magnetization plateau calculated by the DMRG method. The black guidelines denote the corresponding irrational values of

magnetization plateaus in thermodynamic limit.
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Figure 3 | Spin-flip excitation spectrum of quasi-periodic spin-
1
2

AFM Heisenberg chain. (a) The spin-flip excitation spectrum DESz with respect to the

phase factor d for spin-
1
2

AFM Heisenberg chain with a~

ffiffiffi
2
p

{1
2

, l 5 0.8 and L 5 100 under OBC. The four large excitation gaps support the

magnetization plateaus Pa, P2a, P22a and P2a from bottom to top. (b) and (c) Distributions DrSz
of in-gap spin-flip excitation modes for plateaus P2a and

Pa, respectively. For each in-gap mode, Sz 5 mlL.
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Though the extension from the spin-
1
2

to spin-1 model is not

straightforward, topological states induced by the quasi-periodic
geometry exhibit some general behaviors. The magnetization
curves are uniquely determined by the quasi-periodic modulation

parameter a. Take a~

ffiffiffi
3
p

{1
2

for example. The magnetization

process is different from the spin-
1
2

model with the appearance of

more incommensurate magnetization plateaus by our DMRG
calculations. As shown in Fig. 4(a), for the finite spin-1 chain with
L 5 100 under PBC, the magnetization plateau emerges at {1

z 0;
36

100
,

37
100

;
73

100
,

74
100

; 1; 2{
74

100
,2{

73
100

; 2{
37

100
,2{

36
100

; 2

� �

from bottom to top. The existence of the middle zero-plateau is a
reminiscence of Haldane gap28. Other nontrivial incommensurate
plateaus will approach to 21 1 (a; 2a; 2 2 2a; 2 2 a) in
thermodynamical limit. Denote these plateaus as Pa, P2a, P22a, P2a.
In Fig. 4(b) we show the spin-flip excitations DESz with respect to the
phase factor d. For these non-trivial plateau states, there exist
continuous spin-flip excitations which connect the lower and upper
excitation bands. The corresponding spin-flip distributions of in-gap
modes for plateaus P2a and P22a as illustrated in Fig. 4(c) and Fig. 4(d)
clearly demonstrate that these in-gap modes are edge modes. Touching
with bulk bands changes the side of edge modes. From bottom to top,
the winding numbers for these four incommensurate plateaus are 1, 2,
22 and 1, respectively. On the contrary, the edge modes in the Haldane
gap do not connect different bands and the winding number is zero.

Topological invariants. According to the bulk-edge correspondence
for topological states, the existence of non-trivial edge states is
generally attributed to the non-trivial topology of bulk states27.
Such a correspondence holds true even for topologically nontrivial

interacting systems30–33. As both spin-
1
2

and spin-1 quasi-periodic

chains display nontrivial edge excitations, we can summarize that, for
a general spin-S chain with quasi-periodic modulation parameter a,
the nontrivial magnetization plateaus in thermodynamic limit
should appear at the following specific values: 6(S 2 a, S 2 2a,

…, S 2 na…) as long as S 2 na . 0. The differences for various
non-trivial plateau states are the number of edge states and the
winding pattern with respect to the phase factor d. A natural
question is how to define topological invariants to characterize
different plateau states. As a totally determines the position of
plateaus, the adiabatical evolution of d produces a family of
systems with quite similar magnetization curves, we can define the
topological invariants for the plateau states associated with excitation
gaps in a 2D manifold spanned by (h, d)26,34,35 where h is the twist
angle introduced by applying the twist boundary condition to the
many body wave function y. For an arbitrary site j, the twist
boundary condition is y(j 1 L, d) 5 eihy(j, d), which has been
widely used in spin systems36,37. The Chern number is defined as
the integral of Berry curvature34,35 F(h, d) on the 2D manifold
given by

C~
1

2p

ð
dhddF h,dð Þ,

F h,dð Þ~Im
Ly

Ld

Ly

Lh

����
� 	

{
Ly

Lh

Ly

Ld

����
� 	� �

:

ð3Þ

In table 1 we list the Chern numbers for several different
magnetization plateaus that we have calculated. We can
summarize that for the emergent plateaus 6(S 2 a, S 2 2a, …,
S 2 na…), Chern numbers are (+1, +2…). These Chern
numbers are equivalent to the winding numbers of corresponding
edge states. The Chern numbers and the positions of magnetization
plateaus can be unified in a generalized Streda formula38 for quasi-

periodic spin-S chains: Cp~
Lmp

La
.

Butterfly-like excitation spectrum. The incommensurate
magnetization plateaus and non-trivial topological properties are
totally determined by the modulation parameter a of quantum
spin chains. In contrast to the adiabatical change of d, variation of
a will change the structure of the excitation spectrum. To show the
dependence of the spin-flip excitation spectrum on a g (0, 1), we

calculate the spectrum with the variation of a under PBC for spin-
1
2
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Figure 4 | Spin-flip excitation spectrum for quasi-periodic spin-1 Heisenberg model. (a) Magnetization curves for AFM spin-1 Heisenberg model with

a~
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2

, l 5 0.3 and L 5 100 under PBC. The blue dotted lines are guidelines for the incommensurate plateaus. (b) Spin-flip excitation spectrumDESz

with respect to phase d for spin-1 AFM Heisenberg chains with a~

ffiffiffi
3
p

{1
2

under OBC. The five large excitation gaps correspond to magnetization

plateaus Pa, P2a, ‘‘Haldane’’ 0-plateau, P22a and P2a from bottom to top. (c) and (d) Distributions DrSz
of in-gap spin-flip excitation modes for plateaus

P2a and P22a, respectively. For each in-gap mode, Sz 5 mlL.
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and spin-1 systems in Fig. 5(a) and Fig. 5(b), respectively. It is
amazing that the spin-flip excitation spectrum of the quasi-
periodic Heisenberg model exhibits the similar structure of the
Hofstadter’s butterfly spectrum39. The spectrum is mirror

symmetric about a~
1
2

due to the invariance of Hamiltonian Eq.

(1) under transformation (a, d) R (a* ; 1 2 a, 2d). As a

increases from 0 to
1
2

, narrow bands merge into wider bands. For

the spin-
1
2

system, eventually three large bands and two large gaps

survive. Quite different from the spin-
1
2

case, there always exists a

Haldane gap in the middle of the excitation spectrum for the spin-1
system, and finally six large bands are formed with the evolution of a.

Another notable feature is the existence of in-gap states once La is
not an integer under PBC. Excitation spectrum of quasi-periodic
systems with irrational a always has in-gap states, which are the
origin of slightly change of plateaus in the magnetization curves.
While no in-gap states exist for the periodic commensurate system
with aL 5 integer, the existence of in-gap states for the incommen-
surate chain under PBC is due to the mismatch of exchange coupling
between the first and N-th site. To see clearly the distribution of the
in-gap state, we display real space profiles rSz of plateau states at

ml~{
1
2
z

10
50

and mu~{
1
2
z

11
50

for the system with a~

ffiffiffi
2
p

{1
2

and L 5 50 under PBC in Fig. 6. As shown in the figure, both states
exhibit similar distributions of incommensurate spin density waves
with the main difference occurring around the mismatched bond
between the final and first lattice site, which is clearly illustrated by
the distribution of spin-flip excitations.

Discussion
By investigating the paradigmatic Heisenberg model with quasi-peri-
odic geometry, we find a series of incommensurate magnetization
plateaus. Under OBC, these non-trivial plateaus can host continuous
edge states which connect the lower and upper excitation bands. The
Chern numbers defined in a 2D parameter space to characterize
different plateau states describe the winding patterns of edge modes.
The topological properties of the magnetization plateaus are coded in
a generalized Streda formula and the butterfly-like excitation spec-
trum. Our work unifies the quantum hall conductivity plateaus and
quantized plateau states for quasi-periodic spin models in the scheme
of strongly correlated topological insulators.

Our conclusion can be directly extended to the general XXZ spin
models, with the spin exchange term Sx

i Sx
iz1zSy

i Sy
iz1zDSz

i Sz
iz1. For

AFM couplings, we find that the anisotropic exchange interactions
do not destroy but stabilize these incommensurate plateaus as the
plateau width has a positive correlation withD in the whole regime of
D$ 0. The sweeping of the anisotropy parameter D produces a series
of Hamiltonians which exhibit non-trivial a-dependent magnetiza-

tion plateaus. Particularly, for the quasi-periodic spin-
1
2

chains, the

XX model with D 5 0 is exactly solvable and the non-trivial topo-
logical properties can be understood based on single-particle band
theory of free fermions via a Jordan-Wigner transformation, where
the latter can be exactly mapped to the famous 2D Hofstadter prob-
lem39. The extension to the anisotropic high-spin system is straight-
forward and the general rules we summarized remain valid.

Methods
The magnetization curves are determined by using the DMRG method which is the
most powerful numerical tool for studying 1D strongly correlated systems. For the

Table 1 | Chern numbers for plateau states of quasi-periodic Heisenberg spin chains (here a* 5 1 2 a)

quasi-period-a

a~

ffiffiffi
2
p

{1
2

a~

ffiffiffi
3
p

{1
2

a~

ffiffiffi
5
p

{1
2

mp Cp mp Cp mp Cp

spin-
1
2

6(S 2 a) +1 6(S 2 a) +1 6(S 2 a*) 61
6(S 2 2a) +2

spin-1 6(S 2 a) +1 6(S 2 a) +1 6(S 2 a*) 61
6(S 2 2a) +2
6(S 2 3a) +3 6(S 2 2a) +2 6(S 2 2a*) 62
6(S 2 4a) +4

0 1

−3

3

α

Δ 
E

S z
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Figure 5 | Butterfly-like spin-flip excitation spectrum for quasi-periodic Heisenberg models. Spin-flip excitation spectrum versus a for (a) spin-
1
2

and

(b) spin-1 chains with L 5 50 and d 5 0 under PBC, where a is swept with step 0.02 in interval [0, 1]. The blue squares from left to right denote special cases

with a~

ffiffiffi
2
p

{1
2

,

ffiffiffi
3
p

{1
2

and

ffiffiffi
5
p

{1
2

, respectively. Here we have taken l 5 0.8 for (a) and l 5 0.3 for (b).
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considered systems in the paper, the total Sz is a good quantum number. Ground state
energies in different subspace are compared to determine the magnetization under
the specific magnetic field h. Our DMRG simulations are rather reliable. The error
truncation of the reduced density matrix is up to 1028 to 10212. We utilize four to
fifteen sweeps to reach the convergence of the eighth digit for ground state energy per
site. We have checked the accuracy of the DMRG algorithm by comparing the results
from the exact diagonalization method on systems with lengths up to L 5 24.

The calculation of Chern numbers is settled in a 2D parameter space (h, d). The
Chern number is well defined for the ground state which is protected by a finite gap
under PBC. Numerically, the continuous 2D space are divided into a discrete mani-
fold40. For (h, d) g [0, 2p] 3 [0, 2p], we have analyzed different partitions: 5 3 5, 10 3

10, and 20 3 20 of the manifold and found the Chern numbers stay unchanged as long
as we are considering the plateau states.
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Figure 6 | Spin density distribution for plateau states. Real space profiles

of spin density and spin-flip excitation for plateaus states of the spin-
1
2

system with a~

ffiffiffi
2
p

{1
2

, l 5 0.8, d 5 0 and L 5 50 under PBC. Here rml L

and rmuL represent spin density distributions for states with mz~{
3

10
(Sz

5 215) and mz~{
7

25
(Sz 5 214), respectively, whereas

Drml L~rmuL{rml L represents the distribution of the spin-flip excitation

of the plateau state Pa.
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