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In complex financial systems, the sector structure and volatility clustering are respectively important
features of the spatial and temporal correlations. However, the microscopic generation mechanism of the
sector structure is not yet understood. Especially, how to produce these two features in one model remains
challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an
agent-based model to investigate the sector structure combined with volatility clustering. According to the
previous market performance, agents trade in groups, and their herding behavior comprises the herding at
stock, sector and market levels. Further, we propose methods to determine the key model parameters from
historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the
sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation
matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the
empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation
mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in
financial systems at the microscopic level.

F
inancial markets are complex systems with many-body interactions. In recent years, large amounts of
historical financial data have sparked the interest of scientists in various fields, including physicists, to
quantitatively investigate the properties of the markets. With physical concepts and methods, plenty of

results have been obtained1–19.
From the view of physicists, the dynamic behavior and community structure of complex financial systems can

be characterized by temporal and spatial correlation functions. In stock markets, it is well-known that the
volatilities are long-range correlated in time, which is the so-called volatility clustering2,3,6,7,20. As to higher-order
time correlations, it is discovered that the correlation between past returns and future volatilities is negative for
almost all the stock markets in the world4,11,21–24, while currently the correlation is found to be positive only for the
Chinese stock market11,25. In other words, the positive and negative returns influence the volatilities asymmet-
rically, which is known as the volatility asymmetry. During the financial crisis, the volatility asymmetry experi-
ences local minima for developed economies, while reaches local maxima for transition economies26. The spacial
structure of the stock markets is explored by investigating the cross-correlation of stocks12,18,27–35. With the
random matrix theory (RMT), communities can be identified, which are usually associated with business sec-
tors31–33. The cross-correlation matrix C of price returns is analyzed to investigate the interactions between
stocks12,18,29–35. The largest eigenvalue of C deviates significantly from the theoretical distribution of the
Wishart matrix, which is the cross-correlation matrix of non-correlated time series. This eigenvalue represents
the market mode, i.e., the price co-movement of the entire market, and the components of the corresponding
eigenvector is relatively uniform for all stocks. For developed markets, each eigenvector of other large eigenvalues
is dominated by the stocks in a certain business sector18,30,31. These large eigenvalues stand for the sector modes.

The spatio-temporal correlations are theoretically crucial in the understanding of the price dynamics, and
practically useful for the optimization of the investment portfolio. The sector structure and volatility clustering
are, respectively, important features of the spatial and temporal correlations, which we focus on in this paper. In
recent years, various models have been proposed to study volatility clustering with certain success6,15,36–39, but the
models for the sector structure are phenomenological and usually without interactions of investors12,40. On the
other hand, although many activities have been devoted to the sector structure, its microscopic generation
mechanism is not yet understood. Both the sector structure and volatility clustering are important characteristics
of stock markets, and it remains challenging how to produce these two properties in one model.

As a powerful simulation technique, agent-based modeling is widely applied in various fields37,38,41–45. Recently,
an agent-based model is proposed for simulating the cumulative distribution of returns and volatility clustering in
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stock markets15. The concept in constructing the model is to deter-
mine the key parameters from empirical data instead of setting them
artificially. In this paper, we construct an agent-based model with a
novel interaction mechanism, i.e., the multi-level herding, to invest-
igate the sector structure combined with volatility clustering.
Further, we propose methods to determine the key model parameters
from historical market data rather than from statistical fitting of the
results.

Results
In stock markets, the temporal evolution of stock prices and inter-
actions between stocks are complicated. The price dynamics of a
market naturally contains that of each individual stock. Recent
research has reported that the price dynamics of a market can be
decomposed into different modes of motion, such as the market
mode and sector mode18,30,31. The market mode is driven by interac-
tions that are common for all stocks in the market, and the sector
mode is dominated by interactions of stocks within a sector.
Therefore, the price dynamics of a market is multi-level. In financial
markets, herding is one of the collective behaviors46–50. Investors
cluster into groups when making decisions, and these groups can
be large. Since investors’ herding behavior is essential to the price
dynamics, it may be multi-level as well. In our model, we suppose
that agents’ herding is composed of three different levels, that is,
herding at stock, sector and market levels.

Multi-level herding. Our model is constructed based on the agents’
daily trading, i.e., buying, selling and holding stocks. In the model,
there are N agents, n stocks and nsec sectors. Each sector contains n/
nsec stocks. Every agent holds only one stock, which is randomly
chosen from the n stocks. In a real market, an investor may hold
different stocks. For simplicity, we suppose a reasonable investor
would trade his stocks separately, according to the performance of
each stock, even if his operation is based on an investment portfolio.
Thus, the scenario for one investor holding, e.g., three stocks is
basically the same as that for three investors with each holding one
stock.

The stock price of the i-th stock on day t is denoted by Yi(t), and the
logarithmic price return is Ri(t) 5 ln[Yi(t)/Yi(t 2 1)]. Since investors’
trading decisions in a real market is based on the previous stock
performance of different time scales, the investment horizon is intro-
duced in our model for better description of agents’ behavior. It has
been reported in Ref. 15 that the relative portion jl of investors with a l
days investment horizon follows a power-law decay, jl / l21.12. The
maximum investment horizon is denoted by L. With the condition of
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m~0
Ri t{mð Þ represents the basis for estimating the previous

stock performance. We introduce a weighted average return Ri
’ tð Þ

to describe the basis of all agents holding stock i. Since jl is the weight

of
Xl{1

m~0
Ri t{mð Þ, Ri

’ tð Þ is defined as

Ri
’ tð Þ~k:

XL

l~1

jl

Xl{1

m~0

Ri t{mð Þ
" #

: ð1Þ

We set the coefficient k~1
. XL

l~1

XL

m~l
jm

� �
to ensure that the

fluctuation scale of Ri
’ tð Þ is consistent with the one of Ri(t), i.e.,
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’ tð Þ
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~ Ri tð Þj jmax (see Supplementary Information S1). If L 5

1, Ri
’ tð Þ is just identical to Ri(t).

In the model, agents’ herding behavior comprises the herding at
stock, sector and market levels. For convenience, we denote an agent
holding stock i by ‘‘agent in stock i’’. If stock i belongs to sector j, this
agent can be denoted by ‘‘agent in sector j’’ as well. A group formed by
agents in stock i or by agents in sector j is respectively denoted by
‘‘group in stock i’’ or ‘‘group in sector j’’. The schematic diagram of
the multi-level herding is displayed in Fig. 1(a). The agents in a same
stock first cluster into groups. This herding behavior at stock level is
similar to the herding in other models which simulate only one stock.
In a real market, the stocks in a same sector share the characteristics
of the sector. Thus in our model, the groups in each sector further
form larger groups, which is the herding at sector level. At last, the
groups formed at sector level cluster into even larger ones, since all
sectors share common features of the whole market. This is the
herding at market level.

(i) Herding at stock level. The agents in each individual stock first
cluster into groups, which are called I-groups. We introduce a herd-
ing degree DI to quantify the herding behavior at this level. On day t,
the herding degree for the i-th stock is

DI
i tð Þ~�ni tð Þ=Ni, ð2Þ

where �ni tð Þ denotes the average number of agents in each I-group,
and Ni is the number of agents in the i-th stock. Agents’ herding
behavior is based on their estimation of the previous stock perform-
ance. Since agents’ basis for estimation on day t is Ri

’ t{1ð Þ
�� ��, we set

�ni tð Þ~ Ri
’ t{1ð Þ

�� ��. Thus,

Figure 1 | The schematic diagram of (a) the multi-level herding; (b) the procedure of simulation. (a) ‘‘I-herding’’, ‘‘S-herding’’ and ‘‘M-herding’’

denotes the herding at stock level, sector level and market level, respectively.
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In the i-th stock, the number of I-groups is Ni=�ni tð Þ~1
�

DI
i tð Þ, and

the agents randomly join in one of the I-groups. After the herding at
stock level for all the n stocks, the number of I-groups in the j-th
sector and in the whole market are, respectively, denoted by NI
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Here i g j represents the stock i in sector j.
(ii) Herding at sector level. The stocks in a same sector share the

characteristics of the sector. At this level, agents’ herding behavior is
driven by the price co-movement of the sector, i.e., the prices of
stocks in a sector tend to rise and fall at the same time. Thus the I-
groups in a same sector would further form larger groups, which are
called S-groups. Here we introduce HM and Hj to characterize the
price co-movement degrees for stocks in the whole market and in
sector j, respectively. For the j-th sector, the average number of I-
groups in each S-group is set to be n ? (Hj 2 HM), which represents
the pure price co-movement of the sector. Therefore the herding
degree is

DS
j tð Þ~n: Hj{HM

� 	.
NI

j tð Þ: ð5Þ

In sector j, the number of S-groups is 1
.

DS
j tð Þ, and each I-group

joins in one of the S-groups.
(iii) Herding at market level. Agents’ herding behavior at this level

is driven by the price co-movement of the entire market. The S-
groups in different sectors share common features of the whole mar-
ket, and thus cluster into larger groups. These groups are called
M-groups. In the model, both the herding degrees at sector and
market levels are computed based on the I-groups. The co-move-
ment degree Hj represents the percentage of connected I-groups, i.e.,

I-groups which co-move with each other. �H~
X

jHj
�

nsec

� �
stands

for the average percentage of connected I-groups. Since the group
formation at this level is driven by the price co-movement of the
whole market, we suppose that the number of connected I-groups
should be the same for different sectors and equal to �H:NI

M tð Þ. We
denote �H:NI

M tð Þ
�

Hj by NM
j tð Þ, and call it the effective number of I-

groups for the j-th sector. NM
j tð Þ satisfies Hj

:NM
j tð Þ~�H:NI

M tð Þ. On
the other hand, n ? HM represents the price co-movement for stocks
in the whole market. Thus for the S-groups in sector j, the herding
degree at market level is

DM
j tð Þ~n:HM

.
NM

j tð Þ, ð6Þ

and the number of M-groups is 1
.

DM
j tð Þ. The total number of M-

groups in the market is the maximum of 1
.

DM
j tð Þ for different j.

With all M-groups numbered, an S-group in sector j joins in one of

the first 1
.

DM
j tð ÞM-groups.

In the formation of S-groups, the I-groups in a same stock tend not
to join in a same S-group, otherwise these I-groups would have
gathered together during the herding at stock level. Similarly, in
the formation of M-groups, the S-groups in a same sector tend not
to join in a same M-group. In other words, an I-group prefers to join
in an S-group with no other I-groups from the same stock, and an S-
group prefers to join in an M-group with no other S-groups from the
same sector.

After the herding for the three levels, all agents cluster into M-
groups. Since intraday trading is not persistent in empirical trading
data51, we suppose that each day only one trading decision is made by
every agent. The agents in a same M-group make a same trading
decision with a same probability. Considering each agent operates
one share, we denote the decision of the a-th agent on day t by

wa tð Þ~
1 buy

{1 sell

0 hold

8><
>: , ð7Þ

and the probabilities of buying, selling and holding decisions of M-
groups are denoted by Pbuy, Psell and Phold, respectively. The same as
the previous models15,17, we suppose that the buying and selling
probabilities are equal, i.e., Pbuy 5 Psell 5 P, thus Phold 5 1 2 2P.
The return of the i-th stock is defined as the difference of the demand
and supply of this stock, i.e., the difference between the number of
agents buying and selling the stock,

Ri tð Þ~
X
a[i

wa tð Þ: ð8Þ

Here a g i represents the agent a in stock i.

Determination of parameters HM and Hj. The New York Stock
Exchange (NYSE) and Hong Kong Stock Exchange (HKSE) are the
two representative stock markets considered in this paper. The NYSE
is one of the world’s most mature markets in the West, and the HKSE
is an important market in Asia. We collect the daily closing price data
of 150 stocks in the NYSE and HKSE, respectively (Methods). For the
comparison of different time series of returns, the normalized return
ri(t) is introduced,

ri tð Þ~ Ri tð Þ{ Ri tð Þh i½ �=s, ð9Þ

where � � �h i represents the average over time t, and s~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i tð Þh i{ Ri tð Þh i2
q

is the standard deviation of Ri(t).

The parameters HM and Hj are introduced to characterize the price
co-movement degrees for stocks in the whole market and in sector j,
respectively. Actually, the price co-movement of stocks can be char-
acterized by the similarities in the signs and amplitudes of the returns
for different stocks. We denote the number of stocks in a sector by ns,
thus ns 5 n/nsec. In the calculation of HM, we simply set ns 5 n. On
each day t, according to the sign of ri(t), these stocks are grouped into
two market trends, i.e., the rising and the falling. The amplitudes of
the rising and falling trends on day t are defined as v1(t) and v2(t),
respectively,

vz tð Þ~
P

i,ri tð Þw0r2
i tð Þ
�

ns

v{ tð Þ~
P

i,ri tð Þv0r2
i tð Þ
�

ns

(
: ð10Þ

The two trends are usually not in balance, and we suppose that these
ns stocks are dominated by either of the two trends, according to the
magnitudes of v1(t) and v2(t). The amplitude vd(t) of the dominating
trend and the amplitude vn(t) of the non-dominating one are

vd tð Þ~ max vz tð Þ, v{ tð Þ½ �
vn tð Þ~ min vz tð Þ, v{ tð Þ½ �

(
: ð11Þ

We call the stocks grouped into the dominating trend the ‘‘dominat-
ing stocks’’. The price co-movement is a common property for all the
ns stocks, hence the total amplitude is vd(t) 2 vn(t). Besides, we take
into consideration the similarity in the signs of the returns for these
stocks. This similarity is defined as the percentage of the dominating
stocks. The number of the dominating stocks is denoted by nd(t), and
the percentage is f(t) 5 nd(t)/ns. We take the average over time t for
j(t) and vd(t) 2 vn(t), denoted respectively by Æf(t)æ and Ævd(t) 2

vn(t)æ. Then, the co-movement degree HM and Hj are
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HM~ f tð Þh i: vd tð Þ{vn tð Þ
� �

marketj
Hj~ f tð Þh i: vd tð Þ{vn tð Þ

� �
j{th sector

��
(

: ð12Þ

Here jmarket and jj-th sector represent the calculations for the stocks in
the whole market and in the j-th sector, respectively. These para-
meters for the NYSE and HKSE are shown in Table 1.

Simulation of the model. The number of stocks is n 5 150 and the
number of sectors is nsec 5 5, which are the same as those of the
empirical data we collect for the NYSE and HKSE (Methods). We set
the number of agents N to be 600, 000, and the maximum investment
horizon L to be 1000 trading days (Methods). In our model, the
investment horizons of 94 percent of agents are shorter than 500
days (Methods), which is similar to the previous research15.
Estimated from the historical market data and investment report,
the buying or selling probability is P 5 0.363 for the NYSE and P 5

0.317 for the HKSE (Methods). With HM and Hj determined for the
NYSE and HKSE respectively, our model produces the time series
Ri(t) of each stock. The schematic diagram of the simulation
procedure is displayed in Fig. 1(b).

Initially, the returns of the first L time steps are set to be 0 for all the
n stocks. On day t, we calculate agents’ basis Ri

’ tð Þ according to
equation (1), and then DI

i tð Þ according to equation (3) for each stock
i. The agents in the i-th stock randomly join in one of the 1

�
DI

i tð Þ I-
groups. Next, the I-groups in the j-th sector join in one of the

1
.

DS
j tð Þ S-groups, and then each S-group in the j-th sector joins

in one of the 1
.

DM
j tð Þ M-groups. After the herding for these three

levels, the agents in a same M-group make a same trading decision
(buy, sell or hold) with the same probability (Pbuy, Psell or Phold). Thus
the returns for each stock on day t are calculated with equation (8).
The groups disband after their decisions are made. Repeating this
procedure, we obtain the time series of returns for all the stocks in the
market. For equilibration, the first 10, 000 data points of returns are
abandoned for each stock, and the length of the time series from
simulation is the same as that of the empirical data.

Simulation results. From the calculation for the simulated returns,
we obtain the sector structure and volatility clustering. For each stock
i, the volatility clustering is characterized by the auto-correlation
function of volatilities2,6, which is defined as

Ai tð Þ~ ri t’ð Þj j ri t’ztð Þj jh i{ ri t’ð Þj jh i2
� ��

A0
i : ð13Þ

Here A0
i ~ ri t’ð Þj j2
� �

~ ri t’ð Þj jh i2, and � � �h i represents the average
over time t9. Thus, the auto-correlation function of volatilities
averaged over all stocks is A tð Þ~

X
iAi tð Þ=n. As shown in Fig. 2,

for both the NYSE and HKSE, A(t) for the simulations is in
agreement with that for the empirical data.

To characterize the spacial structure, we first compute the equal-
time cross-correlation matrix C12,29,52, of which each element is

Cij~ ri tð Þrj tð Þ
� �

: ð14Þ

Here � � �h i represents the average over time t, and Cij measures the
correlation between the returns of the i-th and j-th stocks. From the

definition, C is a real symmetric matrix with Cii 5 1, and the values of
other elements Cij are in the interval [21, 1]. The first, second and
third largest eigenvalues of C are denoted by l0, l1 and l2, respect-
ively. Now we focus on the components ui(l) of the eigenvector for
the three largest eigenvalues. The empirical result of the NYSE is
displayed in Fig. 3(a). For l0, the components of the corresponding
eigenvector are relatively uniform. The eigenvectors of l1 and l2 are
dominated by sector (5) and sector (1) respectively, with the com-
ponents significantly larger than those in other sectors. These fea-
tures are reproduced in our simulation, and the results are shown in
Fig. 3(b). The empirical result of the HKSE is displayed in Fig. 4(a).
The eigenvectors of l1 and l2 are respectively dominated by sector
(1) and sector (2), and these features are simulated by our model,
shown in Fig. 4(b). For the HKSE, the scenario is somewhat com-
plicated53, since a company in the HKSE usually runs various busi-
ness. As a result, the components of the eigenvector of l0 are not so
uniform as those in the NYSE. The dominating sectors for l1 and l2

are less prominent, especially for l2.
Also, the distribution of the eigenvalues is calculated from the

simulated returns. As displayed in Fig. 5, for the NYSE and HKSE,
the bulk of the distribution of eigenvalues and the three largest
eigenvalues from the simulation are in agreement with those from
the empirical data.

Discussion
In financial markets, the sector structure and volatility clustering are
respectively important features of the spatial and temporal correla-
tions. However, the microscopic generation mechanism of the sector
structure is not yet understood. Especially, how to produce these two
features in one model remains challenging.

To investigate the sector structure combined with volatility clus-
tering, we construct an agent-based model with a novel interaction
mechanism, that is, the multi-level herding. The model is based on
the individual and collective behaviors of investors in real markets.
According to the previous market performance, agents trade in

Table 1 | The values of parameters HM and Hj for the NYSE and HKSE. HM and Hj are introduced to characterize the price co-movement
degrees for stocks in the whole market and in sector j, respectively. We determine these parameters from the historical market data for
each stock exchange

HM H1 H2 H3 H4 H5

NYSE 0.363 0.491 0.414 0.438 0.431 0.546
HKSE 0.306 0.426 0.406 0.364 0.361 0.340

Figure 2 | The average auto-correlation functions of volatilities for the
NYSE and HKSE, and for the corresponding simulations. For clarity, the

curves for the HKSE have been shifted down by a factor of 20.
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groups, and their herding behavior comprises the herding at stock,
sector and market levels. The key parameters, HM and Hj, are intro-
duced to characterize the price co-movement degrees for stocks in
the whole market and in sector j, respectively. We propose methods
to determine these parameters from historical market data rather
than from statistical fitting of the results. Other parameters L and
P are also estimated from the empirical findings.

With parameters determined for the NYSE and HKSE respect-
ively, our model produces the corresponding time series of returns.
From these time series, we obtain the sector structure and volatility
clustering, as well as the eigenvalue distribution of the cross-correla-
tion matrix C. These properties are in agreement with the empirical
ones. Our results quantitatively reveal that the multi-level herding is
the microscopic generation mechanism of the sector structure, and
provide new insight into the spatio-temporal interactions in financial
systems at the microscopic level. The mechanism of the multi-level
herding, including the concept of characterizing the price co-move-
ment with parameters HM and Hj, can also be applied to other com-
plex systems with similar community structures.

Methods
Data. Our data are obtained from ‘‘Yahoo! Finance’’ (http://finance.yahoo.com). We
collect the daily data of closing prices of 150 large-cap stocks from 5 business sectors
in the NYSE, i.e., the Basic Materials, Consumer Goods, Industrial Goods, Services
and Utility, with 30 stocks from each sector. The data are from Jan., 1990 to Dec., 2006
with 4286 data points for every stock. For comparison, we also collect the daily closing
price data of 150 stocks in the HKSE to form 5 sectors, with 30 stocks in each sector,
and most of these stocks are large-cap stocks. The data are from Jan, 2003 to Sep., 2011
with 2146 data points for each stock. The sector structure of the HKSE is somewhat
complicated53, since a company in the HKSE usually runs various business. According
to the dominating stocks of eigenvectors of the cross-correlation matrix C, the sectors
in the HKSE are not so strict as those in the NYSE, and may be composed of two
business sectors. Specifically, the second sector comprises 14 stocks from the
Conglomerates and 16 stocks from the Industrial Goods. The third sector consists of
12 stocks from the Basic Materials and 18 stocks from the Technology. The stocks in
other three sectors are, respectively, from the Real Estate Development, Services and
Consumer Goods.

Parameter N and L. To simulate the properties of a real stock market, the number of
agents N should not be too small, since we suppose that every agent operates only one
share of a stock. We set N 5 600, 000, i.e., 4000 agents holding a same stock on
average. The simulation results are not sensitive to N. For example, we obtain almost
the same results for N 5 450, 000 or N 5 750, 000. N has no influence on the sector

Figure 3 | The absolute values of the eigenvector components ui(l) corresponding to the three largest eigenvalues for the cross-correlation matrix
C calculated from (a) the empirical data in the NYSE; (b) the simulated returns for the NYSE. Stocks are arranged according to business sectors separated

by dashed lines. (1): Basic Materials; (2): Consumer Goods; (3): Industrial Goods; (4): Services; (5): Utility.

Figure 4 | The absolute values of the eigenvector components ui(l) corresponding to the three largest eigenvalues for the cross-correlation matrix
C calculated from (a) the empirical data in the HKSE; (b) the simulated returns for the HKSE. Stocks are arranged according to business sectors

separated by dashed lines. Sector (2) and (3) are composed of two business sectors, respectively (Methods). (1): Real Estate Development;

(2): Conglomerates - Industrial Goods; (3): Basic Materials - Technology; (4): Services; (5): Consumer Goods.
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structure and the eigenvalue distribution of the matrix C, and slightly affects the
amplitude of the auto-correlation function A(t) of volatilities averaged over stocks.
The investment horizons of investors range from one day to more than one year54.
Considering there could be some investors with long investment horizon in the stock
market, we set L 5 1000 trading days in our model. Thus according to the relative
portion of investors, the investment horizons of 94 percent of agents are shorter than
500 days, suggesting that most agents do not estimate previous market performance
over a too long time period. L affects the temporal and spatial properties little. Similar
with N, the simulation results are almost the same for, e.g., L 5 800 or L 5 1200.

Determination of parameter P. We first determine the daily buying, selling and
holding probabilities of a single investor in a real market, which is denoted by pbuy, psell

and phold respectively. pbuy and psell are supposed to be equal, i.e., pbuy 5 psell 5 p. The
time series of returns of the 150 stocks in the NYSE are from Jan., 1990 to Dec., 2006.
According to ‘‘The 2010 Institutional Investment Report’’55, the average percentage of
institutional holdings of shares in the top 1000 U.S. corporations during these years is
60.3 percent (see Supplementary Information S2). There are two kinds of investors in
stock markets, that is individual and institutional investors. The percentage of
holding shares for the individual investors is thus 39.7 percent. According to Ref. 15,
the yearly average ratio between the number of shares an investor trades and the
number of shares he holds is 1.64. This ratio corresponds to the yearly average trading
times of an investor. Since institutional investors contribute little of the trading
times15, we ignore their trades. So the yearly trading times for an individual investor is
1.64/0.397 5 4.13. Since there are 250 trading days in every year, the daily trading
probability is 4.13/250 5 pbuy(t) 1 psell(t) 5 2p. Therefore, p is 0.00826 for the NYSE.
For the HKSE, the corresponding empirical data are not available to us, and we
assume that p is 0.00826 as well.

The agents in a same M-group are connected. We suppose that if one agent in the
group decides to buy or sell the stock, the whole group would make the same decision.
In the model, the average number of agents in an M-group is n ? HM. Therefore, the
buying or selling probability of an M-group is P~1{ 1{pð Þn

:HM . Thus, P is 0.363 for
the NYSE and 0.317 for the HKSE.

1. Mantegna, R. N. & Stanley, H. E. Scaling behaviour in the dynamics of an
economic index. Nature 376, 46–49 (1995).

2. Gopikrishnan, P., Plerou, V., Amaral, L. A. N., Meyer, M. & Stanley, H. E. Scaling
of the distribution of fluctuations of financial market indices. Phys. Rev. E 60, 5305
(1999).

3. Liu, Y. et al. Statistical properties of the volatility of price fluctuations. Phys. Rev. E
60, 1390 (1999).

4. Bouchaud, J. P., Matacz, A. & Potters, M. Leverage effect in financial markets: the
retarded volatility model. Phys. Rev. Lett. 87, 228701 (2001).

5. Tino, P., Schittenkopf, C. & Dorffner, G. Financial volatility trading using
recurrent neural networks. IEEE Trans. Neural Netw. 12, 865–874 (2001).

6. Krawiecki, A., Ho lyst, J. A. & Helbing, D. Volatility clustering and scaling for
financial time series due to attractor bubbling. Phys. Rev. Lett. 89, 158701 (2002).

7. Gabaix, X., Gopikrishnan, P., Plerou, V. & Stanley, H. E. A theory of power-law
distributions in financial market fluctuations. Nature 423, 267–270 (2003).

8. Sornette, D. Critical market crashes. Phys. Rep. 378, 1–98 (2003).
9. Bonanno, G., Caldarelli, G., Lillo, F. & Mantegna, R. N. Topology of correlation-

based minimal spanning trees in real and model markets. Phys. Rev. E 68, 046130
(2003).

10. Johnson, N. F., Jefferies, P. & Hui, P. M. Financial Market Complexity. (Oxford
Univ. Press, Oxford, 2003).

11. Qiu, T., Zheng, B., Ren, F. & Trimper, S. Return-volatility correlation in financial
dynamics. Phys. Rev. E 73, 065103 (2006).

12. Shen, J. & Zheng, B. Cross-correlation in financial dynamics. EPL 86, 48005
(2009).

13. Zhao, L. et al. Herd behavior in a complex adaptive system. Proc. Nati. Acad. Sci.
USA 108, 15058–15063 (2011).

14. Preis, T., Schneider, J. J. & Stanley, H. E. Switching processes in financial markets.
Proc. Nati. Acad. Sci. USA 108, 7674–7678 (2011).

15. Feng, L., Li, B., Podobnik, B., Preis, T. & Stanley, H. E. Linking agent-based models
and stochastic models of financial markets. Proc. Nati. Acad. Sci. USA 109,
8388–8393 (2012).

16. Preis, T., Moat, H. S. & Stanley, H. E. Quantifying trading behavior in financial
markets using google trends. Sci. Rep. 3, 1684 (2013).

17. Chen, J. J., Zheng, B. & Tan, L. Agent-based model with asymmetric trading and
herding for complex financial systems. PloS one 8, e79531 (2013).

18. Jiang, X. F., Chen, T. T. & Zheng, B. Structure of local interactions in complex
financial dynamics. Sci. Rep. 4, 5321 (2014).

19. Meng, H. et al. Systemic risk and spatiotemporal dynamics of the us housing
market. Sci. Rep. 4, 3655 (2014).

20. Ding, Z., Granger, C. W. & Engle, R. F. A long memory property of stock market
returns and a new model. J. Empir. Financ. 1, 83–106 (1993).

21. Black, F. Studies of stock price volatility changes. Proceedings of the 1976 Meetings
of the American Statistical Association, Business and Economical Statistics Section,
177–181 (1976).

22. Glosten, L. R., Jagannathan, R. & Runkle, D. E. On the relation between the
expected value and the volatility of the nominal excess return on stocks. J. Financ.
48, 1779–1801 (1993).

23. Engle, R. F. & Ng, V. K. Measuring and testing the impact of news on volatility.
J. Financ. 48, 1749–1778 (1993).

24. Zakoian, J. M. Threshold heteroskedastic models. J. Econ. Dyn. Control 18,
931–955 (1994).

25. Shen, J. & Zheng, B. On return-volatility correlation in financial dynamics. EPL
88, 28003 (2009).

26. Tenenbaum, J. et al. Comparison between response dynamics in transition
economies and developed economies. Phys. Rev. E 82, 046104 (2010).

27. Erb, C. B., Harvey, C. R. & Viskanta, T. E. Forecasting international equity
correlations. Financ. Anal. J. 50, 32–45 (1994).

28. Solnik, B., Boucrelle, C. & Le Fur, Y. International market correlation and
volatility. Financ. Anal. J. 52, 17–34 (1996).

29. Laloux, L., Cizeau, P., Bouchaud, J. P. & Potters, M. Noise dressing of financial
correlation matrices. Phys. Rev. Lett. 83, 1467 (1999).

30. Gopikrishnan, P., Rosenow, B., Plerou, V. & Stanley, H. E. Quantifying and
interpreting collective behavior in financial markets. Phys. Rev. E 64, 035106
(2001).

31. Plerou, V. et al. Random matrix approach to cross correlations in financial data.
Phys. Rev. E 65, 066126 (2002).

32. Utsugi, A., Ino, K. & Oshikawa, M. Random matrix theory analysis of cross
correlations in financial markets. Phys. Rev. E 70, 026110 (2004).

33. Pan, R. K. & Sinha, S. Collective behavior of stock price movements in an emerging
market. Phys. Rev. E 76, 046116 (2007).

34. Podobnik, B., Wang, D., Horvatic, D., Grosse, I. & Stanley, H. E. Time-lag cross-
correlations in collective phenomena. EPL 90, 68001 (2010).

35. Jiang, X. F. & Zheng, B. Anti-correlation and subsector structure in financial
systems. EPL 97, 48006 (2012).

36. Lux, T. & Marchesi, M. Volatility clustering in financial markets: A
microsimulation of interacting agents. International Journal of Theoretical and
Applied Finance 3, 675–702 (2000).
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