
Storage and retrieval of (3 1 1)
-dimensional weak-light bullets and
vortices in a coherent atomic gas
Zhiming Chen1, Zhengyang Bai1, Hui-jun Li2,1, Chao Hang1 & Guoxiang Huang1

1State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062,
China, 2Institute of Nonlinear Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.

A robust light storage and retrieval (LSR) in high dimensions is highly desirable for light and quantum
information processing. However, most schemes on LSR realized up to now encounter problems due to not
only dissipation, but also dispersion and diffraction, which make LSR with a very low fidelity. Here we
propose a scheme to achieve a robust storage and retrieval of weak nonlinear high-dimensional light pulses
in a coherent atomic gas via electromagnetically induced transparency. We show that it is available to
produce stable (3 1 1)-dimensional light bullets and vortices, which have very attractive physical property
and are suitable to obtain a robust LSR in high dimensions.

T
he investigation of light storage and retrieval (LSR), a key technique for realizing optical quantum memory,
has received much attention in recent years1–3. One of important techniques for LSR is electromagnetically
induced transparency (EIT)4, a quantum interference effect typical occurring in a three-level atomic system

interacting with a probe and a control laser fields. The origination of EIT is the existence of dark state, which
makes not only the absorption (dissipation) of the probe field largely suppressed but also the LSR possible through
an adiabatical manipulation of the control field.

Up to now, nearly all studies on LSR have been carried out in various schemes working in linear regime5,6. Such
schemes are simple but encounter the inevitable problem of pulse spreading due to the existence of dispersion,
which may result in a serious distortion for retrieved pulse. Recently, the EIT-based LSR has been generalized to
weak nonlinear regime, where the storage and retrieval of a (1 1 1)-dimensional [(1 1 1)D] (i.e., the first ‘1’ refers
to one spatial dimension, and the second ‘1’ refers to time) soliton pulse is suggested7,8. However, because the (1 1

1)D soliton pulse is unstable in high dimensions due to the existence of diffraction, such scheme is still not realistic
or quite limited. For practical applications of optical quantum memory, a challenged problem is to obtain a light
pulse that is robust (i.e., with a high fidelity) during storage and retrieval in (3 1 1)D.

Before proceeding, we note that in recent years there is much effort focused on high-dimensional optical
solitons due to their rich nonlinear physics and important applications9,10. Although in recent works11–13 (3 1 1)D
light bullets and vortices in coherent atomic systems have been studied, the possibility of their storage and
retrieval is not explored yet to the best of our knowledge.

Here we propose an EIT-based new scheme to realize a robust LSR for (3 1 1)D light pulses in a coherent
atomic ensemble working in a free space. Based on Maxwell-Bloch equations governing the evolution of atoms
and light field we derive a nonlinear equation controlling the motion of the envelope of a probe field. We show the
possibility for obtaining (3 1 1)D light bullets (or called (3 1 1)D spatiotemporal optical solitons9,10) and vortices,
which have ultraslow propagating velocity and extremely low generation power. We further show that these high-
dimensional light pulses can be stabilized by using the balance between dispersion, diffraction, nonlinearity, and
by a far-detuned laser field. We demonstrate that these high-dimensional light pulses can be stored and retrieved
very stably by switching off and on a control field.

Results
Model. We consider a cold, lifetime-broadened L-type three-level atomic gas interacting with a probe field (with
pulse length t0, center angular frequency vp, and half Rabi frequencyVp) that drives the j1æ « j3æ transition, and a
continuous-wave control field (with the center angular frequency vc and half Rabi frequencyVc) that drives j2æ «
j3æ transition; see the inset of Fig. 1(a).
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For simplicity, we assume the electric field propagates along z
direction with the form E~

X
l~p,c

elE le
i klz{vl tð Þzc:c:, where

el Elð Þ is the unit polarization vector (envelope). A fardetuned laser
field (Stark field) used to stabilize (3 1 1)D light bullets and vortices
(see below) is applied to the system [see Fig. 1(a)] with the form
EStark x,y,tð Þ~es

ffiffiffi
2
p

Es x,yð Þcos vstð Þ, where es, Es, and vs are the unit
polarization vector, field amplitude, and angular frequency, respect-
ively. Due to the existence of the Stark field, an energy shift for the

level j jæ occurs, i.e., DEj,Stark~{aj E2
Stark

� �
t

.
2~{aj Es x,yð Þj j2

�
2.

Here aj is the scalar polarizability of the level j jæ, and � � �h i denotes
the time average in one oscillating cycle.

Under electric-dipole and rotating-wave approximations, the
Hamiltonian of the system in the interaction picture reads

Ĥint~{
X3

j~1
�hD’j jj i jh j{�h Vp 3j i 1h jzVc 3j i 2h jzH:c:

� �
, with D’j

~Djz aj
�

2�hð Þ
� �

Esj j2, Vp~ ep
:p13

� 	
Ep
�

�h, and Vc~ ec
:p23ð ÞEc=�h.

Here D2 5 vp 2 vc 2 v21 and D3 5 vp 2 v31 are respectively
the two- and one-photon detunings, pjl is the electric-dipole matrix
element related to the levels j jæ and jlæ, �hvjl 5 Ej 2 El is the energy
difference between the level jjæ and the level jlæ with Ej the eigen-
energy of the level jjæ.

The equation of motion for density matrix s in the interaction
picture reads

L
Lt

zC


 �
s~{

i
�h
Ĥint,s
� �

, ð1Þ

where s is a 3 3 3 density matrix, C is a 3 3 3 relaxation matrix
denoting the spontaneous emission and dephasing. The explicit
expressions of Eq. (1) are presented in Methods.

The equation of motion for Vp can be obtained by the Maxwell
equation +2E{ 1

�
c2

� 	
L2E
�
Lt2~ 1

�
�0c2
� 	� �

L2P
�
Lt2, where P~N a

p13s31 exp i kpz{vpt
� 	� �

zp23s32 exp i kcz{vctð Þ½ �zc:c:
� 

with N a

the atomic concentration. Under slowly varying envelope approxi-
mation, the Maxwell equation is reduced to ref. 14

i
L
Lz

z
1
c

L
Lt


 �
Vpz

c
2vp

L2

Lx2
z

L2

Ly2


 �
Vpzk13s31~0, ð2Þ

where k13~N avp p13
:ep

�� ��2. 2�0c�hð Þ, with c the light speed in

vacuum.
Our model can be realized by selecting realistic physical systems.

One of them is the ultracold 87Rb atomic gas with the energy levels
selected as j1æ 5 j52S1/2, F 5 1æ, j2æ 5 j52S1/2, F 5 2æ, and j3æ 5 j52P1/2,
F 5 2æ, respectively. The decay rates are given by C2^2p|1:0 kHz,
and C3^2p|5:75 MHz, and p13^p23~2:54|10{27 C cm15. If
atomic density N a~1:1|1011 cm{3, k13 takes the value of 3.0 3

109 cm21 s21.

Nonlinear envelope equation. We use the standard method of
multiple scales developed for EIT system14 to derive the nonlinear
envelope equation for the probe field based on the asymptotic
expansion of the Maxwell-Bloch (MB) Eqs. (1) and (2)(see Methods).

Figure 1 | Model and linear dispersion relation. (a) Possible experimental arrangement of beam geometry. The probe (with angular frequency vp and

half Rabi frequency Vp) and continuous-wave control (with angular frequency vc and half Rabi frequency Vc) fields propagate nearly along z direction.

The (orange) thick arrow denotes the Stark field (with angular frequency vs) used to stabilize (3 1 1)D light bullets and vortices. Cold atomic

gas are represented by yellow dots. The inset shows the energy-level diagram and excitation scheme of the L-type three-level atoms. D2 and D3 are

detunings, C13 (C23) is the decay rate from | 3æ to | 1æ ( | 3æ to | 2æ). The atoms are initially populated on the ground state | 1æ. (b) The linear dispersion

relation K(v) of the probe field as a function of v.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8211 | DOI: 10.1038/srep08211 2



The first-order solution of the asymptotic expansion reads

V 1ð Þ
p ~Feih, s

1ð Þ
j1 ~ dj3 vzD2zic21ð Þ{dj2V

�
c

� ��
D

� 
Feih. Here D 5

jVcj2 2 (v 1 D2 1 ic21)(v 1 D3 1 ic31) and h 5 K(v)z0 2 vt0, with
K(v) 5 v/c 1 k13(v 1 D2 1 ic21)/D (linear dispersion relation).
Note that the frequency and wave number of the probe field are
respectively given by vp 1 v and kp 1 K(v), so v 5 0 corresponds
to the center frequency of probe field.

Fig. 1(b) shows the imaginary and real parts of K(v), i.e., Im(K)
and Re(K). The dashed and solid lines are forVc 5 0 and forVc 5 1.0
3 107 s21, respectively. From the upper panel we see that for Vc 5 0
(with no EIT) the probe pulse suffers a large absorption (the dashed
line), whereas for Vc 5 1.0 3 107 s21 (with EIT) a transparency
window opens and hence the probe pulse is nearly free of absorption
(the solid line). The lower panel of Fig. 1(b) shows the drastic change
of dispersion due to EIT, which results in a significant reduction of
the group velocity of the probe pulse.

The solvability condition at the second order of the asymptotic
expansion is i[ hF/hz1 1 (hK/hv)hF/ht1] 5 0, which means that the
probe-pulse envelope F travels with the group velocity Vg 5 (hK/
hv)21. The nonlinear envelope equation for F is obtained from the
solvability condition at the third order, i.e.,

i
LF
Lz2

{
1
2
L2K
Lv2

L2F
Lt2

1
z

c
2vp

L2

Lx2
1
z

L2

Ly2
1


 �
F

zW11 Fj j2Fe{2�az2zW12 E 1ð Þ
s

�� ��2F~0,

ð3Þ

where W11 is the self-phase modulation coefficient of the probe field
and W12 is the cross-phase modulation coefficient contributed by the
Stark field. The explicit expressions of W11 and W12 are given in
Methods.

Combining the solvability conditions (i.e., the equations for F) at
the all orders, we obtain the unified equation for F, which can be
written into the dimensionless form

i
Lu
Ls

z
1
2

g1
L2

Lt2
z

L2

Lj2 z
L2

Lg2


 �
uzg2 uj j2u

zg3V j,gð Þu~0,

ð4Þ

with u~�F=U0, s 5 z/LDiff, t 5 [t 2 z/Re(Vg)]/t0, (j, g) 5 (x, y)/R, g1

5 LDiff/LDisp, g2 5 LDiff/LNonl, g3~LDiff Re W12ð ÞE2
0, and V(j, g) 5

[Es(j, g)/E0]2. Here U0, R, and E0 are respectively the typical Rabi
frequency, beam radius, and field amplitude; LDiff 5 vpR2/c,
LDisp~{t2

0

�
Re L2K

�
Lv2

� 	
, and LNonl~1

�
Re W11ð ÞU2

0

� �
are

respectively typical diffraction length, dispersion length, and non-
linear length.

Note that the envelope equation (4) includes dispersion, diffrac-
tion, nonlinearity, and ‘‘external’’ potential. When obtaining Eq. (4)
we have neglected the imaginary parts of hjK/hvj (j 5 1, 2), W11, and
W12. This is reasonable because the system works under the EIT
condition Vcj j2?c21c31 so that their imaginary parts are much smal-
ler than their real parts. In addition, the diffraction, dispersion, and
nonlinearity are assumed to be balanced, i.e., LDiff 5 LDisp 5 LNonl,

which can be achieved by taking t0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{Re L2K

�
Lv2

� 	
vp

�
c

q
R and

U0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
�

vpR2Re W11ð Þ
� �q

and hence we have g1 5 g2 5 1 in Eq. (4).

By taking E0~1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LDif f Re W12ð Þ
p

we also have g3 5 1. The

‘‘external’’ potential V(j, g) in Eq. (4) comes from the Stark field,
which can be adjusted and hence useful to control the stability of the
light bullets and vortices.

By choosing the realistic system parameters Vc 5 9.0 3 107 Hz,D2

5 26.0 3 106 Hz, D3 5 22.0 3 108 Hz, R 5 40 mm, t0 5 2.0 3

1027 s, U0 5 2.87 3 107 Hz, and E0 5 3.04 3 104 V/cm, we have LDiff

< LDisp < LNonl 5 1.26 cm, and

Re Vg
� 	

<6:5|10{5c: ð5Þ

We see that the probe pulse propagates with an ultraslow group
velocity.

Solutions of (3 1 1)D weak-light bullets and vortices. In order to
obtain high-dimensional nonlinear localized solutions of the system,
we assume the Stark field has the form of Bessel function, i.e.,

Es j,gð Þ~Es0Jl

ffiffiffiffiffi
2b
p

r
� �

(Es0 and b are real constants; l is an integer;

r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2zg2

q
). Then Eq. (4) becomes

i
Lu
Ls

z
1
2

L2

Lt2
z

L2

Lj2 z
L2

Lg2


 �
uz uj j2uzv2

0 Jl

ffiffiffiffiffi
2b
p

r
� �h i2

u~0, ð6Þ

with v0 5 Es0/E0. Note that Eq. (6) is similar to that obtained in Ref.
16. However, the physics here is different from that in Ref. 16 because
Eq. (6) describes the nonlinear evolution of the probe-field envelope
in the EIT system whereas the equation in Ref. 16 governs the
dynamics of a Bose-Einstein condensate. Using the transformation

u 5 y exp(ims), Eq. (6) is reduced into
1
2

L2

Lt2
z

L2

Lj2 z
L2

Lg2


 �
y

z yj j2yzv2
0 Jl

ffiffiffiffiffi
2b
p

r
� 	� �2

y~my, where m is a propagation constant.
Fig. 2 shows the power of the probe pulse defined by

P~2p
ð ð ðz?

{?
yj j2djdgdt, which is a function of the propagation

constant m and the potential strength constant v0. Based on the
modified squared-operator method17, (3 1 1)D light bullet solutions
are found numerically. Presented in Fig. 2(a) is the result of several
light bullet solutions for the potential parameters l 5 0 (i.e., the
zeroth-order Bessel function) and b 5 1. We see that for different
values of v0 (v0 5 1.3, 2.0, 2.7), P always increases to a maximum
firstly, and then decreases. The stability domain of the light bullet
solutions is the one with dP/dm . 0 according to Vakhitov-
Kolokolov (VK) criterion (see ref. 17), which has been confirmed
numerically by using a propagation method. The isosurfaces (jyj 5
0.05) of stable light bullet solutions for (v0 5 1.3, m 5 0.5) (the red
one), (v0 5 2.0, m 5 1.9) (the blue one), and (v0 5 2.7, m 5 4.0) (the
green one) have been plotted in the figure.

Fig. 2(b) shows the result of a light vortex solution for the potential
parameters l 5 1 (i.e., the first-order Bessel function) and b 5 1. The
light vortex solution with quantum number of orbital angular
momentum m 5 1 is found. Because the stability domain of the
vortex solution cannot be obtained by the VK criterion, a propaga-
tion method is used to study its stability. The isosurface (jyj5 0.05)
and phase distribution of the vortex solution for (v0 5 2.7, m 5 1.5)
are plotted in the figure. We found that the vortex solution is fairly
stable during propagation in the region where dP/dm . 0.

The threshold of the optical power density �Pmax for producing the
(3 1 1)D light bullets and vortices given above can be estimated by
using Poynting’s vector14. For light bullets we obtain

�Pmax<3:77|10{7W: ð7Þ

A similar conclusion is also obtained for light vortices. Consequently,
to produce (3 1 1)D light bullets and vortices in the present system
very low generation power is needed. This is drastically contrast to
conventional optical media, such as glass-based optical fibers, where
generation power at order of kilowatts or even larger is usually
needed to produce light bullets and vortices18.

Storage and retrieval of (3 1 1)D light solitons and vortices. The
principle of EIT-based LSR is well known19. When switching on the
control field, probe pulse propagates in the atomic medium with
nearly vanishing absorption; by slowly switching off the control
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field the probe pulse disappears and gets stored in the form of atomic
coherence; when the control field is switched on again the probe
pulse reappears. However, this principle is usually applied for
linear optical pulses, which may suffer serious distortion due to the
dispersion and/or diffraction. In the following we show that it is
available to realize the LSR of the (3 1 1)D light bullets and
vortices in our present system.

To this end, we consider the solution of the MB Eqs. (1) and (2) by
using a control field that is adiabatically changed with time t to realize
the function of its turning on and off. The switching-on and switching-
off of the control field is modeled by the following function

Vc~Vc0 1{
1
2

tanh
t{Tof f

Ts

� �
z

1
2

tanh
t{Ton

Ts

� �� �
, ð8Þ

where Toff and Ton are respectively the times of switching-off and the
switching-on of the control field with a switching time Ts. The stor-
age time of the light bullets and vortices is approximately given by
Ton 2 Toff.

We first consider the LSR of the (1 1 1)D soliton pulse, corres-
ponding the case h2/hj2 5 h2/hg2 5 0 and g3 5 0 in Eq. (4). The result
of numerical simulation on the time evolution of jVpt0j and atomic
coherence s21 as functions of z and t is presented in Fig. 3. The red
solid line shown in the upper part of each panel represents the con-
trol field jVct0j. Here we choose Ts/t0 5 0.2, Toff/t0 5 5.0, Ton/t0 5

15.0, and the other system parameters are mentioned above. The
wave shape of the input probe pulse is taken as a hyperbolic secant

one, i.e., Vp(0, t) 5 7.0 sech(t/t0). Lines 1 to 4 are for propagation
distance z 5 0, 1.5, 3.0, and 4.5 cm, respectively.

Shown in Fig. 3(a) is the result of jVpt0j. We see that the retrieved
pulse has nearly the same shape with the one before the storage. The
physical reason of the shape-preservation of the probe pulse before
and after the storage is due to a balance between dispersion and
nonlinearity, i.e., the pulse is indeed a soliton that is rather stable
during the storage and retrieval. Fig. 3(b) shows the atomic coher-
ence s21, which has been amplified by 20 times for a better visualiza-
tion. We see that s21 is nonzero during the switch-off of the control
field, which is a manifestation of the information transfer (i.e., stor-
age) from the light field to the atomic ensemble.

We now turn to investigate the LSR of the (3 1 1)D light pulses.
Fig. 4 shows the storage and retrieval of the light pulses with the Stark
field taken to be the zero-order Bessel function (the left side of each
column) and the light pulses with the Stark field taken to be the first-
order Bessel function (the right side of each column) for different
probe-field intensities, with the other parameters are the same as
used above. Isosurfaces (jVpt0j 5 0.5) for Vp0t0 5 2.0, 7.0, 10.0 at
z 5 0 (before the storage), 2.25 cm (during the storage), and 4.5 cm
(after the storage) are illustrated, respectively. The results are the
following: (i) For the case of weak probe-field intensity (the first line
in the figure), the probe pulse broadens before and after the storage;
(ii) For the case of moderate probe-field intensity (the second line in
the figure), the retrieved probe pulse has nearly the same shape with
the one before the storage; (iii) For the case of strong probe-field

Figure 2 | Solutions of (3 1 1)D light bullets and vortices. (a) Probe-field power P of several light bullet solutions as functions of m and v0, with the Stark

field chosen as the zero-order Bessel function (i.e., l 5 0). The solid, dashed, and dotted-dashed lines are for v0 5 1.3, 2.0, and 2.7, respectively. Insets give

isosurface ( | y | 5 0.05) plots of light bullets for (v0 5 1.3, m 5 0.5; the red one), (v0 5 2.0, m 5 1.9; the blue one), and (v0 5 2.7, m 5 4.0; the green

one), respectively. (b) Probe-field power P of the light vortex solution as a function of m and v0, with the Stark field chosen as the first-order Bessel function

(i.e., l 5 1). The green solid line is for v0 5 2.7. Insets display respectively plots of the isosurface ( | y | 5 0.05) for (v0 5 2.7, m 5 1.5) of the light vortex and

its phase distribution in x-y plane.

Figure 3 | Storage and retrieval of (1 1 1)D soliton pulse. (a) Evolution of |Vpt0 | and (b) atomic coherence s21 as functions of z and t. For a better

visualization, s21 has been amplified 20 times. Lines 1 to 4 are for z 5 0, 1.5, 3.0, and 4.5 cm, respectively. The control field |Vct0 | is shown in the upper

part of each panel.
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intensity (the third line in the figure), the retrieved probe pulse dis-
plays a serious distortion after the storage. From these results, we
conclude that in the regime of the moderate probe-field intensity the
storage and retrieval of (3 1 1)D light pulses are robust, which is
desirable for light and quantum information processing in high
dimensions. This regime is just the one where stable light bullets
and vortices can form.

In order to illustrate more clearly the evolution process of the
storage and retrieval of the stable (3 1 1)D light bullet and vortex
(i.e., the case (ii) described above), in Fig. 5(a), Fig. 5(b), and Fig. 5(c)
we show the numerical result of the evolution of the probe field
(jVpt0j) and the control field (jVct0j) as functions of time at z 5 0,
2.25 cm, and 4.5 cm, respectively. We see that the light bullet and

vortex undergo steps of appearance, disappearance, and reappear-
ance. Presented in the first (second) column of Fig. 5(d) is the light-
intensity distribution in x-y plane of the bullet (vortex) for t/t0 5 5.0,
10.0, and 15.0, respectively. The third column is the phase distri-
bution of the light vortex. The result shows that the light bullet
and vortex can be stored around t/t0 5 5.0 when the control field
is switched off, and be retrieved around t/t0 5 15.0 when the control
field is switched on again. Interestingly, the phase distribution of the
vortex can also be stored and retrieved, which means that the mem-
ory of the light vortex can bring more information than that of the
light bullet.

We have also studied the storage and retrieval of vortices for m 5

2. The numerical result shows that these vortices are unstable during
the propagation, and hence a robust storage and retrieval of them are
not available.

Discussion
From the results described above, a robust SLR for the (3 1 1)D
weak-light bullets and vortices is possible by using the cold L-type
three-level atomic system. These results can be easily generalized to
other types of EIT systems with different (such as ladder-type8) level
configurations. Furthermore, our theory can also be used to study the
(3 1 1)D LSR with a Raman scheme20,21, which has been suggested to
obtain a broadband quantum memory of linear light pulses and has
been realized recently by experiment by using the atomic ensemble
working at room temperature22,23.

In conclusion, we have proposed an EIT-based new scheme to
realize a robust LSR for (3 1 1)D light pulses in a coherent atomic
ensemble. Based on MB equations we have derived a nonlinear equa-
tion controlling the evolution of the probe-field envelope. We have
shown that it is possible to obtain (3 1 1)D light bullets and vortices,
which have very slow propagating velocity and ultra low generation
power. We have further shown that these high-dimensional light
pulses can be stabilized by using the balance between dispersion,
diffraction, nonlinearity, and by a Stark laser field. We have demon-
strated that these high-dimensional light pulses can be stored and
retrieved very stably by switching off and on a control field. Our

Figure 4 | Storage and retrieval of (3 1 1)D light pulses with different
probe-field intensities. Storage and retrieval of (3 1 1)D light pulses with

the Stark field taken to be the zero-order Bessel function (the left side of

each column) and the (3 1 1)D light pulses with the Stark field taken to be

the first-order Bessel function (the right side of each column) for different

probe-field intensities (i.e., Vp0t0 5 2.0, 7.0, 10.0) at z 5 0 (before the

storage), z 5 2.25 cm (during the storage), and z 5 4.5 cm (after the

storage), respectively. The second line corresponds to the storage and

retrieval of stable light bullets and vortices. All figures are isosurface plots

with |Vpt0 | 5 0.5.

Figure 5 | Robust storage and retrieval of (3 1 1)D light bullet and vortex. (a), (b), (c) Evolutions of |Vpt0 | as function of t at the position z 5 0, z 5

2.25 cm, and z 5 4.5 cm, respectively. Insets are isosurface plots ( |Vpt0 | 5 0.5) of the light bullet and vortex. (d) Light-intensity distribution of the

light bullet (the first column) and the vortex (the second column) in x-y plane at t/t0 5 5.0, 10.0, and 15.0, respectively. The third column shows the phase

distribution of the vortex. The points A, B, C in (b) correspond to the times t/t0 5 5.0, 10.0, 15.0 in (d).
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study raise the possibility of guiding a related experiment and have
potential applications in the area of light and quantum information
processing.

Methods
Maxell-Bloch equations. In our semi-classical approach, MB equations are used to
describe the motion of light field and atoms. Explicit expressions of the Bloch
equation in the interaction picture are

i
L
Lt

s11{iC13s33zV�ps31{Vps�31~0, ð9aÞ

i
L
Lt

s22{iC23s33zV�c s32{Vcs
�
32~0, ð9bÞ

i
L
Lt

s33zi C13zC23ð Þs33{V�ps31zVps�31{V�c s32zVcs
�
32~0, ð9cÞ

i
L
Lt

zd21


 �
s21{Vps�32zV�c s31~0, ð9dÞ

i
L
Lt

zd31


 �
s31{Vp s33{s11ð ÞzVcs21~0, ð9eÞ

i
L
Lt

zd32


 �
s32{Vc s33{s22ð ÞzVps�21~0, ð9fÞ

where djl~D’j{D’lzicjl . Dephasing rates are defined as cjl~ CjzCl
� 	�

2zccol
jl with

Cj~
X

EivEj
Cij being the spontaneous emission rate from the state jjæ to all lower

energy states jiæ and ccol
jl being the dephasing rate reflecting the loss of phase

coherence between jjæ and jlæ.

Asymptotic expansion. Assume sjl~
X?

q~0
�qs

qð Þ
jl , with s

0ð Þ
jl ~dj1dl1, Vp~

X?

q~1
�qV qð Þ

p , and Es~�E 1ð Þ
s . Thus djl~d 0ð Þ

jl z�2d 2ð Þ
jl , with d 0ð Þ

jl ~Dj{Dlzicjl and d 2ð Þ
jl ~

aj{al

2�h
E 1ð Þ

s

�� ��2. Here � is the dimensionless small parameter characterizing the typical

amplitude of the probe pulse. To obtain a divergence-free expansion, all the quantities
on the right-hand side of the expansion are considered as functions of the multi-scale
variables x1~�x, y1~�y, zq~�qz q~0, 1, 2,ð Þ, and tq~�qt q~0, 1ð Þ. Substituting
the expansions into Eqs. (1) and (2) and comparing the coefficients of �q , we obtain a
set of linear but inhomogeneous equations which can be solved order by order.

The first order (q 5 1) solution is given by V 1ð Þ
p ~Feih and s

1ð Þ
j1 ~ dj3 vzD2zð

��
ic21Þ{dj2V

�
c �
�

DgFeih , where D 5 jVcj2 2 (v 1 D2 1 ic21)(v 1 D3 1 ic31) and h 5

K(v)z0 2 vt0. The linear dispersion relation reads K(v) 5 v/c 1 k13(v 1D2 1 ic21)/
D. F is a yet to be determined envelope function depending on the slow variables x1, y1,
t1, z1, and z2.

At the second order (q 5 2), a solvability condition gives i[hF/hz1 1 (hK/hv)hF/
ht1] 5 0, with Vg 5 (hK/hv)21. The approximation solution at this order reads

s
2ð Þ

21 ~a 2ð Þ
21 i

L
Lt1

Feih , s
2ð Þ

31 ~a 2ð Þ
31 i

L
Lt1

Feih , s
2ð Þ

jj ~a 2ð Þ
jj Fj j2e{2�az2 j~1, 2, 3ð Þ, and

s
2ð Þ

32 ~a 2ð Þ
32 Fj j2e{2�az2 , where

a 2ð Þ
11 ~

iC23{2 Vcj j2
1

d 0ð Þ
32

{
1

d 0ð Þ�
32

 !" #
G{iC13 Vcj j2

1

Dd 0ð Þ�
32

{
1

D�d 0ð Þ
32

 !

iC13 Vcj j2
1

d 0ð Þ�
32

{
1

d 0ð Þ
32

 ! , ð10aÞ

a 2ð Þ
22 ~

G{iC13a 2ð Þ
11

iC13
, ð10bÞ

a 2ð Þ
21 ~

V�c 2vzd 0ð Þ
21 zd 0ð Þ

31

� �
D2

, ð10cÞ

a 2ð Þ
31 ~

vzd 0ð Þ
21

� �2
z Vcj j2

D2
, ð10dÞ

a 2ð Þ
32 ~

Vc

d 0ð Þ
32

1
D�

{ a 2ð Þ
11 z2a 2ð Þ

22

� �� �
, ð10eÞ

and �a~�{2 Im K vð Þ½ �, with G~ vzd 0ð Þ�
21

� �.
D�{ vzd 0ð Þ

21

� �.
D.

At the third order (q 5 3), a solvability condition yields the equation (3). The
explicit expressions of the self- and cross-phase modulation coefficients W11 and W12

are given by

W11~k13

Vca 2ð Þ�
32 z vzd 0ð Þ

21

� �
2a 2ð Þ

11 za 2ð Þ
22

� �
D

, ð11aÞ

W12~k13

vzd 0ð Þ
21

� �2
a3{a1ð Þz Vcj j2 a2{a1ð Þ

2�hD2
: ð11bÞ
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