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Detecting structure in population genetics and case-control studies is important, as it exposes phenomena
such as ecoclines, admixture and stratification. Principal Component Analysis (PCA) is a linear
dimension-reduction technique commonly used for this purpose, but it struggles to reveal complex,
nonlinear data patterns. In this paper we introduce non-centred Minimum Curvilinear Embedding
(ncMCE), a nonlinear method to overcome this problem. Our analyses show that ncMCE can separate
individuals into ethnic groups in cases in which PCA fails to reveal any clear structure. This increased
discrimination power arises from ncMCE’s ability to better capture the phylogenetic signal in the samples,
whereas PCA better reflects their geographic relation. We also demonstrate how ncMCE can discover
interesting patterns, even when the data has been poorly pre-processed. The juxtaposition of PCA and
ncMCE visualisations provides a new standard of analysis with utility for discovering and validating
significant linear/nonlinear complementary patterns in genetic data.

T
he last decade has seen a proliferation of Genome-wide Association Studies (GWASs) leading to novel and
important biological discoveries, some of which have tremendous clinical relevance1. Such scientific
advances have only been possible thanks to interdisciplinary endeavours aimed at making sense of huge

amounts of genetic data. As genetic information continues to accumulate, the research community is in need of
tools that can quickly and informatively inspect thousands of individuals and their associated genetic variants.

Principal Component Analysis (PCA), an unsupervised machine learning technique for linear dimension reduc-
tion commonly used in a variety of disciplines2 and introduced to population genetics by Cavalli-Sforza and his
team3, has been a standard approach to identifying collections of genotyped individuals as populations, and quan-
tifying the level of genetic similarity amongst them. Using PCA, it is possible to determine whether the data has some
structure4, based on a linear transformation that uncovers, in a low-dimensional space (commonly with visualisation
in two dimensions), the presence of patterns with higher orthogonal variance in the high-dimensional space.

In PCA, the data is projected onto a new coordinate system such that the greatest genetic variance between
individuals lies on the first coordinate (Principal Component 1 or PC1), the second greatest variance lies on the
second coordinate (Principal Component 2 or PC2), and so on2. It is important to note that since each PC is
orthogonal to the others, in theory, the variances explained by the PCs are mutually uncorrelated. In addition to
identifying distinct groups of individuals (e.g. populations or ethnic groups), PCA can be used to detect migration
patterns5, i.e. whether individuals are the product of interbreeding between previously separated populations
(admixture)4 and whether individuals in case-control studies stand out from others due to ancestry differences
(stratification)5.

PCA is one of the most commonly employed algorithms because it is efficient (it extracts linear patterns within
a low computational time), user-friendly (it is a parameter-free transformation, i.e., it is an algorithm that does not
require the tuning of numerous parameters4,5) and has a relatively straightforward interpretation6,7. In practice,
the PCA approach has been shown to be very powerful and reliable, although it suffers from two major drawbacks:
i) the curse of dimensionality, i.e., the problem of finding information in datasets characterised by an over-
whelming number of features over samples, which is a typical problem in population genetics; ii) difficulties
associated with revealing nonlinear patterns hidden in a high-dimensional space.
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As a consequence of these problems, PCA is occasionally unable to
detect differences between groups of individuals, even with prior
knowledge that such differences exist. There is also the case in which
although we do not have such prior knowledge, dissimilarities char-
acterised by some unknown nonlinear feature relationship may be
present in the high-dimensional space, but because PCA is unable to
detect them, they cannot be identified.

The impact of the above-mentioned inconveniences might be
reduced by using non-centred Minimum Curvilinear Embedding
(ncMCE), proposed here, as a method for visually inspecting popu-
lation genetics datasets in a manner complementary to that of PCA.

Minimum Curvilinearity (MC), the principle behind ncMCE, sug-
gests that curvilinear distances between samples (here the population
individuals) may be estimated as pairwise distances over their
Minimum Spanning Tree (MST), constructed according to a selected
norm (Euclidean, correlation, etc.) in a high-dimensional feature
space (here the genotype frequency space). The collection of all non-
linear pairwise distances forms a distance matrix called the MC-
distance matrix or the MC-kernel, which can be used as an input
in algorithms for dimensionality reduction, clustering, classifica-
tion8,9 and more generally in machine learning. In the case of
MCE, the MC-kernel is centred (this operation is neglected in the
non-centred version of the approach, namely ncMCE) and its sin-
gular value decomposition is used to favour a sample projection onto
a two-dimensional space for visualisation and analysis8,9 (see Fig. 1
for a thorough description of the algorithm and the second section of
the Supplementary Information (SI) for more details). This descrip-
tion categorises MCE and ncMCE in the ‘machine learning zoo’
(expression borrowed from the computational complexity theory10)
as a form of nonlinear and parameter-free kernel PCA. The approach
was originally introduced in its centred version, which provided
remarkable results in: i) visualisation and discrimination of pain
patients in peripheral neuropathy, and the germ-layer characterisa-
tion of human organ tissues8; ii) discrimination of microbiota in
molecular ecology11; iii) stage identification of embryonic stem cell
differentiation based on genome-wide expression data12. In this third
example, MCE ranked first in a study of the performances of 12
different approaches tested (evaluated on 10 diverse datasets).
More recently, the non-centred version of the algorithm has been
used to visualise clusters of ultra-conserved regions of DNA across
eukaryotic species13 and as a network embedding technique for pre-
dicting links in protein interaction networks9, outperforming several
other link prediction techniques.

The success of ncMCE when applied to various types of problems
(it can be more time-efficient and often more discriminative than its
centred version9), as well as its parameter-free nature, prompted us
to apply it to population genetics data in order to explore whether
this approach can provide insights that are complementary to those
provided by PCA, thereby offering a hierarchical and nonlinear
representation of the relationships between and within different
populations.

Results
As a proof of concept, we first applied ncMCE to an artificial dataset
to explore whether it could provide information complementary to
that emphasised by PCA, for visually inspecting certain patterns
hidden in datasets. Fig. 2a shows two clouds of points organised into
two distinguishable nonlinear clusters in a three-dimensional feature
space. Given the nonlinear relationship between these data points in
three dimensions, their representation in two dimensions by a PCA
projection failed to reveal the presence of the two clusters (Fig. 2b).
The ncMCE projection, however, achieved perfect separation of the
two clusters over the second dimension (Fig. 2c). Therefore, ncMCE
highlighted very interesting nonlinear information that was hidden
in the original three-dimensional feature space. This nonlinear
information was not present in the output of the PCA transformation

due to its linear nature. In this didactic example, we used a simple
three-dimensional feature space to simplify the representation; how-
ever, the example is valid for any high-dimensional feature space:
given the strong cluster nonlinearities of the data in the example,
PCA would not be able to reveal the two clusters using any combina-
tion of principal components for projection14,15 (e.g., substituting the
visualisation in PC1, PC2 with PCx, PCy, where x and y are any
possible combination of reduced dimensions). If the artificial non-
linear shapes are linearised by gradually stretching them until they
become planes in a three-dimensional space (Fig. 2d), an improve-
ment of PCA’s clustering quality, measured by computing the con-
cordance score (C-score, see Methods for details) for dimension 1
and 2 and choosing the best, is clearly observed (Fig. 2e). PCA’s
performance presents a clear phase transition, which is commented
in the caption of Fig. 2.

As a first real world application of ncMCE, we analysed the Hap-
Map panel comprising of four populations, one from Africa (Yoruba,
YRI), one from Europe (CEU), and two from Asia (Chinese, CHB,
and Japanese, JPT). For comparability with later examples, we use
54,794 SNPs covered by the Affymetrix GeneChip used for the Pan-
Asian SNP Consortium Database (PanSNPdb)16,17. Fig. 3a shows an
analysis, commonly employed in articles and tutorials, which illus-
trates the strengths and weaknesses of PCA applied to population
genetics. PCA could distinguish the three continents, but was unable
to simultaneously separate Japanese and Chinese individuals (JPT
and CHB respectively). The ncMCE approach, on the other hand,
identified a clear separation between all four populations over the
second dimension of embedding (Dim2), placing the JPT and CHB
samples close together but in separate clusters (see Fig. 3a, middle
panel). The phylogenetic tree composed of these four populations
(shown in Fig. 3a, right panel) predicted that the high degree of
similarity between Asian individuals would make it difficult to
separate them and also highlighted the ability of ncMCE to detect
phylogenetic information in this data by ordering the populations
immediately adjacent to their phylogenetically closer ethnicities (see
the Methods section for details about the phylogenetic tree
construction).

Next, we look at a regional example by comparing six Malaysian
ethnic groups included in the PanSNPdb17. Fig. 3b shows a repres-
entative example of the geographic interpretation of PCA’s axes of
variation. PC1 mostly capture the latitudinal distribution of popula-
tions, with the Malay Negritos (MY-JH and MY-KS), which inhabit
the North of the country, being assigned positive values and the other
ethnic groups, found in the south, being assigned negative values.
PC2 partially disentangles the southern groups, with MY-BD and
MY-TM pulling apart and leaving MY-MN and MY-KN to form a
tight, undifferentiated cluster. These ethnic groups are known to be
genetically very similar18 (Fig. 3b, left panel), so it is not surprising
that PCA failed to separate them (Fig. 3b, left panel, PC1). ncMCE,
on the other hand, detected more separation (Fig. 3b, middle panel,
Dim2), and this separation was hierarchically organised (Fig. 3b,
right panel). This is a clear example in which the information pro-
vided by PCA and ncMCE was complementary.

We next look at three ethnic groups from Singapore (Fig. 3c). In
this example, it is again possible to see how ncMCE complements
PCA by extracting additional information. If PC1’s most positive
values are considered ‘‘west’’, we can see how PCA scattered the
Singaporean individuals according to their geographic origins
(India, China and Malaysia, respectively, Fig. 3c, left panel).
ncMCE, on the other hand, revealed clear genetic differences
between the Singaporean samples by scattering them across three
well-defined clusters over Dim2 (Fig. 3c, middle panel). Moreover,
ncMCE’s projection in this particular case coincided with the phylo-
genetic organisation of this population (Fig. 3c, right panel).

Taken together, these findings suggested a clear phylogenetic
imprinting over the embedded dimensions provided by ncMCE,
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whereas PCA offered a more geographically oriented mapping. We
suspect that the geographical information must be behind the data
linearity, while the sparse and tree-like phylogenetic information
must have an intrinsic nonlinear organisation.

The missing data problem is quite common in quantitative
research studies, including population genetics19,20. The way in which
missing SNP values are dealt with is so important, and its impact on
techniques such as PCA can be so serious4, that various methods have
been proposed to address this issue19,21. In the examples shown up to
this point, missing SNP values in the genotype matrix have been
imputed with the mode (most frequent value) for each specific
SNP (see the Methods for more details), but we next show an
example in which missing values remain in the dataset and
ncMCE is still able to reveal population structure, whereas PCA is
afflicted by this poorly pre-processed dataset. Fig. 4a and Fig. S3 in
the SI show that PCA was unable to detect any clear separation
between the Japanese ethnic groups of the PanSNPdb. Fig. 4b shows
that ncMCE in fact revealed additional substructure within this
population by separating Japanese individuals into two clear sub-
groups over Dim2. This was further confirmed by other two non-
linear dimensionality reduction algorithms (see Fig. S1 in the SI).

Unfortunately, they both have a tuneable parameter that makes them
less handy than PCA or ncMCE. It is worth mentioning that, when
the value of this parameter generates a neighbourhood proximity
graph with a tree-like structure from which the data is to be embed-
ded (like the basis of ncMCE), these algorithms provide the best
separation between the Japanese groups (see Fig. S2). This result
suggests that the hidden manifold structure of this dataset has an
intrinsic tree-like, hierarchical shape.

Colouring individuals by ethnicity in ncMCE’s projection, as
shown in Fig. 4c, revealed that the separation provided by this non-
linear approach was consistent with the phylogenetic differences
between and the distant geographic locations of Japanese from
Tokyo (the JPT and JP-ML ethnic groups) and Japanese Ryukyuan
from Okinawa (the JP-RK ethnic group). We did not expect that
,1% missing values would dramatically affect the result of PCA.
Yet, this observation is especially relevant when merging data from
different platforms or working with ancient DNA and should rep-
resent an important point to consider in future studies.

We wanted to ensure that the groups identified in the Japanese
dataset by ncMCE were genetically meaningful and that the cluster-
ing was not based on missing data (i.e., a group of individuals with

Figure 1 | MCE computes distances between individuals (given a selected norm; in our case, the Euclidean norm) in G to generate the matrix of
pairwise distances A. This matrix can be thought of as the adjacency matrix representation of a fully connected graph whose edges are weighted by inter-

individual distances. A MST T is extracted from this graph, and distances between individuals are re-computed over it to obtain the MC-kernel D. In this

paper, we used a version of MCE in which D is non-centred and the economy-size singular value decomposition is applied to it to determine the

coordinates of each individual in a space of dimension d. This version of MCE is also known as ncMCE. The power of this approach relies on the MC-

kernel. The MST T is a graph that extracts a greedy path that summarises the main relational information between the features of the dataset. This graph

avoids noise and spurious information and emphasises the nonlinear relationship between the most representative and informative features of the data

samples8,9,15,24.
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more missing SNP values and a group with fewer). For this analysis,
we substituted the missing SNP values of an individual with the mode
of that particular SNP across individuals as in the rest of this paper
(the analysis was also repeated using other centrality measures like
the mean or median, which are reasonable missing data imputation
approaches when the proportion of missing values is very small in
relation to the complete dataset as pointed out in the Methods) and
applied PCA over the modified matrix (see Fig. 5 and Figs. S4a,b
respectively). Surprisingly, as shown in Fig. 5 for the case of the
mode, this substitution linearised the Japanese dataset, and PCA
was able to detect the two groups identified by ncMCE using the
original genotype matrix, indicating that the missing values in the
Japanese dataset introduced a gap in the continuity of the multidi-
mensional data structure, therefore causing a significant nonlinear
perturbation in this dataset. This result confirmed that the clustering
obtained was not an algorithmic artefact and that ncMCE could
reveal patterns hidden by different sources of nonlinearity in the
data, such as intricate phylogenetic relationships (see the case of
the Malay population in Fig. 3b) or noise due to missing informa-
tion (see the case of the Japanese individuals in Figs. 4 and 5).
Additionally, this supports the complementarity of PCA and non-
linear techniques, wherein each technique mines different character-
istics of the data being analysed.

The results obtained from the Japanese dataset were further vali-
dated by performing a Mann–Whitney non-parametric statistical
test over the original genotype matrix (no substitutions of missing
value data with mode, mean or median) to detect the SNPs that were
most significant for differentiating between members of the two
groups identified by ncMCE and the other nonlinear dimensionality

reduction techniques (p # 0.01, see the Methods for more details). A
heat map of individuals (vertical axis) and the detected, more sig-
nificant SNPs only (horizontal axis), already suggests that the sam-
ples could be separated into two groups (Fig. 6a). Interestingly, the
application of PCA to the significant SNPs alone permitted the detec-
tion of the two groups that ncMCE had identified in both situations
(Fig. 6b) and that PCA had not been able to uncover using the
original genotype matrix (Fig. 4a). These results also hold if
Benjamini correction is applied to form a more stringent list of
significant SNPs (see Figs. S5a and S5b respectively). This important
result indicates that if the impact of the missing values on the data
structure is minimised by elimination of non-discriminative features,
the nonlinear structure hidden in the dataset is linearised, thereby
rending this structure visible to PCA. In the SI, we show an example
of what researchers can do once a set of interesting SNPs, like the
above mentioned, have been identified. This kind of downstream
analysis can aid in, for instance, the understanding of the origins
of structure in population genetic datasets.

The above interesting results suggested that ncMCE was able to
cope with poorly pre-processed data and detect differences between
the Tokyota and Okinawan. PCA was also able to achieve this but
only when the impact of the missing values is minimised by elim-
ination of non-discriminative features or when the nonlinear struc-
ture hidden in the dataset is linearised by missing data imputation.

Discussion
The amount of genetic data available to researchers today requires
powerful techniques that facilitate the rapid interpretation of this
valuable information. PCA’s simplicity and computational speed
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make it one of the preferred statistical tools for analysing GWAS
data. PCA’s reduction of data to projections along axes of great
variation lets us analyse the differences between individuals in
case-control studies or population genetics data5. There are, how-
ever, some cases (e.g., the presence of nonlinearity in the data) in
which PCA cannot reveal the presence of important patterns, and for
these situations, we suggest that ncMCE be adopted as an auxiliary
tool for PCA. Additionally, situations in which the data may be
characterised by different linear and nonlinear patterns coexisting
in the same multidimensional space, may benefit from the exploita-
tion of the complementarity of PCA and ncMCE.

As shown in the examples above, ncMCE can identify structure
within the datasets in which the differences between individuals are

small. In addition, given that ncMCE relies on an MST, its orderings
and the phylogenetic tree structure agree substantially, which is a
very interesting and useful feature. ncMCE matches PCA in terms of
computational speed and algorithmic simplicity. Both approaches
can handle large numbers of individuals characterised by a massive
number of features in a matter of minutes and the steps followed by
these approaches for projecting data onto lower dimensions are sim-
ple, yet powerful.

The power to identify structured groups in genetic data for which
PCA is unable to do so (even when more than two dimensions are
considered, as we verified in all the datasets presented here), or in a
complementary manner to PCA’s results, renders the ncMCE
approach as an important companion to PCA. ncMCE can guide
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researchers in their quest for intriguing sample relationships, which
were invisible to linear approaches but were identified here, espe-
cially when the data is not correctly pre-processed or adjusted.

The detection of hidden nonlinear relations between individuals
and representation of phylogenetic population relationships are
points of strength and utility for ncMCE. To conclude, the results
obtained here from the genetic data, together with the range of dif-
ferent fields within which ncMCE has been successfully applied8,9,11–13,
suggest that this machine learning approach is, in general, a good
option for detecting nonlinear multidimensional relationships in
data mining and pattern recognition studies.

Methods
Data. The genotype data used in this paper corresponds to the Pan-Asian SNP
Consortium Database (PanSNPdb)16. PanSNPdb comprises 75 populations (71 Pan-
Asian and 4 from the HapMap Project) with 1928 individuals and 54,794 SNPs on
autosomal chromosomes. The raw version of this dataset (available at http://www4a.
biotec.or.th/PASNP/Download) was converted to the TPED format using a PERL
script made available by the Harappa Ancestry Project at http://www.harappadna.
org/2011/02/23andme-conversion-to-ped/. Finally, the corresponding BED, BIM
and FAM files were generated using PLINK22 for further analysis in R.

Genotype matrix. The PCA and ncMCE methods were applied to a genotype matrix,
in which individuals were listed in rows and SNPs were listed in columns. The
genotype matrix was generated using the R package SNPRelate (http://cran.r-project.
org/package5SNPRelate). After loading the BED, BIM and FAM files that
represented the PanSNPdb dataset, SNPRelate generated the genotype matrix using
its function snpgdsGetGeno. This matrix was later exported to CSV format for further
processing in MATLAB. For more details, we refer the reader to the documentation of
the package.

PCA and ncMCE. PCA and ncMCE MATLAB implementations were used to obtain
the results presented throughout this paper. The MATLAB and R implementations of
ncMCE are available at https://sites.google.com/site/carlovittoriocannistraci/.

Clustering quality. To measure cluster quality over dimensions 1 and 2, we used the
so called concordance score (C-score). C-score measures the ability of a clustering
technique to separate individuals into their corresponding populations or ethnic
groups over a single dimension. The C-score ranges from 0 to 1, where 0 corresponds
to no population structure and 1 corresponds to a perfect ordering of individuals, in
which populations or ethnic groups appear one after the other with no individuals
belonging to one, mixed with the other. Formally, the C-score over dimension d is
defined as12:

Cd~

P
x[pi ,y[pj ,ivj d pd xð Þvpd yð Þð Þ

P
ivj Pij j| Pj

�
�
�
�

where Pi is the set of individuals in population or ethnic group i, jPij is the size of this
population, pd(x) is a 1D projection of individual x over dimension d and d(cond) is 0
or 1 depending on whether cond is False or True, respectively.

Phylogenetic tree construction. Phylogenetic trees were constructed by averaging
the SNPs of all individuals within a population or ethnic group in order to generate a
representative sample. The representative samples were then hierarchically clustered
according to an unweighted average distance to finally build the dendrograms shown
in the figures throughout the article.

Missing data imputation. Each individual in the above described genotype
matrix was represented by a set of 54,794 SNPs that could take the genotype
values of 0 (homozygous wild-type), 1 (heterozygous), 2 (homozygous variant-
type) or 3. The latter value represents missing data. To deal with them, we used a
strategy frequently adopted when the proportion of missing values is relatively
small with respect to the data size23 (in our case only 0.30% of the total SNP
values are missing values in the HapMap dataset, 0.86% in the Malay, 0.37% in
the Singaporean and 0.73% in the Japanese dataset). We substituted the missing
values in each of the 54,794 SNPs by the mode of the given values for each
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individuals were substituted with the mode of each specific SNP to remove

the nonlinear perturbations of this dataset and allow PCA to identify sub-

groups, Tokyotas or JP-Tk, and Okinawans or JP-RK, that ncMCE was able

to identify using the original data.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8140 | DOI: 10.1038/srep08140 6

http://www4a.biotec.or.th/PASNP/Download
http://www4a.biotec.or.th/PASNP/Download
http://www.harappadna.org/2011/02/23andme-conversion-to-ped
http://www.harappadna.org/2011/02/23andme-conversion-to-ped
http://cran.r-project.org/package=SNPRelate
http://cran.r-project.org/package=SNPRelate
https://sites.google.com/site/carlovittoriocannistraci


specific SNP. For the case of the Japanese dataset, missing values were also
substituted by the mean and median of each specific SNP.

Detection of most significant SNPs and heat map construction. Provided that the
two groups identified by ncMCE were reliable, we performed a Mann–Whitney non-
parametric statistical test to identify SNPs that most significantly differentiated
between members of these groups. Thus, we treated each SNP in the Tokyota group as
a column vector and compared it against the same SNP in the Okinawan group with
the rank-sum test to obtain a p-value reporting whether the contribution of this SNP
to the separation of the two groups is significant or not. Only SNPs with p-values #

0.01 were selected and sorted according to their p-values to produce a data matrix in
which each row represented an individual and the extracted, significant SNPs were
listed across the columns. Multiple testing corrections were not performed, which
preserved any noisy features and avoided the introduction of biases toward certain
more discriminative features during the PCA analysis (nevertheless, multiple testing
Benjamini correction confirmed our results as shown in Fig. S5 and Supplementary
File 2). The rationale was to test whether also in the presence of less significant
features, the two-cluster pattern was strong enough to be detectable by a linear
transformation. The constructed heat map (Fig. 6a) corresponded to the log10(1 1

SNP value) of the above-mentioned matrix, in which a SNP value could be 0
(homozygous wild-type), 1 (heterozygous wild-type), 2 (homozygous variant type) or
3 (missing data). 3173 significant SNPs were extracted from the Japanese population,
which mapped to 1016 unique genes.
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Figure 6 | Mann–Whitney non-parametric statistical test confirmed ncMCE’s sub-cluster detection. Extraction of the SNPs that most significantly

differentiated between members of the sub-groups identified by ncMCE in the Japanese population (p # 0.01) confirmed what ncMCE found: the

presence of two sub-groups of individuals with clear genetic differences (a). The heat map shows the log10(1 1 SNP value), in which the SNP values can be

0 (homozygous wild-type), 1 (heterozygous wild-type), 2 (homozygous variant type) or 3 (missing data). The SNPs are subdivided in a first set with high

average values, in the top-left corner of the heat map, characterising the first cluster of individuals. The second set, in the bottom-right corner, has also

high average values and characterises the other cluster. Note that the genetic variants in the first or the last set of SNPs make the two groups genetically

different. Interestingly, the PCA projection of the Japanese individuals, which considered only the significant SNPs extracted from the original genotype

matrix, revealed the two groups that ncMCE identified (b). PCA could not detect these groups upon application to the original dataset (Fig. 4a).
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