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A new realization of doubling degeneracy based on emergent Majorana operator C presented by
Lee-Wilczek has been made. The Hamiltonian can be obtained through the new type of solution of
Yang-Baxter equation, i.e. R

^

hð Þ -matrix. For 2-body interaction, R
^

hð Þ gives the ‘‘superconducting’’ chain that
is the same as 1D Kitaev chain model. The 3-body Hamiltonian commuting with C is derived by 3-body R

^

123

-matrix, we thus show that the essence of the doubling degeneracy is due to R
^

hð Þ, C
h i

~0. We also show that
the extended C9-operator is an invariant of braid group BN for odd N. Moreover, with the extended
C9-operator, we construct the high dimensional matrix representation of solution to Yang-Baxter equation
and find its application in constructing 2N-qubit Greenberger-Horne-Zeilinger state for odd N.

T
he Majorana mode1–4 has attracted increasing attention in physics due to its potential applications in
topological quantum information processing5–7. Specifically, the degenerate ground state in Majorana mode
serves as topologically protected states which can be used for topological quantum memory.

In the Ref. 8, Lee and Wilczek presented a new operator C that provided the doubling degeneracy for the
Hamiltonian formed by Majorana fermions to overcome the conceptional incompletion of the algebraic set for
the Majorana model. Following the Ref. 8, the Majorana operators ci’s satisfy Clifford algebraic relations:

ci,cj

n o
~2dij, ð1Þ

and the Hamiltonian takes the form

Hint~{i ac1c2zbc2c3zkc3c1ð Þ: ð2Þ

The algebra in equation (1) is conceptually incomplete. Besides the parity, the nonlinear operatorC is introduced8

C~{ic1c2c3 ð3Þ

to form the set

C2~1, P2~1, C, Hint½ �~0, P, Hint½ �~0,

C, cj

h i
~0, P, cj

n o
~0, C, Pf g~0,

ð4Þ

where P implements the electron number parity, and P2 5 1. The emergent Majorana operator C and parity
operator P lead to the doubling degeneracy at any energy level, not only for the ground state.

On the other hand, based on the obtained new type of solution R
^

i hð Þ of Yang-Baxter equation (YBE), which is
related to Majorana operators, the corresponding Hamiltonian can be found by following the standard way9, i.e.

the Hamiltonian H*
LR
^

i hð Þ
Lh

h~0j . We find that the Hamiltonian derived from R
^

i hð Þ is 1D Kitaev model1.

Moreover, because 1 1 1D 3-body S-matrix can be decomposed into three 2-body S-matrices based on YBE,
we construct the 3-body Hamiltonian from 3-body S-matrix and find its doubling degeneracy. Hence, the

advantage of parametrizing the braiding operator Bi to R
^

i hð Þ is that the desired Hamiltonian associated with

Majorana operators can be derived from R
^

i hð Þ.
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Now let us first give a brief introduction to the Majorana repres-
entation of braiding operator as well as the solution of Yang-Baxter
equation.

The non-Abelian statistics10 of Majorana fermion (MF) has been
proposed in both 1D quantum wires network7 and 2D p 1 ip super-
conductor2. For 2N Majorana fermions, the braiding operators of
Majorana fermions form braid group B2N generated by elementary

interchanges Bi~Ui,iz1~ exp
p

4
ciciz1

� �
of neighbouring particles

(i~1,2 � � � 2N{1) with the following braid relations:

BiBiz1Bi~Biz1BiBiz1, ð5Þ

BiBj~BjBi, i{jj jw1: ð6Þ

The Yang-Baxter equation (YBE)9,11,12 is a natural generalization
of braiding relation with the parametrized form:

R
^

i xð ÞR
^

iz1 xyð ÞR
^

i yð Þ~R
^

iz1 yð ÞR
^

i xyð ÞR
^

iz1 xð Þ, ð7Þ

where x, y stand for spectral parameters,

R
^

i~
1ffiffiffiffiffiffiffiffiffiffiffiffi

1zx2
p BizxB{1

i

� �
: ð8Þ

The solutions of equation (7) was intensively studied by Yang,
Baxter, Faddeev and other authors11–20 in dealing with many body
problems, statistical models, low-dimensional quantum field the-
ory, spin chain models and so on. We call this type of solutions
type-I.

Based on Ref. 21 there appears a new type of solutions called type-

II22–25. By introducing a new variable h as cos h~
1zxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1zx2ð Þ
p and

sin h~
1{xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1zx2ð Þ
p , we have

R
^

i hð Þ~ehciciz1~ cos hz sin hciciz1, ð9Þ

then the YBE reads26:

R
^

i h1ð ÞR
^

iz1 h2ð ÞR
^

i h3ð Þ~R
^

iz1 h3ð ÞR
^

i h2ð ÞR
^

iz1 h1ð Þ, ð10Þ

with the constraint for three parameters h1, h2 and h3:

tan h2~
tan h1z tan h3

1z tan h1 tan h3
, ð11Þ

i.e. the Lorentzian additivity by h~
1
c

u. It is well known that the

physical meaning of h is to describe entangling degree, which is jsin

2hj for 2-qubit23. The type-II solution of YBE R
^

i hð Þmeans the opera-
tion between two Majorana fermions, ci and cI 1 1. Because ci’s satisfy
Clifford algebraic relations:

ci,cj

n o
~2dij: ð12Þ

Then the solution R
^

i hð Þ~ehciciz1 transforms the Majorana fermions
ci and ci 1 1 in the following way:

R
^

i hð ÞciR
^{

i hð Þ~ cos 2hci{ sin 2hciz1, ð13Þ

R
^

i hð Þciz1R
^{

i hð Þ~ sin 2hciz cos 2hciz1: ð14Þ

Since the solution of Yang-Baxter equation can be expressed in
Majorana form, the following problems arise: (i) How to understand

the C-operator intuitively on the basis of the concrete MF model
generated by YBE; (ii) How to obtain the 3-body Hamiltonian, which
possesses the doubling degeneracy, from YBE; (iii) What is the rela-
tionship between C-operator (as well as extended C9) and the solu-

tion R
^

i hð Þ of YBE.
In this paper, we show that the emergent Majorana operator C is a

new symmetry of R
^

hð Þ as well as Yang-Baxter equation. Due to the
symmetry, the 3-body Hamiltonian derived from YBE holds
Majorana doubling. We also present a new realization of doubling
degeneracy for Majorana mode. Moreover, we discuss the topo-
logical phase in the ‘‘superconducting’’ chain. The generation of
Greenberger-Horne-Zeilinger (GHZ) state via the approach of
YBE is also discussed.

Results
Topological phase in the derived ‘‘superconducting’’ chain. The
topological phase transition in the derived ‘‘superconducting’’ chain
based on YBE is discussed. We find that our chain model is exactly
the same as 1D Kitaev model. Let us first give a brief introduction to
1D Kitaev model.

1D Kitaev’s toy model is one of the simplest but the most repres-
entative model for Majorana mode1,4. The model is a quantum wire
with N sites lying on the surface of three dimensional p-wave super-
conductor, and each site is either empty or occupied by an electron
with a fixed spin direction. Then the Hamiltonian is expressed as the
following form:

Ĥk~
XN

j

{m a{j aj{
1
2

� �
{v a{j ajz1za{jz1aj

� �	

zDajajz1zD�a{jz1a{j
i
:

ð15Þ

Here a{j , aj represent spinless ordinary fermion, v is hopping ampli-
tude, m is chemical potential, and D 5 jDje2iQ is induced supercon-
ducting gap. Define Majorana fermion operators:

c2j{1~eiQ2a{j ze{iQ2aj, ð16Þ

c2j~ieiQ2a{j {ie{iQ2aj, ð17Þ

which satisfy the relations:

c{m~cm, cl,cmf g~2dlm, l,m~1, . . . 2N: ð18Þ

Then the Hamiltonian is transformed into the Majorana form:

Ĥk~
i
2

X
j

{mc2j{1c2jz vz Dj jð Þc2jc2jz1

h

z {vz Dj jð Þc2j{1c2jz2

i
:

ð19Þ

An interesting case is m 5 0, v 5 jDj. In this case, the Hamiltonian
turns into Majorana mode corresponding to topological phase:

Ĥk~iv
X

j

c2jc2jz1: ð20Þ

The above Hamiltonian has two degenerate ground states, j0æ and j1æ
5 d{j0æ. Here d{ 5 e2iQ/2(c1 2 ic2N)/2 is a non-local ordinary fermion.
The degenerate states can be used for topological quantum memory
qubits that are immune to local errors.

Now let us construct the ‘‘superconducting’’ chain based on the

solution R
^

i hð Þ of YBE. We imagine that a unitary evolution is gov-

erned by R
^

i hð Þ. If only h in unitary operator R
^

i hð Þ is time-dependent,
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we can express a state jy(t)æ as y tð Þj i~R
^

i y 0ð Þj i. Taking the

Schrödinger equation i�h
L
Lt

y tð Þj i~Ĥ tð Þ y tð Þj i into account, one

obtains:

i�h
L
Lt

R
^

i y 0ð Þj i
h i

~Ĥ tð ÞR
^

i y 0ð Þj i: ð21Þ

Then the Hamiltonian Ĥi tð Þ related to the unitary operator R
^

i hð Þ is
obtained:

Ĥi tð Þ~i�h
LR
^

i

Lt
R
^{1

i : ð22Þ

Substituting R
^

i hð Þ~ exp hciciz1

� �
into equation (22), we have:

Ĥi tð Þ~i�h _hciciz1: ð23Þ

This Hamiltonian describes the interaction between i-th and (i 1 1)-

th sites with the parameter _h. Indeed, when h~n|
p

4
, the unitary

evolution corresponds to the braiding progress of two nearest
Majorana fermion sites in the system, here n is an integer and sig-
nifies the times of braiding operation.

If we only consider the nearest-neighbour interactions between
MFs and extend equation (23) to an inhomogeneous chain with 2N
sites, the derived ‘‘superconducting’’ chain model is expressed as:

Ĥ~i�h
XN

k~1

_h1c2k{1c2kz
_h2c2kc2kz1

� �
, ð24Þ

with _h1 and _h2 describing odd-even and even-odd pairs, respectively.
Now we give a brief discussion about the above chain model in two

cases (see Fig. 1):

1. _h1w0, _h2~0.
In this case, the Hamiltonian is:

Ĥ1~i�h
XN

k

_h1c2k{1c2k: ð25Þ

As defined in equation (16) and (17), the Majorana operators
c2k 2 1 and c2k come from the same ordinary fermion site k,
ic2k{1c2k~2a{kak{1 (a{k and ak are spinless ordinary fermion
operators). Ĥ1 simply means the total occupancy of ordinary
fermions in the chain and has U(1) symmetry, aj R eiwaj.

Specifically, when h1 tð Þ~ p

4
, the unitary evolution eh1c2k{1c2k

corresponds to the braiding operation of two Majorana sites
from the same k-th ordinary fermion site. The ground state
represents the ordinary fermion occupation number 0. In com-
parison to 1D Kitaev model, this Hamiltonian corresponds to
the trivial case of Kitaev’s. In Fig. 1, this Hamiltonian is described
by the intersecting lines above the dashed line, where the inter-
secting lines correspond to interactions. The unitary evolution of

the system e{i
Ð

Ĥ1 dt stands for the exchange process of odd-
even Majorana sites.

2. _h1~0, _h2w0.
In this case, the Hamiltonian is:

Ĥ2~i�h
XN

k

_h2c2kc2kz1: ð26Þ

This Hamiltonian corresponds to the topological phase of 1D
Kitaev model and has Z2 symmetry, aj R 2aj. Here the opera-
tors c1 and c2N are absent in Ĥ2, which is illustrated by the
crossing under the dashed line in Fig. 1. The Hamiltonian has
two degenerate ground state, j0æ and j1æ 5 d{j0æ, d{ 5 e2iQ/2(c1 2

ic2N)/2. This mode is the so-called Majorana mode in 1D Kitaev

chain model. When h2 tð Þ~ p

4
, the unitary evolution eh2c2kc2kz1

corresponds to the braiding operation of two Majorana sites c2k

and c2k 1 1 from k-th and (k 1 1)-th ordinary fermion sites,
respectively.

Thus we conclude that our Hamiltonian derived from R
^

i h tð Þð Þ
corresponding to the braiding of nearest Majorana fermion sites is
exactly the same as the 1D wire proposed by Kitaev, and _h1~ _h2

corresponds to the phase transition point in the ‘‘superconducting’’
chain. By choosing different time-dependent parameter h1 and h2, we
find that the Hamiltonian Ĥ corresponds to different phases.

New realization of Majorana Doubling based on C-operator. The
important progress had been made to establish the complete algebra
for the Majorana doubling by introducing the emergent Majorana
operator C8:

C~{ic1c2c3: ð27Þ

In Ref. 8, the concreted realization of the operators was presented in
terms of Pauli matrices. On the other hand, as pointed out in Ref. 27,
there is the transformation between the natural basis and Bell basis for

W0j i~ ;;j i, :;j i, ;:j i, ::j ið ÞT , ð28Þ

Yj i~ Yzj i, Wzj i, W{j i, Y{j ið ÞT , ð29Þ

where

Yzj i~ 1ffiffiffi
2
p ::j iz ;;j ið Þ,

Wzj i~ 1ffiffiffi
2
p :;j iz :;j ið Þ,

ð30Þ

Y{j i~ 1ffiffiffi
2
p ;:j i{ :;j ið Þ,

W{j i~ 1ffiffiffi
2
p ::j i{ ;;j ið Þ

ð31Þ

Figure 1 | The nearest neighbouring interactions of 2N Majorana sites described by the ‘‘superconducting’’ chain. Each solid line represents a Majorana

site, and the crossing means the interaction. The dashed line divides the interactions into two parts that are described by _h1 and _h2 respectively.

When _h1~0, _h2=0, the first line and the last line are free, and the Hamiltonian corresponds to topological phase.
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through the matrix BII:

Yj i~BII W0j i, ð32Þ

where

BII~
1ffiffiffi
2
p

1 0 0 1

0 1 1 0

0 {1 1 0

{1 0 0 1

2
6664

3
7775~

1ffiffiffi
2
p IzMð Þ M2~{1

� �
ð33Þ

and

MiMi+1~{Mi+1Mi, M2~{I, ð34Þ

MiMj~MjMi, i{jj j§2 ð35Þ

which forms ‘‘extra special 2-group’’. Obviously, M is extension of i for
i2 5 21.

An interesting observation is28:

M~{iĈ ð36Þ

where Ĉ is the charge conjugate operator in Majorana spinor. The
eigenstates of Ĉ take the forms

Ĉ j+j i~+ j+j i, Ĉ g+


 �

~+ g+



 �
, ð37Þ

where

j+j i~ 1ffiffiffi
2
p ::j i+i ;;j ið Þ, ð38Þ

g+


 �

~
1ffiffiffi
2
p :;j i+i ;:j ið Þ: ð39Þ

Here we would like to give an intuitive interpretation of the oper-
ator C in Ref. 8 by taking a new set of Di (i 5 1, 2, 3) in stead of ci, and
show how it gives rise to the Majorona doubling with explicit
realization.

We follow the concrete realization for cj given in Ref. 8, (in this
paper I is 2 3 2 identity matrix)

c1~s16I, c2~s36I,c3~s26s1, ð40Þ

P~s26s3, ð41Þ

C~{ic1c2c3~{I6s1: ð42Þ

In our notation, c3~{Ĉ, i.e. (38) and (39) are eigenstates of c3. It
is easy to find

c1 j+j i~+i g+



 �
, c1 g+



 �
~+i j+j i; ð43Þ

c2 j+j i~ j+j i, c2 g+



 �
~ g+



 �
; ð44Þ

c3 j+j i~+ j+j i, c3 g+



 �
~+ g+



 �
; ð45Þ

P j+j i~+ g+



 �
, P g+



 �
~+ g+



 �
; ð46Þ

C j+j i~{ g+


 �

, C g+


 �

~{ g+



 �
: ð47Þ

In the derivation of (43)–(47), the relations s1 5 (S1 1 S2) and

s2~
1
i

Sz{S{ð Þ have been used where S6 5 S1 6 iS2. To show the

importance of C-operator we define new Clifford algebra {Di, Dj} 5

2dij, where D1 5 c2, D2 5 Cc1, D3 5 c3. It is interesting to find that

Dj jj i~sj jj i, Dj gj i~sj gj i, j~1,2,3ð Þ ð48Þ

jj i~ jzj i
j{j i

� �
, gj i~ gzj i

gj i

� �
: ð49Þ

Namely, by acting Dj on jjæ or jgæ, the representation is exactly
Pauli matrices, i.e. belonging to SU(2) algebra. It can be checked that

D1D2~{iS2, D2D3~{iS3, D1D3~{iS1, ð50Þ

where Si form the reducible representation of SU (2):

S1~s16s1, S2~s26s1, S3~s36I: ð51Þ

The introduced interacting Hamiltonian HB 5 2i(aD1D2 1

bD2D3 1 kD3D1) can be recast to

HB~{ a1S1za2S2za3S3ð Þ, ð52Þ

where a1 5 2k, a2 5 a, a3 5 b. Noting that D1D2D3 5 2iI fl I, i.e.
trivial. The direct check gives:

C,Sj
� 

~0, j~1,2,3ð Þ ð53Þ

and

Sj,Sk
� 

~iEjklSl:

Then the HB can be written in the form:

HB~E~n:~S, ~S2~I
� �

, ð54Þ

~n~ sin f cos Q, sin f sin Q, cos fð Þ, ð55Þ

cos f~{a3=E, tan Q~a2=a1: ð56Þ

Obviously, ~S is reducible 4-d representation of SU(2). Explicitly,

~n:~S~M1zM2

~

cos f 0 0 sin fe{iQ

0 cos f sin fe{iQ 0

0 sin feiQ { cos f 0

sin feiQ 0 0 { cos f

2
666664

3
777775

,
ð57Þ

where

M1~

cos f 0 0 sin fe{iQ

0 0 0 0

0 0 0 0

sin feiQ 0 0 { cos f

2
6664

3
7775, ð58Þ

M2~

0 0 0 0

0 cos f sin fe{iQ 0

0 sin feiQ { cos f 0

0 0 0 0

2
6664

3
7775: ð59Þ

Rewriting M1 and M2 in the form of Pauli matrices, we have

M1~ cos f
s36IzI6s3

2

z sin f e{iQsz
6szzeiQs{

6s{
� �

,

ð60Þ
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M2~ cos f
s36I{I6s3

2

z sin f e{iQsz
6s{zeiQs{

6sz
� �

:

ð61Þ

Now the meaning of HB is manifest: 4-dimension is quite different
from 2-dimension. The ‘‘edge block’’ leads to M1 with superconduct-
ing type of Hamiltonian whereas ‘‘interior block’’ M2 is connected
with the usual spin chain. It is easy to find the eigenstates of M1 and
M2:

M1 y1j i~ y1j i, M2 y2j i~ y2j i, ð62Þ

where

y1j i~

cos f
2

0

0

sin f
2 eiQ

2
66664

3
77775, y2j i~

0

cos f
2

sin f
2 eiQ

0

2
6664

3
7775: ð63Þ

Acting C on (63) it yields

C y1j i~{ y2j i, C y2j i~{ y1j i: ð64Þ

So C transforms between jy1æ and jy2æ that holds for the same
energy. It never occurs in 2 dimensions. Meanwhile, equation (53)
shows that C commutes with the Hamiltonian HB, which means that
C-transformation does not change the property of Hamiltonian HB.
This example shows that operator C is crucial in leading to Majorana
doubling in dimensions $4. With the new defination of D2, we
should define a new parity operator:

PB~s36s2: ð65Þ

Direct check gives the complete set of algebra

Di,Dj

� �
~0, ð66Þ

C2~I, C,Dj
� 

~0, C,HB½ �~0, ð67Þ

P2
B~I, PB,Dj

� 
~0, ð68Þ

C,PBf g~0, PB,HB½ �~0, ð69Þ

C,Sj
� 

~0, Sj,Sk
� 

~iEjklSl, j,k,l~1,2,3ð Þ: ð70Þ

It is noteworthy that the introduced PB in equation (68) commutes
with Dj instead of the anti commuting relation between P and cj. And
PB still anticommutes with C. Acting PB on the eigenstates jy1æ and
jy2æ, it follows

PB y1j i~i y2j i, PB y2j i~{i y1j i: ð71Þ

In such a concrete realization C plays the essential role. The
Hamiltonian (54) formed by (52) looks a typical nuclear resonant
model in 4 dimensions. Only the higher dimensions allow the oper-
ator C leading to the doubling degeneracy.

Majorana doubling in 3-body Hamiltonian based on YBE. Now we
discuss the interaction of 3 Majorana fermions based on YBE.

It is well known that R
^

i hð Þ describes the 2-body interaction. And
the physical meaning of Yang-Baxter equation is that the interaction
of the three bodies can be decomposed into three 2-body interac-
tions:

R
^

123 h1,h2h3ð Þ~R
^

12 h1ð ÞR
^

23 h2ð ÞR
^

12 h3ð Þ

~R
^

23 h3ð ÞR
^

12 h2ð ÞR
^

23 h1ð Þ:

Because of the constraint in equation (11), R
^

123 depends only on two
free parameters and has the following form29:

R
^

123 g,bð Þ~eg ~n:~Lð Þ, ð72Þ

where

cos g~ cos h2 cos h1zh3ð Þ,

sin g~ sin h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z cos2 h1{h3ð Þ,

p

~n~
1ffiffiffi
2
p cos b,

1ffiffiffi
2
p cos b, sin b

� �
,

~L~ c1c2, c2c3, c1c3ð Þ,

cos b~

ffiffiffi
2
p

cos h1{h3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z cos2 h1{h3ð Þ

p ,

sin b~
{ sin h1{h3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z cos2 h1{h3ð Þ

p :

Here the parameters h1 and h3 are replaced by g and b. R
^

123 g,bð Þ is
also a unitary operator and describes the interaction of three
Majorana operators.

We suppose that the parameter g is time-dependent and b is time-

independent in R
^

123 g,bð Þ, then the desired 3-body Hamiltonian can
be obtained from equation (22):

Ĥ123 tð Þ~i�h
LR
^

123

Lt
R
^{1

123

~i�h _g
1ffiffiffi
2
p cos b c1c2zc2c3ð Þz sin bc1c3

	 �
:

ð73Þ

The constructed Hamiltonian, which has been mentioned in Ref. 7, 8,
describes the 2-body interactions among the three Majorana opera-
tors. It describes the effective interaction in a T-junction formed by
three quantum wires. In Ref. 8, it has been shown that the above
Hamiltonian, which commutes with emergent Majorana operator C
5 2ic1c2c3, holds Majorana doubling. From the viewpoint of YBE,
the intrinsic commutation relation is between C and the solution of

YBE R
^

i hð Þ~ehciciz1 . It is shown that:

C,R
^

i hð Þ
h i

~0, i~1,2ð Þ: ð74Þ

Indeed, the above commutation relation indicates that emergent

Majorana operator C is a new symmetry of the solution R
^

i hð Þ of
YBE. It is due to the decomposition of 3-body interaction into three
2-body interactions via the approach of YBE that the derived
Hamiltonian holds Majorana doubling.

The extended emergent Majorana mode C9 supporting odd num-
ber N of Majorana operators8 is,

C’:iN N{1ð Þ=2 P
N

j~1
cj: ð75Þ

It is easy to check that:

C’,Bi½ �~0, i~1,2, . . . N{1ð Þ, ð76Þ

where Bi~e
p
4ciciz1 is the generator of the braid group BN. The com-

mutation relation indicates that C9 plays the role of an invariant in
the braid group BN.
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Generation of 2n-qubit GHZ state via YBE. Quantum entanglement
plays an important role in quantum information theory and has been
discussed in both theoretical30 and experimental31–33 aspects for a long
time. There are various ways in describing different types of
entanglement. It is also well known that the relationship between
Yang-Baxter equation and 2-qubit entangled state as well as 3-qubit
entanglement has been discussed in Ref. 22, 23, 29, 34. Here we
construct high dimensional matrix representation of solution to
Yang-Baxter equation and discuss how it generates 2N-qubit GHZ
state for odd N. In previous section, we present Clifford algebric
relation for different Majorana operators,

ci,cj

n o
~2dij: ð77Þ

It can be used for constructing solution to YBE:

R
^

i hð Þ~ exp hciciz1

� �
: ð78Þ

The representation of ci in the Majorana form is given by:

c2j{1~eiQa{j ze{iQaj, ð79Þ

c2j~ieiQa{j {ie{iQaj: ð80Þ

Then by constructing Yang-Baxter chain, we find its similarity to 1D
Kitaev model.

Indeed, the 4D-matrix representation is equivalent to the
Majorana fermion representation under Jordan-Wigner transforma-
tion. In other words, we can express ci by matrix directly. For three
operators. c1, c2 and c3 satisfying Clifford algebra, its 4D matrix
representation has been presented in Ref. 8:

c1~s16I,

c2~s36I,

c3~s26s1,

here si are Pauli matrices.
What we are interested in is constructing higher dimensional matrix

representation of ci. Taking 8D representation as an example, ci is:

c1~s16I6I,

c2~s36s16I,

c3~s36s36s1:

Then the matrix form of emergent Majorana mode C8 is,

C~{ic1c2c3~{s16s26s1: ð81Þ

The Hamiltonian supporting three Majorana operators has been
defined in equation (2):

Hint~{i ac1c2zbc2c3zkc3c1ð Þ

~{as26s16I{bI6s26s1zks26s36s1:
ð82Þ

Obviously, C commutes with the Hamiltonian Hint.
Let us extend C to N sites Ci, which should also satisfy Clifford

algebra {Ci, Cj} 5 2dij. The Ci has the following form:

c3i{2~ s36s36s3ð Þ6 i{1ð Þ
6s16I6I6I � � � ,

c3i{1~ s36s36s3ð Þ6 i{1ð Þ
6s36s16I6I � � � ,

c3i~ s36s36s3ð Þ6 i{1ð Þ
6s36s36s16I � � � ,

Ci~{ic3i{2c3i{1c3i

~{ s36s36s3ð Þ6 i{1ð Þ
6s16s26s16I6I � � � :

ð83Þ

Then we have:

CiCiz1~{iI63 i{1ð Þ
6 s26s1ð Þ63

6I6I � � � : ð84Þ

It is easy to check that ehCiCiz1 is the 43-D matrix solution of YBE, we

denote it by R
^3

i hð Þ,

R
^3

i hð Þ~ cos hI66{i sin h s26s1ð Þ63: ð85Þ

By acting R
^3

i hð Þ on 6-qubit natural basis, such as j""""""æ, we have:

R
^3

i hð Þ :j i66
~ cos h :j i66

{ sin h ;j i66: ð86Þ

This state represents a type of 6-qubit entangled states. In the case of

h~
p

4
, the generated state is 6-qubit GHZ state, and

R
^3

i h~
p

4

� �
~e

p
4CiCiz1 can be regarded as one braiding operation of

two emergent Majorana operator Ci and Ci 1 1.
Now we generalize the 432D matrix solution of YBE to 4n with n

odd. The extended Majorana operator supporting any odd number n
of Majorana operators reads,

Cn~C’:in n{1ð Þ=2 P
n

j~1
cj, ð87Þ

where the constraint of Clifford algebra Cn
i ,Cn

j

n o
~2dij leads to the

odd number n. Cn
i can be expressed as:

Cn
i ~{ s3ð Þ6n i{1ð Þ

6 s16s2ð Þ6
n{1

2 6s16I6I � � � : ð88Þ

Then we have

Cn
i C

n
iz1~{ ið ÞI6n i{1ð Þ

6 s26s1ð Þ6n
6I6I � � � : ð89Þ

The 4n2D (n odd) matrix representation of solution to YBE is:

R
^n

i hð Þ~ehCn
i C

n
iz1

~ cos hI62n{i sin h s26s1ð Þ6n n oddð Þ:
ð90Þ

Consequently, we generate the following state by acting R
^n

i hð Þ on the
2n(n odd)-qubit natural state j"æfl2n:

R
^n

i hð Þ :j i62n
~ cos h :j i62n

{ sin h ;j i62n: ð91Þ

When h~
p

4
, the generated state turns into 2n-qubit GHZ state for

odd n.

Discussion
In this paper, based on the solution of YBE in Majorana form, we
discuss the topological phase transition in the derived ‘‘supercon-
ducting’’ chain and the Majorana doubling in 3-body Hamiltonian as
well as the generation of 2n-qubit GHZ-type entangled states. Unlike

the braid operator, the solution R
^

i hð Þ of YBE is parameter-depend-

ent. Hence the unitary operator R
^

i hð Þ can be used for generating the
‘‘superconducting’’ chain and the Majorana doubling in 3-body
Hamiltonian. Indeed, the derived chain(25,26) describes the braiding

transformation of nearest-neighbour Majorana sites for h1~
p

4
(or

h2~
p

4
). We also find that the 3-body Hamiltonian Ĥ123 derived

from R
^

123 holds Majorana doubling. From the viewpoint of YBE,
the commutation relation C,Ĥ123

� 
~0 can be explained by

C,R
^

i hð Þ
h i

~0 i~1,2ð Þ, where R
^

i hð Þ is the solution of YBE. In other

words, it is the C-symmetry of R
^

hð Þ that leads to the C-symmetry of
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Ĥ123. The commutation relation can also be generalized to the
extended C9-operator(87) for odd N sites, [C9, Bi] 5 0 (i 5 1, 2,
…N 2 1), hence C9 is an invariant of the braid group BN.

We present a new realization of Majorana doubling based on
emergent Majorana mode and show the role of C in leading to the
doubling degeneracy of HB intuitively. We also make use of the
extended C9-operator to construct high dimensional matrix repres-
entation of solution to YBE. By acting the high dimensional matrix
representation of solution of YBE on natural basis, we generate the
GHZ-type entangled state. Thus we conclude that the braiding pro-
cess of the extended C9-operators corresponds to the generation of
GHZ entangled state. These results may guide us to find much closer
relationship between Yang-Baxter equation and quantum informa-
tion as well as condensed matter physics.
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