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We tested the biological significance of two amino acid mutations in the PB2 protein (glutamic acid to lysine
at position 627 and aspartic acid to asparagine at position 701) of A(H7N9) viruses for mammalian
adaptation. Mutants were assessed for their viral polymerase activities, growth kinetics in mammalian and
avian cells, and pathogenicity in mice. We found that lysine at position 627 and asparagine at position 701 in
PB2 are essential for mammalian adaptation of A(H7N9) viruses.

S
ince February 2013, novel influenza A viruses of the H7N9 subtype [A(H7N9)] have infected more than 457
individuals, causing 167 deaths as of November 18th, 2014 (http://www.who.int/csr/don/18-november-
2014-avian-influenza/en/). Phylogenetic analyses indicate that these viruses originated from reassortment

events among different avian influenza viruses1–7. The HA and NA segments were derived from the H7N3 viruses
and H7N9 viruses, respectively, and the other six segments (PB2, PB1, PA, NP, M, and NS) were derived from
H9N2 viruses. Comprehensive studies have revealed that A(H7N9) viruses replicate efficiently in mammalian
cells and show moderate transmissibility in ferret models8–14. These properties appear to be influenced by amino
acid substitutions in the HA protein, such as HA-226L (H3 numbering), which confer binding affinity to human-
type receptors15, and in the PB2 protein, such as PB2-591K, PB2-627K, and PB2-701N, which is known to
facilitate viral polymerase activity in mammals16–20.

Almost all H7N9 viruses isolated from humans have an amino acid change, Q591K, E627K, or D701N, in their
PB2 protein. Mok et al.21 tested the importance of PB2-271A, PB2-591K, PB2-627K, and PB2-701N, using A/
Shanghai/2/2013 as the backbone, and found that these amino acid changes contributed to mammalian adapta-
tion. Here, we tested the contributions of PB2-627K and PB2-701N in the background of the prototype A/Anhui/
1/2013 virus (Anhui/1)8,22. The PB2 proteins of Anhui/1 and A/Shanghai/2/2013 virus differ at amino acid
position 292, which has been predicted to affect the host range of influenza viruses23. Hence, the PB2 proteins
of the two viruses may differ in their replicative ability in mammalian cells. Zhang et al.24 studied the importance
of PB2-627K by using Anhui/1 virus but did not test the significance of PB2-701N in the background of this virus.
For these reasons, we generated mutant proteins and viruses encoding PB2-627E/701D and PB2-627E/701N
(mutations are underlined); the PB2-701N mutation was tested in combination with PB2-627E because the
mammalian-adapting mutations PB2-627K and PB2-701N typically do not occur together.

Results and Discussion
PB2 is part of the viral replication complex; therefore, we evaluated viral polymerase activity in human alveolar
adenocarcinoma epithelial A549 cells incubated at 37uC and chicken fibroblast DF-1 cells incubated at 39uC by
using a luciferase-based mini-genome assay22. Cells were transfected with viral protein expression plasmids for
NP, PB1, PA, and PB2 or its mutants, a plasmid expressing viral RNA encoding firefly luciferase, and pRL-null,
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which expresses Renilla luciferase, as a transfection control. At 24 h
post-transfection, viral polymerase activities were measured by use of
a dual-luciferase assay (Figure 1). In human A549 cells, the PB2-
627E/701D mutation drastically decreased the viral polymerase
activity compared with that of wild-type Anhui/1 PB2 (P , 0.01),
whereas the simultaneous introduction of PB2-701N (PB2-627E/
701N) partially restored the viral polymerase activity. In avian DF-
1 cells, the viral polymerase activity was not statistically significantly
affected by the mutations tested, although luciferase levels were

somewhat increased by PB2-627E/701N. Hence, PB2-627K, and to
a lesser extent PB2-701N, contribute to the high viral polymerase
activity of A(H7N9) PB2 protein in human cells.

Next, we compared the viral growth kinetics of wild-type and
mutant viruses in A549 and DF-1 cells incubated at 37 and 39uC,
respectively. Cells were infected with viruses at a multiplicity of
infection of 0.001, and virus titers in the cell culture supernatant were
assessed at the indicated times (Figures 2a and 2b). In A549 cells,
PB2-627E/701D virus was attenuated compared with Anhui/1,
whereas the PB2-627E/701N virus replicated more efficiently than
did Anhui/1 virus. In DF-1 cells, the PB2-627E/701N virus showed
increased growth compared with the other two viruses tested. These
results indicate that the PB2-K627E mutation reduced A(H7N9)
virus replicative ability in human cells, and that this growth attenu-
ation could be compensated for by the PB2-D701N mutation.

To assess the importance of PB2-627K, and PB2-701N in vivo, we
compared virus titers in the nose tissues, lungs, brains, spleens, kid-
neys, livers, and colons of BALB/c mice infected intranasally with 106

plaque-forming units (PFU) of each virus (Table 1). PB2-627E/701D
virus was significantly attenuated compared with wild-type Anhui/1;
this attenuating effect was partially offset by the simultaneous intro-
duction of PB2-701N (see PB2-627E/701N virus). None of the
viruses tested here spread beyond the respiratory organs. We, next,
evaluated viral pathogenicity in mice infected with different doses of
virus (Figure 3). Wild-type Anhui/1 virus, which was prepared by use
of reverse genetics and encodes an HA consensus sequence, killed all
mice at the highest dose tested, resulting in a mouse lethal dose 50
(MLD50) value of 105.5 PFU. In contrast, PB2-627E/701D and PB2-
627E/701N viruses did not kill mice infected with 106 PFU of virus
(MLD50, . 106.5 PFU), although PB2-627E/701N caused some
weight loss. These results demonstrate that the PB2-K627E mutation
drastically attenuate the virulence of A(H7N9) virus in mice and the
additional PB2-D701N mutation partially recovers the virulence of
the virus in mice. It should be noted that the MLD50 value of the
Anhui/1 virus used in this study was substantially higher than that of
the original Anhui/1 isolate (MLD50: 103.5 PFU/ml)8. This difference
in MLD50 values is probably due to differences in the HA sequences
because the virus generated in this study by using reverse genetics
encodes the HA consensus sequence, whereas the original isolate
possesses a mix of five different HA variants8. Also, we cannot
exclude the possibility that sequence variations in the other seven
viral segments might contribute to this difference.

The viral polymerase complex, which is composed of PB2, PB1,
and PA, plays an essential role in the first step of mammalian adapta-
tion. Alteration of the polymerase complex by an amino acid change
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Figure 1 | Viral polymerase activity in vitro. Human A549 and avian DF-1

cells were transfected with plasmids encoding the PB1, PA, NP, and wild-

type or mutant PB2, with a plasmid for the expression of a virus-like RNA

encoding the firefly luciferase gene (driven by a human or an avian

polymerase I promoter for use in human or avian cells, respectively), and

with a control plasmid encoding Renilla luciferase. Cells were incubated

for 24 h at 37uC (A549) or 39uC (DF-1), and then firefly and Renilla

luciferase activities were measured by means of a dual-luciferase assay.

Polymerase activity was calculated by normalization of the firefly luciferase

activity to the Renilla luciferase activity. The data are shown as relative

polymerase activities with SD (n 5 3). The polymerase activity of the wild-

type Anhui/1 PB2 was set to 100%. **, P , 0.01, according to a one-way

ANOVA followed by a Dunnett’s test.
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Figure 2 | Growth kinetics of mutant viruses in vitro. Human A549 (A) and avian DF-1 (B) cells were infected with the indicated viruses at a multiplicity

of infection of 0.001 and incubated at 37uC or 39uC, respectively. The supernatants of the infected cells were collected at the indicated time points.

Virus titers were determined by use of a plaque assay in MDCK cells. The virus titers are means 6 SD (n 5 3). * and **, P , 0.05 and P , 0.01, respectively,

according to a one-way ANOVA followed by a Dunnett’s test.
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or through reassortment enables a virus to replicate efficiently in a
new host. Here, we demonstrated that the well characterized mam-
malian-adapting markers PB2-627K and PB2-701N are also import-
ant for the mammalian adaptation of the influenza virus A/Anhui/1/
2013 (H7N9). PB2-627K and PB2-701N increased the viral polymer-
ase activity in human cells compared with PB2-627E/701D, but did
not affect that in avian cells. The virus carrying PB2-D701N repli-
cated better than did wild-type Anhui/1 virus, which possesses PB2-
627K, in both human and avian cells. PB2-627K and PB2-701N
enhanced viral virulence in mice compared with PB2-627E/701D.
While this study was in progress, Mok et al.21 and Zhang et al.24

published similar findings. By using A/Shanghai/2/2013, Mok
et al.21 reported that the viral polymerase activities of PB2-627E
and PB2-701N were enhanced in human cells but decreased in avian
cells compared with wild-type PB2. Similarly, Zhang et al.24 showed
that PB2-627K enhances viral polymerase activities in human cells
but decreased these activities in avian cells. Although there is some
variance in the details of the data from three different studies, collec-
tively, they show the importance of the amino acid residues at posi-
tions 627 and 701 for mammalian adaptation of H7N9 viruses. Of
note, a novel H10N8 virus recently isolated from a fatal human case
was composed of populations encoding PB2-627E and PB2-627K25.
PB2-627K thus appears to play an essential role in the mammalian
adaptation of a wide range of influenza A viruses.

Methods
Cells. Madin-Darby canine kidney (MDCK) cells were cultured in Eagle’s minimal
essential medium (MEM) supplement with 5% newborn calf serum (NCS). Human
embryonic kidney 293T cells, human alveolar adenocarcinoma epithelial A549 cells,
and chicken fibroblast DF-1 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplement with 10% fetal calf serum (FCS). MDCK, 293T, and

A549 cells were incubated at 37uC under 5% CO2. DF-1 cells were incubated at 39uC
under 5% CO2.

Viruses and reverse genetics. Plasmid-based reverse genetics for virus generation
was performed as previously described22,26. We used A/Anhui/1/2013 (H7N9; Anhui/
1) as the backbone virus in this study. The titers of the stock viruses were determined
by plaque assays in MDCK cells. All viruses were sequenced to confirm the absence of
unwanted mutations. All experiments with A(H7N9) viruses were performed in
enhanced biosafety level 3 (BSL3) containment laboratories at the University of
Tokyo (Tokyo, Japan), which are approved for such use by the Ministry of
Agriculture, Forestry and Fisheries, Japan.

Construction of plasmids. Mutations in the PB2 gene were generated by PCR
amplification of the RNA polymerase I plasmid for the PB2 segment with primers
possessing the desired mutations (primer sequences available upon request). To
prepare plasmids for viral protein expression, the open reading frames of the PB2
genes were amplified by PCR with gene-specific primers (primer sequences available
upon request). The PCR products were cloned into pCAGGS/MCS. All constructs
were sequenced to confirm the absence of unwanted mutations.

Minigenome assay. A minigenome assay based on the dual-luciferase system was
performed as previously reported22. Polymerase activity was calculated by
standardization of the firefly luciferase activity to the Renilla luciferase activity. The
polymerase activity of the wild-type was set to 100%.

Growth kinetics of virus in cell culture. Growth kinetic of viruses was assessed as
previously described22. Briefly, A549 and DF-1 cells were infected with the indicated
viruses at a multiplicity of infection (MOI) of 0.001. Cell culture supernatants
including 0.25 mg/ml of trypsin were collected at 8, 24, 48 and 72 h post-infection and
subjected to virus titration by use of plaque assays in MDCK cells.

Experimental infection of mice. Experimental infection of mice was performed as
previously described22. Briefly, 4 six-week-old female BALB/c mice (Japan SLC) per
group were intranasally inoculated with 103–106 plaque-forming units (PFU) of the
indicated viruses. Body weight and survival were monitored daily for 14 days. For
virological examinations, three mice infected with 106 PFU per group were
euthanized at 3 and 6 days post-infection. The virus titers in the each tissue were
determined by plaque assays in MDCK cells. All experiments with mice were
performed in accordance with the University of Tokyo’s Regulations for Animal Care

Table 1 | Virus titers in organs of infected mice [log10 PFU (mean 6 SD)/g]a

Day 3 post-infection Day 6 post-infection

Virus Nose tissue Lung Nose tissue Lung

Anhui/1 6.16 6 0.05 7.24 6 0.09 5.46 6 0.72 5.52 6 0.47
PB2-627E/701D 3.25 6 1.40* 4.85 6 0.58** Not detected 4.86 6 0.36
PB2-627E/701N 6.20 6 0.24 6.96 6 0.17 4.38 6 0.45 4.72 6 0.09
aSix-week-old female BALB/c mice were intranasally inoculated with 106 PFU of viruses (in 50 ml). Three animals per group were euthanized on days 3 and 6 post-infection. Statistically significant
differences compared with Anhui/1-infected mice were determined by use of a one-way ANOVA followed by a Dunnett’s test (*, P , 0.05; **, P , 0.01).
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and Use and were approved by the Animal Experiment Committee of the Institute of
Medical Science, the University of Tokyo.
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