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Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of
trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it
reproduces the second law of thermodynamics over a finite time interval for small scale systems. However,
given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally.
Given such a fundamental omission in our knowledge, we construct a new ensemble composed of
trajectories reaching an individual microstate, and show that locally defined entropy, information, and free
energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find
that the Boltzmann-Gibbs distribution and Landauer’s principle can be generalized naturally as properties
of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of
non-equilibrium relaxation.

S
tatistical mechanics provides physical interpretations of entropy and free energy that are macro-state
functions (i.e., functions defined on a domain of the phase-space points of a system, and thus inevitably
non-local in character), and sets bounds on permissible processes expressed as path functions like heat and

work, where a path is defined as a trajectory of macrostates of a system1. As a system gets smaller, the effect of
fluctuations becomes significant, yet modern theory2–4 provides permissible distributions of fluctuating path
functions in the form of beautiful equalities5–10. Modern theory has identified energetics11 and entropy production
on the level of individual trajectories12, and has linked path functions to properties of macrostates13, as verified
experimentally14–19. The relationship between classical and modern approaches is schematically drawn in Fig. 1.

Despite these successes in non-equilibrium theories, however, still lacking is a unified framework analogous to
classical thermodynamics20. It is important to note that contrary to the classical cases, a path in the modern theory
is defined as a trajectory of phase-space points of a system. In general, the modern theory has been built effectively
upon quantities defined locally (i.e., functions defined at each phase-space point). For example, a local form of
information theoretic Shannon entropy, so called stochastic entropy, is defined as 2 ln p(x, t), where p(x, t) is the
phase-space density of a microstate x of a system. Such a local form is necessary for boundary conditions of a
process (a path) to recover the second law of thermodynamics over a finite time interval for small scale systems8,12.
Then we immediately encounter a serious conceptual difficulty. As a component of the second law, the entropy
should be a property of an ensemble. However, it has not been clear at all how such an ensemble property as
entropy could be assigned locally, or independently of a trajectory. This difficulty in the notion of locality is also
closely associated with a classical view of difficulties of non-equilibrium thermodynamics; the ill-defined notion
of a macrostate during dynamic evolution of a system. It is thus difficult to apply the language of equilibrium
thermodynamics, most importantly the argument of counting, to non-equilibrium problems.

Without counting, for both equilibrium and non-equilibrium situations, we have no way to even imagine what
entropy is. We remove this fundamental difficulty by constructing a new ensemble that is local in space and time,
and is well-defined even in dynamic evolution of a system. Specifically, we count the accessible number of paths to
a microstate and consider all trajectories to a microstate in non-equilibrium as an ensemble of the state. We, then,
show that local entropy, similarly defined local information and local free energy are properties of the ensemble,
and relate functions within the ensemble to state functions of the ensemble which have been concealed behind the
integrated-out forms of previous theories.

Theoretical Framework
In this article, we consider a classical stochastic system in contact with a heat bath of temperature T. To provide
some intuitive grasp, we take as a simple example a polymer chain whose one end is fixed and the other end under
an external control lt that may vary over time 0 # t # t (see the right panel of Fig. 1). We will refer to lt as a
macrostate (the state of a polymer chain) at time t, and to the phase-space points of the polymer chain (excluding
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momentum variables for simplicity) as microstates. Note that, in this
experiment, lt is the only parameter controlling the macrostate of a
polymer chain.

We define a forward process as one where an external control lt is
varied from l0 to lt during 0 # t # t in a well-defined manner, and a
corresponding reverse process l’t as l’t:lt{t. Let l be a space-time
trajectory of the system’s microstates (i.e., evolving polymer config-
urations) during a forward process. Since l fluctuates, we repeat the
process lt with appropriate initial probability density p(x, 0) over all
microstates x. When we consider a microstate along a path l at time t,
we will denote it as lt. We define path-dependent work done on the
system by the external control during a forward process as follows:

W lð Þ:
ðt

0

LE lt,tð Þ
Lt

dt, ð1Þ

where l is a trajectory, E(lt, t) is the energy of a microstate lt at time t.
Path-dependent heat transferred to the system during the same pro-
cess is defined as follows:

Q lð Þ:
ðt

0

LE lt,tð Þ
Llt

0 dlt, ð2Þ

where # dlt means either
dlt
dt

dt for deterministic frameworks, or a

multiplication in the Stratonovich sense for stochastic frameworks.
Then, for each l, by adding the heat and work during the forward
conversion we have the first law of thermodynamics in the following
form:

DE~W lð ÞzQ lð Þ, ð3Þ

where DE 5 E(lt, t) 2 E(l0, 0).
Let L be the set of all space-time trajectories of a system connect-

ing times 0 and t, andLx be those paths that reach a phase space point
x at time t from the past (see Fig. 2). There is a natural projection p
from Lx onto x such that p(Lx) 5 x, and then each microstate x can
be regarded as an ensemble with conceptual rigour. This is because
p21(x) includes an infinite number of stochastic trajectories reaching
x. This indicates that thermodynamic quantities can be defined for x.

Our results will be built upon two assumptions. Firstly, we assume
that the probability of path l g L is represented as pL(l) / e2s(l) for

Figure 1 | A universal frame of thermodynamics and a fundamental question. Thermodynamics is a theory for ensembles that are composed of a large

number of fluctuating degrees of freedom. An ensemble is constrained by a macrostate l. In equilibrium thermodynamics, l varies in a quasi-static

manner. In the modern context, the theory considers arbitrary time-varying processes. Two typical systems in both approaches are shown schematically.

On the left, gas particles are fluctuating in a cylinder. The macrostate may be specified by the temperature, the volume of the cylinder, and the number of

particles. On the right, a polymer chain is fluctuating under the influence of optically controlled bead connected to the end of the chain. The macrostate

may be specified by the temperature, and the location of the bead applying force to the molecule. A fundamental question that we investigate is how we can

justify thermodynamic descriptions of fluctuating microstates.

Figure 2 | An evolution of a system’s microstates. (a), A microstate as an

ensemble of trajectories to a phase-space point. Each space in green

represents the phase space of a system (excluding momentum variables for

simplicity) at time t. Each trajectory shown schematically represents a

stochastic evolution of the phase-space points. Among all possible

trajectories Lx, we focus on those paths (Lx: thick red lines) that reach a

specific point x in the phase space at time t 5 t. (b), Schematic figure of the

distribution of y(x, t) at time t 5 t in the phase space, where the

information flow is to be induced in the directions indicated by black

arrows. The information flow not only causes the convective transport of

the information w(x, t), but also its divergence provides the net change of

w(x, t) (see Eq. (16)).
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some function s. The explicit form of s depends on the type of model.
For example, it would be the stochastic action with an initial con-
dition derived by Onsager for stochastic models21, the Hamiltonian
of a system20, or a bath at time 0 for deterministic frameworks22.
Based on this, we develop the following idea: Since each path may
not be equally probable, we assign each path a weight of the form g(l)
; e2s(l) so that less probable paths would be less counted. Let V(X) be
the accessible number (or the total weight) of paths in a sample space
X, then, we have V Xð Þ~

X
l[X

g lð Þ. In this framework, every unit
path, a collection of paths of which total weight is 1, is equally prob-
able, and the probability of a microstate (e.g., a chain configuration) x
at time t would be simply the ratio of the accessible number (or the
total weight) of trajectories that pass x at time t to that of all possible
trajectories, i.e., V(Lx)/V(L). This new framework provides us with a
basis for ‘‘counting’’ analogous to classical entropy.

Secondly, we assume microscopic reversibility8,22, proven by
Jarzynski in the Hamiltonian framework22, and valid in various
stochastic frameworks2. To state this, let us consider a forward pro-
cess lt (0 # t # t), and a space-time trajectory l of a polymer chain
from a specific configuration (microstate) l0 to another lt during t.
We also consider the time reversed conjugate l9 of the path l, i.e.,
l’t:lt{t for 0 # t # t under the reverse process l’t~lt{t. Here, we
set the initial probability density for the reversed process p9(x, 0) as
the final probability density for the forward process p(x, t) so that we
have:

p’ l’0,0ð Þ~p lt ,tð Þ: ð4Þ

Now, the condition for microscopic reversibility8,22 reads as follows:

pL l l0jð Þ
p’L l’ l’0jð Þ~e{bQ, ð5Þ

where Q is heat flowing into the system, b 5 1/kBT (kB: the
Boltzmann constant), pL(ljl0) is the conditional path probability in
the sample space L, and p’L l’ l’0jð Þ is that for the reverse process. We
note that pL l l0jð Þ=p’L l’ l’0jð Þ in general.

Given the above setup, we construct ‘‘local non-equilibrium ther-
modynamics’’, where locally-defined entropy, information, and free
energy are true thermodynamic potentials for each microstate, in
sharp contrast with ‘‘stochastic thermodynamics’’, where they are
trajectory-dependent.

Results
Local functions as state functions of Lx. Firstly, we prove that
various local functions defined at each phase-space point x at time
t are actually state functions of the newly introduced ensembleLx. Let
us consider a local form of information theoretic Shannon entropy
(so called stochastic entropy)8,12. To show that this entropy is the
property of the ensemble Lx, we define a quantity for Lx:

w x,tð Þ~ lnV Lxð Þ, ð6Þ

which we shall call information. As a reference value let w0 be the
maximally attainable value of information, i.e., w0 5 ln V(L) (see

Fig. 2a). Then, s(x, t) ; kB(w0 2 w(x, t)) becomes {kB ln
V Lxð Þ
V Lð Þ .

Since the argument of the logarithm is simply the ratio of the total
weight of paths in Lx to that of L, which becomes p(x, t), s(x, t) is
identical to the local Shannon entropy. Thus, stochastic entropy s(x,
t) can be viewed as a property of the ensemble Lx as desired. Here we
emphasize that the local entropy is now defined through a means of
counting. We remark that w(x, t) may be interpreted as the
information on the occurrence of the microstate (i.e., the polymer
configuration), entropy s(x, t) as lost information upon specifying a
particular microstate x. Thus, the sum of information w(x, t) and
entropy s(x, t) conserves locally. Hence, any theory for infor-
mation could be interpreted using entropy and vice versa, and we

will select one depending on the context. In this picture, every
microstate of a system carries information, and thus we will
consider information gain/consumption of each microstate but not
information measurement/erasure procedures formulated in terms
of mutual information23–26. Now we define a free-energy-like
quantity as follows:

y x,tð Þ~E x,tð Þ{Ts x,tð Þ: ð7Þ

Note that s(x, t) 5 kB(w0 2 w(x, t)). Thus, local free energy y(x, t)
enables us to treat the information and energy of each microstate on
an equal footing since y(x, t) is nothing but the sum of energy E(x, t)
and information w(x, t) adjusted by the reference value w0 and scaled
by kBT.

It was shown by Hummer and Szabo14 that energy E(x, t) could be
represented as weighted average of work functions over all paths in
Lx. In detail, they derived the following relation using the Feynmann-
Kac formula:

e{bWd x,tð Þ
� �

L
~

e{bE x,tð Þ

e{bFeq l0ð Þ
, ð8Þ

where the bracket indicates an average over all paths in L, d(x, t) is
the Dirac-delta function at a microstate x and time t, and Feq(l0) is
the equilibrium free energy of a macrostate l0. Due to the end-point
conditioning by d(x, t), only the paths in Lx among L contribute to
the value of the left-hand side of this relation. Thus, equation (8)
shows that energy E(x, t) is to be a property of the ensemble Lx.
Accordingly, the local free energy y(x, t) is also a property of Lx as
desired (see Supplementary Information A). We note that the aver-
age of y(x, t) over microstates is known as the effective free energy of a
macrostate, and relations between the effective free energy and rela-
tive entropy of macrostates have been investigated in Ref. 27.

Roles of local free energy y(x, t) within Lx. Now, we derive
fundamental relations for each non-equilibrium microstate, which
share their mathematical forms with those of classical and modern
theories.

Firstly, we show that the newly introduced local free energy y(x, t)
is a critical quantity in determining the non-equilibrium probability
of each microstate x. As above, we explicitly calculate the ratio of the
total weight of paths in Lx to that in L (see Supplementary
Information B). Then, from equation (6) and equation (7), we have
the following:

p x,tð Þ~ e{bE x,tð Þ

e{by x,tð Þ : ð9Þ

This relation shows that local free energy y(x, t) plays a role analog-
ous to equilibrium free energy for non-equilibrium microstates. We
stress that p(x, t) is expressed solely by (micro-)state functions (i.e.,
true thermodynamic potentials) of the ensemble Lx, which is inde-
pendent of specific paths to realize a microstate x. Here it may be
worth noting that the structure of our theory is not dependent on the
resolution used for specifying a microstate (see Methods). In the
literature, equation (9) appears implicitly either from definitions of
path-dependent stochastic entropy and free energy, or mixed with
work functions (path functions) if an ensemble is considered28,29. For
the latter, p(x, t) could be written in the above simple form as a
property of the ensemble Lx only if the relation between y(x, t)
and work functions were resolved as shown later in equation (13).

Secondly, we prove a local version of the Crooks relation. The
original Crooks relation is a core equation that can generate various
modern fluctuation theorems within L focusing on implementing a
macrostate lt from an initial ensemble28. The local Crooks relation
that we prove holds while implementing a single microstate, and thus
it can generate various fluctuation theorems within Lx as will be
shown below. Using equation (5) and equation (9), we have

www.nature.com/scientificreports
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pL lð Þ
p’L l’ð Þ~eb DE{Dy{Qð Þ, ð10Þ

where DE 5 E(lt, t) 2 E(l0, 0), and Dy 5 y(lt, t) 2 y(l0, 0). Applying

the first law as in equation (3), we have
pL lð Þ

p’L l’ð Þ~eb W{Dyð Þ. Now we

consider path probabilities withinLx so that pL lð Þ~p lt ,tð ÞpLx lð Þ and
p’L l’ð Þ~p’ l’0,0ð Þp’Lx l’ð Þ. Due to equation (4), we obtain the following
local Crooks relation:

pLx lð Þ
p’Lx l’ð Þ~eb W{Dyð Þ: ð11Þ

This relation implies that fluctuation theorems for (realizing) a
macrostate remain the same even if we focus on a single microstate.
Most importantly, the local Crooks relation provides a physical inter-
pretation for local free energy y(x, t). To see this, we integrate equa-
tion (11) over the ensemble Lx, giving:

e{b W{Dyð Þ
D E

Lx
~1, ð12Þ

where the bracket indicates an average taken over all paths to x at
time t. If we assume that p(x, 0) is the Boltzmann-Gibbs distribution
(then, we have y(x, 0) 5 Feq(l0) for all x (see equation (15) below)),
we may rewrite equation (12) as follows:

e{bW
� �

Lx ~e{bDy: ð13Þ

This is nothing but the local form of Jarzynski’s relation, expressed
for each microstate, revealing that the local free energy y(x, t)
encodes (regulates) work contents for realizing a single microstate
x from an initial ensemble. This role of y(x, t) is analogous to that of
equilibrium free energy Feq(lt), as expected. As a corollary, we have

Wh iLx §Dy, ð14Þ

which shows that average efficiency of the conversion from work to y
is less than 100%, indicating that the second law of thermodynamics
holds even within the ensemble of realizations of each microstate x. It
should be noted that local ensemble Lx is critical to reveal this role of
y(x, t): This term would otherwise be integrated out to give equilib-
rium free energy (see equation (15)). We remark that equation (13) is
a highly desired generalization of Landauer’s principle, which quan-
tifies fluctuations in erasure processes30,31 (see Examples and also
Discussion).

Roles of local free energy y(x, t) between Lxs. Finally, we prove two
inter-microstate relations. The first relation explains how non-
equilibrium work measurement could give equilibrium free energy.

Since the accessible number of microstates,
ð

e{bE x,tð Þdx, is a function

of an equilibrium free energy Feq(lt) of a state lt, equation (9) implies
the following link between the instant distribution for local free
energy y and an equilibrium free energy for the corresponding
macrostate:

e{by x,tð Þ
D E

x
~e{bFeq ltð Þ, ð15Þ

where the bracket indicates the average over all microstates (chain
configurations). According to equation (13), non-equilibrium work
measurement within Lx gives non-equilibrium free energy y(x, t).
Thus if the measurement is done over all paths inL, it corresponds to
taking the average of y, which gives equilibrium free energy as
expressed in equation (15). As a corollary, we have Æy(x, t)æx $

Feq(lt). In equilibrium, y(x, t) 5 Feq(lt) holds for all x due to the
strict convexity of the exponential function32. This condition
together with equation (9) gives the Boltzmann-Gibbs distribution,
and clearly characterizes the meaning of the ‘‘least biased’’ in an

equilibrium as presented by Jaynes33. Boltzmann assigned each
microstate an equilibrium thermal quantity: The above equilibrium
condition for y(x, t) shows that this is valid only in equilibrium.

Next, we demonstrate the critical role of local free energy y(x, t) in
non-equilibrium relaxation. We consider a Brownian system
described by the following Langevin equation, which is a minimal
prototype that contains the stochasticity: f _x~{+E x,tð Þzj, where
f is the friction constant and j is the fluctuating force that satisfies the
fluctuation-dissipation theorem, Æj(t)j(t9)æ 5 2kBTfd(t 2 t9). Then,
the probability density p(x, t) of this system obeys the Fokker-Planck

equation as f
Lp x,tð Þ

Lt
~

L +E x,tð Þp x,tð Þð Þ
Lx

zkBT
L2p x,tð Þ

Lx2
. From

equation (9), the time evolution of local information w(x, t) is
described by

Lw x,tð Þ
Lt

z~v x,tð Þ:+w x,tð Þ~{+:~v x,tð Þ, ð16Þ

where~v x,tð Þ~{ 1=fð Þ+y x,tð Þ (see Supplementary Information C).
We note that this flow driven by local free energy gradient should be
interpreted as information flow (not entropy flow) (see Fig. 2b).
When information flows from x to x9 with a loss, we may say that
entropy flows with an increase to the opposite direction, x9 to x, since
the sum of them is conserved locally. Thus, equation (16) tells us that
for regions of high work content, y spontaneously decreases through
the exchange of local information and entropy until all available
sources of energy are consumed so that driving force y(x, t)
becomes constant for all x, i.e., E(x, t) 5 Ts(x, t) for all x (up to an
additive constant). In a non-equilibrium steady state, the relation
~v:+wz+:~v~0 should be satisfied. Here we emphasize that the above
equation is a closed form partial differential equation, which is for the
information content between ensembles Lx, i.e., the quantity inde-
pendent of individual paths, or (micro-)state functions. This leads to
essential differences from apparently similar dynamical equations,
e.g., the ordinary differential evolution equation for macroscopic
Shannon-entropy34 and the ordinary differential equation for
entropy production along stochastic paths12.

Examples. We present two examples of non-equilibrium systems
where the concept of local free energy allows elegant represent-
ation of all relevant phenomena.

In the first example, we will see that local free energy y(x, t)
provides a new insight for understanding the cyclic behaviour of
the famous Szilard engine35. In step (1), a single particle in a box of
volume V in contact with a heat bath of temperature T is in equilib-
rium. For analysis, we will split the phase-space of the particle into
two: the left-half of the box and the right-half denoted as L and R,
respectively, and use this coarse-grained phase-space (see Methods).
Let b 5 1 for a while for simplicity. Then, the free energy of the

system is Feq 5 2 ln Z, where Z~

ð
V

e{E x,tð Þdx. In step (2), a par-

tition is inserted in the middle of the box. Before measurement, the
local free energy of the left and the right would be the same, y(L) 5

y(R) 5 2 ln Z1 2 ln 2, where Z1~

ð
V=2

e{E x,tð Þdx (see equation

(21)). Note that the local free energy is not different from the initial
equilibrium free energy at this point, i.e., y(L) 5 y(R) 5 Feq. In step
(3), we measure where the particle is, and assume that it was left
without loss of generality. Then, we would have y(L) 5 2 ln Z1.
Since y is a true thermodynamic potential, independent of paths
realizing a state L as shown in equation (13), we can deduce that
work should be consumed upon measurement such that ÆWæL $ Dy
5 ln 2 on average (equation (14)). In step (4), we link a weight in
accordance with the observation in step (3) and convert heat into
work by the amount of ln 2. Thus, it does not violate the second law of
thermodynamics.

www.nature.com/scientificreports
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Here we note that a similar argument also applies to Landauer’s
erasure process36. In detail, the first and the final stage of the erasure
process are identical to step (2) and step (3) of the above example of
the Szilard engine, respectively. In this case, however, step (3) is
achieved not by measurement but by perfectly localizing the particle
to the left irrespective of its initial position (e.g., by extracting the
partition separating the two halves of the box and subsequently using
a piston to shift the particle to the left side of the box). In any case,
consumed work is characterized by the state function y(L), indepen-
dently of paths to realize the state. We remark that fluctuations of
work (not just average work) are exactly regulated by Dy, as
expressed in equation (13).

In the second example, we illustrate how our theory converts raw
data collected from fluctuating degrees of freedom into a useful set of
state functions as well as the important role of local free energy y(x, t)
in non-equilibrium relaxation, both by means of Brownian dynamics
simulations (see Supplementary Information D). We consider a
Brownian particle under a tilted bi-stable potential (Fig. 3e), which
has a uniform distribution at time t 5 0. We repeated the in-silico
experiment, counted the number of particles for each partitioned bin
at each time, and calculated local information and free energy. Recall
that information is the accessible number of paths to a point x. Due to

the imposed initial condition of constant local information, the local
free energy y initially has the same shape as the energy E(x, t) over all
microstates (Fig. 3a). We observe that it is y that drives the informa-
tion flow to establish local equilibrium as an intermediate step
(Fig. 3b) until global equilibrium is reached (Fig. 3d). This is an
illustration of an exact mechanism for non-equilibrium relaxation
(as expressed by equation (16)), which, to our knowledge, has not yet
been achieved (see the legends of Fig. 3 and Supplementary
Information D).

Discussion
We have identified a new ensemble for each microstate, and revealed
the important roles played by local free energy y(x, t) of the new
ensemble. Most importantly, y(x, t) turns out to be a key quantity for
generalizations of the Boltzmann-Gibbs distribution and Landauer’s
principle to include arbitrary fluctuations, and controls non-equilib-
rium relaxation. In the literature, related equations to this manu-
script appear implicitly in various forms without awareness of the
role of the local free energy y(x, t). For example, the most represent-
ative form for the generalized Boltzmann-Gibbs distribution appears
in the literature28,29 as follows:

Figure 3 | The mechanism of equilibration. Here, we describe a stochastic system in terms of local information and local free energy extracted from

observations of stochastic trajectories, and show the exact mechanism of equilibration. A stochastic evolution in silico of a Brownian particle in a biased

potential (e) is carried out 20,000 times with uniform initial distribution, and the time series of local free energy y(x, ti) profiles are shown. The colour

code is shown in (f). The time-step taken is 0.01 in a dimensionless unit. (a–d) shows the profiles of free energy y(x, ti) from t0 to t50, from t51 to t100, from

t101 to t2000, and from t2001 to t4000, respectively. (a), Due to the energy barrier in the transition state information flows into local minimum regions. As it

progresses, the barrier is lowered. (b), A local equilibrium is established where the probability of microstates is proportional to the Boltzmann factor in

local regions. At this stage, the bump has disappeared. (c), A global equilibration proceeds slowly compared to the first local-equilibration process. The

work potential y(x, t) drives information to the right region. (d), A global equilibrium is established. Details of the simulation and results with different

initial conditions are reported in Supplementary Information D.
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p x,tð Þ
peq x,tð Þ~

e{bDF

e{bWh iLx
, ð17Þ

where peq(x, t) is the Boltzmann-Gibbs distribution, DF 5 F(lt) 2

F(l0) that is the difference between equilibrium free energy. This
relation is a combined form of equations (9), (13), and a corollary
of (15). In Ref. 37, equation (9) arises simply from the definitions of
path-dependent entropy and free energy without a significant rela-
tionship between y(x, t) and work as given in equation (13). In Ref.
31, fluctuations in Landauer’s principle have been investigated using
equation (17) to find Landauer’s bound without awareness of the
role, i.e., the exact quantification of the fluctuation, played by y(x, t).
Very recently, symmetry-breaking energetics (e.g., for a Brownian
particle that is experiencing a switching from a single-well to a dou-
ble-well potential and is then confined in one well resulting in loss of
ergodicity) has been investigated in Ref. 38, and it has been shown
that

Wh i SBð Þ
i {DFi§kBT ln pi, ð18Þ

where Wh i SBð Þ
i is the average work required for symmetry-breaking,

DFi 5 Fi 2 Feq(l0), where Fi satisfies e{bFi~

ð
i
e{bE x,tð Þdx and is

called conformational free energy of the trapped region i of the
phase-space, and pi is the probability of trapping in the region i. If
we rewrite equation (18) using the coarse-grained phase-space nota-
tion (see Methods) and equation (22), we have

Wh i SBð Þ
i §Dy, ð19Þ

where Dy 5 y(i, t) 2 Feq(l0). This relation is identical to equation
(14), a corollary of our main theorem, equation (13), indicating that
local free energy y regulates fluctuations in symmetry-breaking
energetics. Overall, these examples indicate the universal importance
of local free energy y(x, t) in the thermodynamic expressions.

The second issue we discuss concerns structural similarity
between an equilibrium macrostate and a non-equilibrium micro-
state equipped with the new ensemble Lx. We showed that the
Boltzmann-Gibbs distribution and Jarzynski’s relation, which hold
for (implementing) a macrostate, can be expressed in a similar man-
ner while implementing a non-equilibrium microstate. Moreover,
local functions are well-defined state functions of the new ensemble
Lx, i.e., true thermodynamic potentials that are independent of paths
of realizing a (micro-)state, playing similar roles to equilibrium
macrostate functions like free energy. If we pursue this direction
further, we may borrow various notions from equilibrium ther-
modynamics. For example, we may define non-equilibrium temper-
ature locally as dE(x, t)/ds(x, t). In principle, this approach enables us
to transfer all the techniques of equilibrium thermodynamics to
analyse non-equilibrium local objects. We believe that there is sig-
nificant value in investigating the usefulness of such an approach in
non-equilibrium systems.

Methods
Practical definition of a microstate. Here we briefly mention a subtlety associated
with the definition of a microstate by using a polymer configuration as its example.
When we try to specify a configuration of a polymer chain at time t, there is always a
problem of the space-time resolution that is used to distinguish different microstates.
This is particularly the case for experiments and simulations. This resolution problem

can be resolved by a coarse-grained partition of the phase space. Let xj jj ~1, � � � ,K
n o

be a partition of the phase space with K non-overlapping subsets xj. We may regard xj

as a coarse-grained microstate. The information of xj is defined as follows:

w xj,t
� �

~ lnV Lxjð Þ, ð20Þ

whereV Lxjð Þ~
X

x[xj
V Lxð Þ. Then, we apply the previous argument and obtain the

non-equilibrium probability of xj, p xj,t
� �

~ew xj ,tð Þ{w0 . In this case, we shall define

the free energy of xj as follows:

y xj,t
� �

~E xj,t
� �

{Ts xj,t
� �

, ð21Þ

where s(xj, t) 5 kB(w0 2 w(xj, t)), identical to stochastic entropy, and E(xj, t) is defined

such that e�bEðxj ;tÞ ¼
ð

x[xj

e�bEðx;tÞdx. Then, we have

p xj,t
� �

~
e{bE xj ,tð Þ

e{by xj ,tð Þ
: ð22Þ

We note two things here: Firstly, the structure of our theory is invariant under the
transformation of a microstate x to a coarse-grained one xj. Secondly, when we do not
divide fluctuating degrees of freedom, our theory reduces to global theorems in a
natural way. For example, let a single coarse-grained microstate x be the set of all
fluctuating degrees of freedom. Then y(x, t) becomes Feq(lt) from equation (21). We
see immediately that equations (11)–(14) in the main text reduce to the
corresponding known global relations, and equations (9) and (15) reduce to trivial
identities. Similarly, it may be instructive to apply the same framework to an
equilibrium situation, where a system is in a stationary state with thermal
fluctuations. Even in an equilibrium situation, we can think of an initial state and a
state at time t. Thus we can still define w(x, t) and y(x, t). Our intuition immediately
tells us that s(x, t) and y(x, t) should both be independent of x and t, suggesting that
their averages are standard entropy and free energy, respectively.

Experimental measurement. As an example, we consider a polymer chain (in a heat
bath of temperature T) whose one end is fixed and the other end is under an external
control lt that varies over time 0 # t # t in a well-defined manner, as shown in the
right panel of Fig. 1. We prepare the system initially to be sampled according to a
probability density p(x, 0). Let us assume that p(x, 0) is the Boltzmann-Gibbs
distribution for simplicity. We carry out the experiment by controlling lt during 0 #

t # t, and measure work W done on the system. If we have additional information on
the final microstate, our theory converts the fluctuating details into w and y (a
microstate can be a coarse-grained one). We repeat the process N times, a large
number. Let Nx be the number of the experiments whose final microstate is x. Here we
put a number to path i reaching microstate x from i 5 1 to Nx and express the work
done in path i as Wi. Then, we obtain the energy of x using the following equality for
Lx:

1
N

XNx

i~1

e{bWi ~
e{bE x,tð Þ

e{bFeq l0ð Þ
,

as proven in Ref. 14. Here Feq(l0) is the equilibrium free energy of the initial
macrostate. It is important to note that the normalization factor is N. If the
summation is taken over all experiments, it reduces to the Jarzynski relation. We also
proved that

1
Nx

XNx

i~1

e{bWi ~
e{by x,tð Þ

e{bFeq l0ð Þ
,

giving y(x, t). It is important that the normalization factor here is Nx. These two
equalities are linked by the the relation between y(x, t) and Feq(lt) in equation (15).
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