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The Euler buckling theory states that the buckling critical strain is an inverse quadratic function of the
length for a thin plate in the static compression process. However, the suitability of this theory in the
dynamical process is unclear, so we perform molecular dynamics simulations to examine the applicability of
the Euler buckling theory for the fast compression of the single-layer MoS2. We find that the Euler buckling
theory is not applicable in such dynamical process, as the buckling critical strain becomes a
length-independent constant in the buckled system with many ripples. However, the Euler buckling theory
can be resumed in the dynamical process after restricting the theory to an individual ripple in the buckled
structure.

T
he buckling critical strain of a thin plate can be described by the Euler buckling theory1, i.e., Ec~{

4p2D
C11L2

,

where D is the bending modulus and C11 is the in-plane tension stiffness. L is the length of the plate. The
Euler buckling theory was developed for static compression processes. The static compression process is

equivalent to molecular dynamics (MD) simulations with extremely low strain rates. Although this theory has
been widely used in static mechanical processes, it is still unclear whether the Euler buckling theory is applicable in
dynamical compression processes, where the strain rate has important effect on the compression/tension beha-
vior of the system2. For instance, it is crucial to apply mechanical strain at a very low strain rate for the study of
structure transitions, so that the system has enough time to relax its structure. We thus examine in present work
whether the Euler buckling theory is applicable in the dynamical compression process.

We investigate the applicability of the Euler buckling theory using the Molybdenum Disulphide (MoS2). MoS2

has attracted considerable attention in recent years on its electronic, thermal, or mechanical properties3–19.
Different two-dimensional materials (eg. graphene and MoS2) have complementary physical properties.
Therefore, experimentalists have combined graphene and MoS2 in specific ways to create heterostructures that
mitigate the negative properties of each individual constituent20. However, the temperature change will lead to
some mechanical compression/tension on the heterostructure, because of different thermal expansion coefficient
of graphene and MoS2

21. This thermal-induced mechanical compression will trigger the buckling of some layers
in the sandwich structure, as the buckling critical strain is usually very low for layered materials. Hence, it is
important to investigate the buckling phenomenon for the single-layer MoS2 (SLMoS2), which was investigated
by only limited works19.

In this paper, we perform MD simulations to examine the applicability of the Euler buckling theory in the
dynamical compression of SLMoS2 at different strain rates. It turns out that the Euler buckling theory is not
applicable for longer SLMoS2 at higher strain rates, in which the buckling critical strain becomes length inde-
pendent. However, the Euler buckling theory will become applicable after restricting it to the individual ripple in
the buckled SLMoS2.

Results
The SLMoS2 can be constructed by duplicating a rectangular unit cell of (5.40, 3.12) Å in the two-dimensional
plane as shown in Fig. 1. The number of unit cell is nx and ny in the armchair and zigzag directions. The length of
the SLMoS2 is 5.40 3 nx, and its width is 3.12 3 ny. We fix ny 5 10 for all simulations in present work. The free
boundary condition is applied in the out-of-plane direction. We apply the fixed boundary condition in the
armchair direction. The periodic boundary condition is applied in the zigzag direction. The SLMoS2 is com-
pressed in the armchair direction. The zigzag direction is kept stress free during compression.

Fig. 2 shows the stress-strain relation for the SLMoS2 with nx 5 100, which is compressed at strain rates of
_E~109 s{1, 108 s21, and 107 s21, respectively. A value for the thickness is required for the computation of the
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stress. However thickness is not a well-defined quantity in the quasi-
two-dimensional layered materials such as SLMoS2. Hence, we have
assumed the thickness of the SLMoS2 to be the space between two
neighboring MoS2 layers in the three-dimensional bulk MoS2. That is
the thickness is chosen as 6.09 Å for SLMoS2. The x-axis in Fig. 2 is
the absolute value for the compression strain. The SLMoS2 buckles at
the critical strain, at which the stress within the system starts to drop.
The critical strain is sensitive to the strain rate, and the buckling
critical strain increases sharply with increasing strain rate. This phe-
nomenon is not new and has been reported in our previous work19. It
has also been observed in the compression of graphene22.

Insets (from top to bottom) of Fig. 2 illustrate the buckling mode of
the SLMoS2, which is compressed with strain rates of _E~109 s{1,
108 s21, and 107 s21, respectively. An individual ripple in the buckling
mode is enclosed by the rectangular. The length of the ripple
decreases quickly with increasing strain rate. Normally, the buckling
mode follows the shape of the first bending phonon mode in the
system, in which only one ripple occurs after buckling. However, if
the system is compressed very fast (i.e. with high strain rate), the

buckling mode does not follow the shape of the first bending mode of
the SLMoS2, and there will be more ripples in the buckling SLMoS2.
In other words, higher-energy bending modes are actuated by the fast
compression.

This strain rate effect can be interpreted in terms of the relaxation
time for each bending mode. The first bending mode has the longest
relaxation time (or oscillation period), t 5 2p/v, due to its lowest
angular frequency v. It means that the longest response time is
needed for the appearance of the first bending mode during the
compression of the SLMoS2. When the system is compressed very
fast, the response time is too short for the appearance of the first
bending mode. Instead, higher-energy bending modes have shorter
relaxation time, and are able to be actuated by buckling when the
SLMoS2 is subjected to a fast compression.

Fig. 3 shows the buckling critical strain for SLMoS2 of different
length. The system is compressed at three different strain rates. The
simulation data are fitted to the function Ec~azbn{2

x . The second
term n{2

x obeys the Euler buckling theory, which says that the critical
strain is an inverse quadratic function of the system length1. It means
that the Euler buckling theory is valid for short systems. However, in
the limit of nx R 1 ‘, the critical strain becomes a length-independ-
ent constant a 5 0.0198, 0.0060, and 0.0015 for strain rates of 109 s21,
108 s21, and 107 s21, respectively. This saturating phenomenon
clearly demonstrates that the Euler buckling theory is not applicable
in such dynamical process. For _E~107 s{1, the critical strain is
almost saturate when nx . 100. For higher strain rates, the saturation
of the critical strain happens at shorter length. More specifically, the
critical strain becomes a constant when nx . 50 for _E~108 s{1, and
nx . 15 for _E~109 s{1. The fitting parameter a becomes closer to
zero for lower strain rate, as the dynamical process is more similar as
a static process when the strain rate is lower.

To explore the origin for the inapplicability of the Euler buckling
theory, we examine the ripples in the buckling mode. We first count
the number of ripples in the buckling mode. For _E~107 s{1, there is
only one ripple in the buckled SLMoS2 with nx , 100. For
_E~108 s{1, the buckled SLMoS2 has only one ripple if nx , 50.
For _E~109 s{1, there is only one ripple in the buckled SLMoS2 with
nx , 15, and more ripples are observed for longer systems with nx .

15. For instance, the insets of Fig. 2 show that there are many ripples
in the buckled SLMoS2 with nx 5 100, when this system is com-
pressed at a strain rate of 109 s21. These ripples are utilized to get the
averaged ripple size. It should be noted that, for short systems with
only one ripple in the buckling mode, the length of the SLMoS2 will
be regarded as the averaged ripple size, and the error is simply chosen
as 10% of the length in this situation.

Figure 1 | Structure for SLMoS2, with (nx, ny) 5 (4, 8). The unit cell is

enclosed by the black rectangular. nx and ny are the numbers of the unit cell

in the armchair and zigzag directions, respectively.

Figure 2 | Strain rate effect on the buckling critical strain of SLMoS2 with
nx 5 100. Insets (from top to bottom) illustrate the buckling mode of the

SLMoS2 at strain rates of 109 s21, 108 s21, and 107 s21, respectively. The size

of a single buckling ripple is enclosed by the rectangular.

Figure 3 | Length dependence (log-log) of the buckling critical strain for
the SLMoS2 at strain rates of 109 s21, 108 s21, and 107 s21, respectively.
Simulated data are fitted to the function Ec~azbn{2

x , which becomes a

length-independent constant a in the limit of nx R 1 ‘.
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Fig. 4 shows the length dependence of the averaged ripple size for
SLMoS2, which is compressed at different strain rates. The inset of
Fig. 4 shows the distribution of the ripple size for a buckling SLMoS2

with nx 5 600, which is compressed at _E~108 s{1. Twenty good
ripple samples have been picked out from the buckled SLMoS2 for
the production of this histogram plot. The averaged ripple size from
the histogram figure is l 5 90.7 6 3.3 Å. Fig. 4 shows an interesting
phenomenon that the averaged ripple size is almost saturated for
longer systems with larger nx, where more ripples appear. For higher
strain rate, the averaged ripple size becomes saturated at smaller
length. This saturation phenomenon is similar as the length depend-
ence of the buckling critical strain shown in Fig. 3, which has demon-
strated the inapplicability of the Euler buckling theory.

To further understand the saturation phenomenon shown in
Fig. 4, we compute the frequency dispersion for the bending wave
using the same Stillinger-Weber potential. The obtained relation
between the frequency (f) and the wave vector along the armchair
direction (k) is f 5 8.6 3 1012k2 s21. The bending wave is a exural
mode for the quasi-two-dimensional SLMoS2 system, so its fre-
quency is a quadratic function of the wave vector k. The wave vector
is an inverse proportional function of the length, i.e., k / L21, with L
5 nx 3 5.40 Å as the length in the armchair direction. As a result, we
have f 5 8.6 3 1012L22 s21.

We take the strain rate _E~109 s{1 as an example. For this strain
rate, there are two major findings in Fig. 4. First, the lowest-frequency
bending motion is excited for short system with nx 5 10; while this
lowest-frequency bending motion is not excited for long system with
nx 5 100. This can be explained by the interplay between the strain
rate and the bending frequency. A compression can only excite the
bending motion with frequency higher than the strain rate for this
compression. For nx 5 10, the frequency of the bending wave is
around f < 2.9 3 109 s21 according to the above formula. This
frequency is larger than the strain rate. It means that a strain rate
of _E~109 s{1 is slow enough to excite the lowest-frequency bending
motion in this system. However, for nx 5 100, the frequency of the
bending wave is around f < 2.9 3 107 s21, which is about two orders
smaller than the strain rate. As a result, a strain rate of _E~109 s{1 is
too fast to allow the the appearance of the lowest-frequency bending
motion. Second, it can be seen in Fig. 4 that the saturated value for the
ripple size is about l 5 50 Å. The frequency for the bending wave
according to this length is about f < 3.4 3 109 s21, which is on the

same order as the strain rate. As a result, the saturated ripple size can
be excited by a strain rate of _E~109 s{1.

Inspired by the saturation phenomena in both Figs. 3 and 4, we
find that the Euler buckling theory is closely related to the number of
ripples in the buckling mode. It is valid only if one ripple is actuated
in the buckling mode. However, the Euler buckling theory becomes
invalid when more ripples appear. The Euler buckling theory says1,

Ec~{
4p2D
C11L2

~{
43:52

L2
, ð1Þ

where L is the length of the system. We have used the Stillinger-
Weber potential to extract the bending modulus17 D 5 9.61 eV and
the in-plane tension stiffness16 C11 5 139.5 Nm21 for the SLMoS2.
We note an important fact that only one ripple is assumed in the
buckling mode during the derivation of Eq. (1). However, Fig. 4
discussed the suitability of the Euler buckling theory with L as the
total length of the system. It seems that a more proper way is to treat L
in Eq. (1) as the size of an individual ripple in the buckling mode with
many ripples. We thus show the relation between the buckling crit-
ical strain and the averaged ripple size in Fig. 5. The prediction of the
Euler buckling theory is also plotted in the figure (black solid line) for
comparison. We find that all simulation data (calculated with differ-
ent strain rates) are closely distributed around the line for the Euler
buckling theory. In other words, the Euler buckling theory is applic-
able and is independent of the strain rate, after we treat L in Eq. (1) as
the averaged ripple size. The merit of using lower strain rate (107 s21)
is to extend the examination of the Euler buckling theory to larger
ripple size.

Discussions
We have performed MD simulations to investigate whether the Euler
buckling theory is applicable for dynamical processes, in which the
SLMoS2 is compressed at high strain rates. We found that the theory
is not applicable in the presence of many ripples in the buckling
mode, where the buckling critical strain becomes a length-independ-
ent constant. However, we have also showed that the Euler buckling
theory becomes applicable if this theory is applied to a single ripple in
the buckled SLMoS2.

Methods
MD simulation details. All MD simulations in this work are performed using the
publicly available simulation code LAMMPS23, while the OVITO package was used
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Figure 4 | The log-log plot for the length dependence of the average ripple
size (l) for SLMoS2 compressed by strain rates of 109 s21, 108 s21, and
107 s21, respectively. Inset shows the distribution of the ripple size for a

buckling SLMoS2 with nx 5 600, which is compressed at _E~108 s{1.

Twenty good ripple samples have been picked out from the buckled

SLMoS2 for the production of this histogram plot. The averaged ripple size

from the histogram figure is l 5 90.7 6 3.3 Å. Lines are guide to the eye.

Figure 5 | The log-log plot for the buckling critical strain versus the
averaged buckling ripple size for SLMoS2 compressed by strain rates of
109 s21 s21, 108 s21 s21, and 107 s21, respectively. The solid line is the

prediction of the Euler buckling theory. All simulation data are close to the

solid line, which validates the Euler buckling theory after using the

averaged ripple size.
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for visualization24. The standard Newton equations of motion are integrated in time
using the velocity Verlet algorithm with a time step of 1 fs. The interaction within
MoS2 is described by the Stillinger-Weber potential16. All simulations are performed
at 1.0 K low temperature, so that our MD simulations are more comparable with the
Euler buckling theory, which does not consider the temperature effect. The SLMoS2 is
thermalized using the Nosé-Hoover25,26 thermostat for 100 ps within the NPT (i.e. the
number of particles N, the pressure P and the temperature T of the system are
constant) ensemble. After thermalization, the SLMoS2 is compressed along the
armchair direction, while the system is allowed to be fully optimized in the zigzag
direction. The NPT ensemble is also applied in the compression step.
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