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The cooling performance of an optomechanical system comprising both dispersive and dissipative coupling
is studied. Here, we present a scheme to cool a mechanical resonator to its ground state in finite time using a
chirped pulse. We show that there is distinct advantage in using the chirp-pulse scheme to cool a resonator
rapidly. The cooling behaviors of dispersively and dissipatively coupled system is also explored with
different types of incident pulses and different coupling strengths. Our scheme is feasible in cooling the
resonator for a wide range of the parameter region.

C
ool a mechanical resonator to its ground state is of fundamental importance in many quantum
information processing and metrological experiments: ultrahigh sensitive detection, the observation
of quantum behavior in a mechanical oscillator, and so forth. The subject has therefore attracted

much attention from researchers in recent years1,2. In many of these schemes, an auxiliary system is intro-
duced to cool the mechanical resonator. The ground state cooling of a mechanical resonator is realized by
coupling the resonator with a driven cavity via radiation pressure (a dispersively coupled optomechanics)3,
e.g. backaction cooling via a detuning cavity, cold-damping quantum feedback cooling4–7, and other meth-
ods8–16. By employing a chirped pulse, the phonon occupation of the mechanical resonator is reduced to a
very small value quickly11–13. Experimental realization of cooling scheme for a mechanical resonator has been
implemented17–26. By combining sideband cooling technique with cryogenic cooling, the position of the
cooled resonator has been measured20,21. Recently, a quantum coherent exchange between the mechanical
system and the micro/optical wave is achieved25,26, and the phonon occupation number of the cooled
resonator is reduced to single-phonon level.

In several recent microwave optomechanical experiments27–32, it is shown that dissipative coupling, in which
the cavity damping strength is modulated by the motion of mechanical resonator, should be considered for the
cooling of resonator, aside from dispersive coupling. Theoretical studies also show that the coexistence of the
dispersive coupling and dissipative coupling leads to the phenomenon of the quantum destructive interference in
the mechanical resonator cooling33–36. In such a dispersively and dissipatively coupled system, the optimal cavity
driven frequency depends significantly on the ratio of the dispersive coupling strength to the dissipative coupling
strength. Moreover, in the microdisk-waveguide optomechanical system experiment37, it has been demonstrated
that the force from the dissipative coupling dominates the total force applied to the waveguide in such dispersively
and dissipatively coupled system.

In this paper, we study the rapid cooling of mechanical resonator for systems that are subject to both
dispersive and dissipative coupling. With a chirped pulse, the fast cooling of a mechanical resonator can be
realized within a short time. We show that, by modulating the incident pulses, the phonon occupation of the
resonator can be reduced to single-phonon level. When the chirped pulse is applied in a pure dissipatively
coupled optomechanical system, the cooling performance of the resonator becomes better with increasing
cavity damping strength. In comparison, this is different from the optomechanical system that posseses only
dispersive coupling, where it is shown that the cooling of the mechanical resonator improves with a smaller
cavity damping strength, as shown by Liao and Law13. We also explore the cooling performance of our
scheme with different frequency-sweep strengths. Moreover, we show that our scheme is effective for a wide
range of dispersive and dissipative coupling strengths.
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Results
The description of the system and its solution. We consider an
optomechanical system consisting of a mechanical resonator and a
cavity mode. Taking into account both dispersive and dissipative
coupling, the system is described by the Hamiltonian33,
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Here, we have used the following notations: vc is the cavity
frequency, vm is the resonance frequency of the mechanical
oscillator, a (a{) is the annihilation (creation) operator of the
cavity mode, b (b{) is the annihilation (creation) operator of the
mechanical resonator, Hk and Hc are the damping of the cavity
and mechanical resonator, respectively, A (B) is the dispersive
(dissipative) coupling strength, k is the cavity damping strength, bq

(b{q) is the annihilation (creation) operator of the optical bath
coupled to the cavity mode, and r is the density of state for the
optical bath. Using the Heisenberg equation, we obtain36,38,ffiffiffiffiffiffiffiffi
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the input-output relation is
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where ain is the input mode. The Hamiltonian is linearized and each
operator is separated into a mean amplitude and a fluctuation
component. Using a~ ah izdað Þe{ivd t , b 5 Æbæ 1 db, and
ain~ ainh izjinð Þe{ivd t , vd is the frequency of the driven field, jin

is the noise induced by the optical bath. The detailed expressions of
dynamics of the fluctuation components da, db as well as the mean
amplitudes Æaæ, Æbæ, are described in Methods section.

Our aim is to reduce the value of fluctuation components Ædb{dbæ.
A covariance matrix notation Rl,l’ tð Þ~ vl tð Þvl’ t’ð Þh i is introduced. vl

is the lth element of ~V , the vector ~V is constructed from such four
fluctuation components,

~V tð Þ~ da, db, da{, db{
� �T

: ð4Þ

The dynamics of R is formulated as

R tð Þ~G tð ÞR 0ð ÞG tð ÞTzG tð ÞZ tð ÞG tð ÞT : ð5Þ

The explicit forms of the above parameters, i.e. G(t), Z(t), are
given in details in the Methods section. We assume that the initial
optical bath is a zero-temperature bath, the initial condition R(0)
has three nonzero elements, R13(0) 5 1, R24(0) 5 Nth 1 1, and
R42(0) 5 Nth. Based on the definition of the covariance matrix
Rl,l’ tð Þ, we then obtain the time-dependent mean displaced pho-
non number as Ædb{dbæ 5 R42(t), and the mean displaced photo
number Æda{daæ 5 R31(t).

Cooling of the resonator with chirped pulse. Chirped pulse form.
The chirped pulse has been employed to convert the population of a
two-level-system efficiently11,12. In our dispersively and dissipatively
coupled optomechanics, the interaction between the cavity mode
and the mechanical resonator mode (da and db) has a form similar
to the optical-matter interaction11–13. The incident chirped pulse is

designed as follows: Ak a tð Þh i{V tð Þ B
2

~x tð Þ:eiw tð Þ, x(t) 5 x0 ?

sech(a(t 2 t0)), the frequency sweep _w tð Þ~btanh a t{t0ð Þð Þ, the
amplitude of the coherent laser drive V(t) as shown in Methods
section. We present the performance of such a chirped pulse in the

cooling of mechanical resonator below for our optomechanical
system with two couplings.

We numerically obtain the residual phonon number of the mech-
anical resonator (Ædb{dbæ) as a function of time. For comparison, two
different schemes are provided: with chirped pulse (chirped pulse
scheme) and without the chirped pulse (no-chirped pulse scheme).
The different driven frequencies vd are discussed below. Here, the
cavity detuning is D 5 vd 2 vc. From Fig. 1(a), when D/vm 5 21,
we find that at time vmt 5 80 or longer, the phonon number of the
mechanical resonator can be reduced to a relatively low value and
kept stable for the chirped pulse cooling scheme. The figure inset
shows the amplitude of the laser drive V(t) with time. By employing
the Fourier transform, we find that the full width at half maximum
(FWHM) of such a pulseV(t) is about 0.05vm. So for the case of vmt0

5 40, the effect of pulse bandwidth is neglectable. While, for the no-
chirped pulse scheme, the cooling effect of the resonator is not well-
behaved, and the phonon number changes with time drastically.
Although the small phonon occupation number of the resonator is
achieved in the no-chirped pulse case for some time interval, the
phonon occupation quickly raises to a high value at later time. It
means that we do not achieve perfect cooling of resonator with the
no-chirped pulse scheme. Next, another driven frequency is applied
(D/vm 5 0.5). In our parameters settings (A 5 0, B ? 0, a purely
dissipative optomechanics), this value of driven frequency is the
optimal one for the steady state cooling of resonator33,35,36. The cool-
ing behaviors with different cavity damping strengths are shown in
Fig. 1(b) and (c). Compared with the cooling results of the no-
chirped pulse scheme, an improved cooling performance of the res-
onator is acheived with the chirped pulse. Taking the cavity damping
strength k/vm 5 0.5 as an example, in the chirped pulse scheme, at
time vmt 5 70, the mechanical resonator number (Ædb{dbæ) reaches
the value 1.6, which is much smaller than the case with the no-
chirped pulse scheme.

We explore the relation between the cooling of resonator (Ænoscæ)
and the cavity damping strength (k) for the chirped pulse scheme.
Fig. 2(a) and Fig. 2(b) illustrate the situation when the cavity driven
frequency satisfies D/vm 5 0.5. When the cavity damping strength
increases, we achieve a smaller phonon occupation of the resonator.
From Eq. 7 in Methods section, we show that the time evolution of
cavity mode operator da is affected by the intrinsic damping term
F1(t), the interaction term F2(t) associated with the mechanical mode
db, and the noise induced from the optical bath F3(t). The detailed
expression of F1(t), F2(t), and F3(t) is given by Eq. 11, 12, 13 in
Methods section. From Fig. 2(b), we find that the value of jF1(t)j,
jF2(t)j and jF3(t)j rise with the increase of the cavity damping strength
k. This means that the damping of cavity mode da and interaction
between the cavity mode da and the mechanical resonator mode db
both increase. The energy of the resonator is quickly transferred to
the zero-temperature cavity mode, and then is dissipated into the
bath rapidly. This is why we can obtain the smaller phonon occu-
pation of the resonator with the larger cavity damping strength.

Moreover, we study the relation between the cavity damping
strength (k) and the steady-state phonon number of the mechanical
resonator in the no-chirped pulse scheme. Our aim is to reveal the
different cooling behaviors between the purely dispersively and
purely dissipatively coupled optomechanics, when the cavity driven
frequency is chosen optimal in steady-state cooling. For the no-
chirped pulse scheme, the mechanical intrinsic damping (Seq) and
quantum backaction force from the driven cavity (Sbac) contribute to
the final phonon occupation of resonator at steady-state

nosch i~
ð

dv

2p
Scc vð Þ~SeqzSbac~

ð
dv

2p

csth vð Þ
N vð Þj j2

z

ð
dv

2p

ksopt vð Þ
N vð Þj j2

, ð6Þ

where Scc(v) is the mechanical spectrum, sth(v) is a quantity related
to the mechanical thermal bath and optomechanical self-energy,
sopt(v) combines the intracavity amplitude and quantum backaction
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force spectrum. N(v) comprises the response function of the mech-
anical resonator and optomechanical self-energy. k and c are the
cavity damping strength and mechanical intrinsic damping strength,
respectively. The pure dispersive coupling case is shown in Fig. 3(a),
and the cavity driven frequency is optimal, D/vm 5 21. In such a
case, the phonon occupation of resonator decreases with cavity
damping strength k first, then rises up quickly. Fig. 3(b) and (c) show
the pure dissipative coupling case with cavity detunings D/vm 5 21
and D/vm 5 0.5, respectively. When the cavity detuning is optimal
(D/vm 5 0.5, see Fig. 3(c)), the residual phonon number of the
resonator decreases with an increase in the cavity damping strength.
It is noted that, for such a dissipatively coupled system, the relation
between the residual phonon number of the steady-state cooling and
the cavity damping strength is similar to the relation for the chirped
pulse cooling as shown in Fig. 2(a).

Next, we show the advantage of the chirped pulse scheme expli-
citly. We compare the cooling behaviors of the mechanical resonator
with and without chirped pulses. When considering such a purely
dissipatively coupled optomechanics, we allow the cavity driven fre-
quency in the no-chirped pulse scheme to satisfy D/vm 5 0.5. At
such an optimal detuning, the cavity acts as an effective zero-tem-
perature bath33. From Fig. 4, we find that by employing the chirped
pulse, the mean resonator number is reduced to less than one quickly
and kept such a low population for a long time. We need to mention
that, the rise of the phonon number of the resonator after the pulse
duration is due mainly to the heating from the bath of mechanical
resonator13. In our discussion, the phonon number increases from
0.14 to 1.08 with the time varying from vmt 5 80 to vmt 5 2000.
Considering the fact that the initial phonon occupation of the res-
onator is Nth 5 50, such a rise of phonon number from 0.14 to 1.08
after the pulse duration is actually rather small. In contrast, for the
no-chirped pulse scheme, we do not even achieve the ground state of
resonator at time vmt 5 2000. So, the chirped pulse scheme provides

a new way to cool the resonator in finite time duration, and this is
helpful for controlling the state of the resonator.

We now discuss the universality of the chirped pulse scheme in
resonator cooling. The evolution time is vmt 5 70 $ 2t0. Firstly, the
effect of the different strengths of frequency sweeping field and
optomechanical coupling strength ratios (dispersive coupling
strength/dissipative coupling strength) is shown in Fig. 5(a). In the
region of 0.08 # jb/vmj # 0.18, the mean residual occupation is
lower than one. This result is insensitive to the strength of sweeping
field. It is well known that the dispersive coupling and dissipative
coupling strength can be modulated in the designed scheme30,31. So
we can achieve the ground state cooling of the mechanical resonator
with different dispersive and dissipative coupling strengths.
Secondly, we explore the effects of the cavity detunings. The residual
phonon number of the mechanical resonator with the chirped pulse
scheme and no-chirped pulse scheme are compared in Fig. 5(b) and
(c). For the chirped pulse case (b), we can reduce the phonon occu-
pation of the resonator to one in the vicinity of D/vm 5 21, with the
coupling strength ratio A/B # 0.2. The resonator is cooled to around
one phonon with the coupling strength ratio A/B $ 5 in the no-
chirped pulse scheme (c). When we choose the ratio A/B $ 5 and
D=vm^{1 in the chirped pulse case, the mean phonon occupation
of the resonator is smaller than three. Although it might not be easy
to achieve the same effective cooling performance as the no-chirped
pulse scheme in the region A/B $ 5, the chirped pulse scheme can
cool the resonator efficiently for a much wider region, 5 * 1023 # A/B
# 10. Finally, in the pure dissipative coupling case, the influence of
the frequency sweep and cavity detuning on the phonon occupation
is shown in Fig. 5(d) and (e). A better cooling effect appears when the
frequency sweep value jb/vmj is relatively large. In the region around
D/vm 5 21 and D/vm 5 0.4, we reduce the residual phonon occu-
pation of the resonator below one when the strength of sweeping field
is chosen as b/vm 5 0.125.
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Figure 1 | The time evolution of the phonon number Ænoscæ 5 Ædb{dbæ. (a) Blue solid one denotes the chirped pulse form, red dashed one is the no-

chirped form. Other parameters: A 5 0, B 5 2 * 1024, k/vm 5 0.01, c/vm 5 1025, Nth 5 100, Æa(0)æ 5 200, D/vm 5 21. For the chirped pulse form, a/vm
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, vmt0 5 40. (b) (chirped pulse form) and (c) (no-chirped pulse form), A 5 0, B 5 2 * 1024, c/vm 5 1026, Nth 5 50,

Æa(0)æ 5 103, D/vm 5 0.5; for the chirped pulse form (b), a/vm 5 0.15, b/vm 5 0.05, x0~
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2

q
, vmt0 5 30.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7745 | DOI: 10.1038/srep07745 3



Discussion and conclusion
In summary, we have extensively studied the cooling of a mechanical
resonator for the system consisting of both dispersive coupling and

dissipative coupling in finite time. As stated in Ref. 13, the authors
employ a chirped pulse to cool the mechanical resonator efficiently in
a dispersively coupled optomechanics. The pulse shape is found in
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Figure 2 | (a), the residual phonon number Ænoscæ 5 Ædb{dbæ at time vmt 5 70, with the increase of cavity damping strength. Parameters set, D/vm 5 0.5,

A 5 0, B 5 2 * 1024, c/vm 5 1026, Nth 5 50, Æa(0)æ 5 103. For the chirped pulse form (blue cross term), a/vm 5 0.15, b/vm 5 0.05, x0~
3
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vmt0 5 30. (b), the amplitude of F1, F2, and F3 with time evolution. Solid, k/vm 5 0.1; dashed, k/vm 5 0.3; dotted, k/vm 5 0.5. Other parameters are

same as in (a).

Figure 3 | The steady-state phonon number Ænoscæ 5 Ædb{dbæ, the intrinsic oscillator damping Seq, the backaction from the cavity Sbac, with the
cavity damping strength k. (a), pure dispersive coupling case, A 5 2 * 1024, B 5 0, D/vm 5 21; (b), pure dissipative coupling case, A 5 0, B 5 2 * 1024,

D/vm 5 21; (c), pure dissipative coupling case, A 5 0, B 5 2 * 1024, D/vm 5 0.5. For all of three plots, c/vm 5 1026, Nth 5 50, intra-cavity amplitude at

the steady state, Æaæ 5 103.
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Fig. 2(b) of Ref. 13. There, a better cooling result is obtained with a
smaller cavity damping strength. Here, we show that a smaller pho-
non occupation of the resonator is obtained with a larger cavity
damping strength given our parameter settings. This is different from
Ref. 13. This result is due to the collective effect of the cavity dissipa-
tion and the energy transfer between the cavity mode and mechanical
resonator mode. By employing our chirped pulse scheme, the mech-
anical resonator is cooled quickly, and the phonon occupation of the
resonator remains stable for relatively long time. Our proposal with a
chirped pulse can be used to cool resonators efficiently in finite time
in a large range of system parameter settings.

Methods
Applying linearization, we obtain four physical quantities da, db, Æaæ, and Æbæ repre-
senting the operators of one cavity mode a and mechanical resonator b. To illustrate
the dynamics of fluctuation components da and db, we use the following coupled
differential equations of in rotating frame at the given driven frequency36,

_da~ iDzi2Ak< b tð Þh i½ �{ k
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Here, D 5 vd 2 vc is the detuning of the cavity drive, da (db) is the fluctuation
component of the cavity mode (mechanical mode), Æaæ is the intra-cavity amplitude,
V tð Þ~{i

ffiffiffi
k
p

ainh i is the amplitude of the coherent laser drive, g is the noise influ-
encing the mechanical resonator, c is the mechanical intrinsic damping strength, and
< b tð Þh i½ � is the real part of Æb(t)æ. The time evolution equations for Æaæ and Æbæ are
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The convariance matrix method is applied to get the phonon number of the resonator.
For simplicity, we use the following expressions
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, the dynamics of ~V tð Þ is satisfied by

_~V tð Þ~M tð Þ~V tð Þz~N tð Þ: ð15Þ

with

M tð Þ~

F1 tð Þ F2 tð Þ 0 F2 tð Þ
F4 tð Þ {ivm{ c

2 {F4 tð Þ� 0

0 F2 tð Þ� F1 tð Þ� F2 tð Þ�

{F4 tð Þ 0 F4 tð Þ� ivm{ c
2

0
BBB@

1
CCCA, ð16Þ

and the noise related terms,

~N tð Þ~

{F3 tð Þjin

{ B
2

ffiffiffi
k
p

ah i�jinz
B
2

ffiffiffi
k
p

ah ij{
in{

ffiffiffi
c
p

g

{F3 tð Þ�j{
in

{ B
2

ffiffiffi
k
p

ah ij{
inz

B
2

ffiffiffi
k
p

ah i�jin{
ffiffiffi
c
p

g{

0
BBBB@

1
CCCCA: ð17Þ

We introduce a covariance matrix notation Rl,l’ tð Þ~ vl tð Þvl’ t’ð Þh i (l, l9 5 1, 2, 3, 4), vl is
the lth element of ~V . The dynamics of R is obtained as
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compares with (b). (d) and (e), the strength of frequency sweeping field

b/vm and cavity detuning D/vm to the phonon number Ænoscæ 5 Ædb{dbæ, A

5 0, a/vm 5 0.15. For all of the plots, the time is set vmt 5 70, B 5 2 * 1024,

c/vm 5 1026, k/vm 5 0.3, Nth 5 50, Æa(0)æ 5 200, vmt0 5 30.
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R tð Þ~G tð ÞR 0ð ÞG tð ÞTzG tð ÞZ tð ÞG tð ÞT , ð18Þ

here, Z(t) is,

Z tð Þ~
ðt

0

ðt

0
G tð Þ{1C t,t’ð Þ G t’ð Þ{1½ �T dtdt’, ð19Þ

with G(t) being governed by _G tð Þ~M tð ÞG tð Þ, G(0) is an identity matrix,
Cl,l’ t,t’ð Þ~ Nl tð ÞNl’ t’ð Þh i (l, l9 5 1, 2, 3, 4), Nl is the lth element of ~N . By considering a
Markovian bath, we write C(t, t9) as C(t)d(t 2 t9), and the matrix expression of C(t)

C tð Þ~

0 {F3 tð Þ B
2

ffiffiffi
k
p

a tð Þh i F3 tð Þj j2 F3 tð Þ B
2

ffiffiffi
k
p

a tð Þh i
0 { B2

4 k a tð Þh ij j2 B
2

ffiffiffi
k
p

F3 tð Þ� a tð Þh i� B2

4 k a tð Þh ij j2zc Nthz1ð Þ
0 0 0 0

0 B2

4

ffiffiffi
k
p

a tð Þh ij j2zcNth { B
2

ffiffiffi
k
p

F3 tð Þ� a tð Þh i� { B2

4 k a tð Þh ij j2

0
BBBB@

1
CCCCA: ð20Þ

Here, Nth is the distribution of the thermal bath surrounding the mechanical res-
onator.
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