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The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep
insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale
experiments are not only very expensive but also inefficient to identify numerous interactomes despite their
high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire
to further extract useful knowledge from these data leads to the problem of binary interactome mapping.
Network topology-based approaches prove to be highly efficient in addressing this problem; however, their
performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of
collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large,
sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary
interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we
model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are
extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity
among involved proteins, for taking the mapping process. Experimental results on three large, sparse
datasets demonstrate that the proposed approach outperforms several sophisticated topology-based
approaches significantly.

P
rotein-protein interactions (PPIs), or known as protein interactomes, are very important in various
biological processes and form the basis of biological mechanisms. During the last decade, the progress
of high-throughput screening (HTS) techniques, e.g., canonical yeast two-hybrid assay1, tandem affinity

purification and mass spectrometric2, mass spectrometric protein complex identification3, and protein frag-
ment complementation4, has resulted in rapid accumulation of data describing global networks of PPIs in
organisms1. Several HTS-PPI datasets were published for various organisms, such as humans (Homo
sapiens)5, worms (Caenorhabditis elegans)6, yeast (Saccharomyces cerevisiae)7, fly (Drosophila melanoga-
ster)8, and plants9. With these obtained HTS-PPI data, great opportunities in studying biological events are
unprecedented.

Initially, due to the limitations of experimental techniques, HTS-PPI data are prone to high rate of false-
positives, i.e., HTS-PPIs identified by the experiments do not actually exist in nature10,11. With the advance of
related technology, the quality of HTS-PPI data is greatly improved in recent years12–14. Nonetheless, HTS
techniques have not yet reached the perfection and false-positive noises can still be found in their output12–14.
Meanwhile, in spite of their efficiency, it is still very hard for HTS methods to identify the full PPI network of given
species10,11. Hence, the obtained HTS-PPI data cannot cover all potential PPIs either.

Although HTS-PPI data have made advances to identify the PPI networks, it is desired to extract more useful
knowledge from them. Various efforts have been made to do so15–22, e.g., solving the problem of binary inter-
actome mapping (BIM). The main BIM task is to analyze the obtained HTS-PPIs to address the following two
issues15–22,

a) Assessment: assessing the reliability of obtained HTS-PPI data, and rejecting the unreliable interactomes to
decrease their false-positive rate; and

b) Prediction: predicting the probable interactomes suggested by the obtained HTS-PPIs.
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Among current approaches to the problem of BIM, network topo-
logy-based methods23–27 have proven to be efficient. Their main idea
is to address the BIM problem by analyzing solely the topology of the
network corresponding to given HTS-PPI data23–27, thereby requir-
ing no prior knowledge of individual proteins.

Saito et al.23 rank the reliability of HTS-PPIs by the interaction
generality (IG) extracted from the local topology of each protein-
pair. Brun et al.24 employ Czekanowski-Dice distance (CD) to ana-
lyze the neighborhood topology of each protein for classification
tasks. Chen et al.25 propose the interaction reliability by alternative
path (IRAP), which models the protein-protein relationship through
exploring the path information of an HTS-PPI network. Chua
et al.26,27 propose the functional similarity weight (FW), which is
highly efficient in representing the relationship among proteins based
on HTS-PPI data. As indicated in26,27, FW is able to outperform IG,
CD and IRAP in addressing the BIM problem in many circumstances.

Topology-based approaches take advantage in purely relying on
HTS-PPI data without requiring any additional information of pro-
teins23–27. However, they share the drawback of low efficiency on
sparse HTS-PPI networks, which are very common in real applica-
tions15–22. For instance, the HTS-PPI network of the IntAct dataset28

contains 13,807 HTS-PPIs among 4,486 proteins; the average degree
on each protein is about 3.08, and the network density is 0.14% only.
On such a sparse network, the performance of topology-based meth-
ods tends to deteriorate significantly26.

To address the BIM problem on large, sparse HTS-PPI networks,
this work aims at developing a highly-efficient approach to BIM
based on collaborative filtering (CF). CF is initially designed for
the problem of personalized-recommendation in e-commerce29–32.
Such a problem generally involves three fundamental kinds of entit-
ies, i.e., users, items (e.g., movies and news), and user-item usage
history (e.g., scores and comments). The main issue is to figure out
useful patterns reflecting the connection between users and items
from user-item usage history, and then make reliable predictions
for possible user-item links according to these patterns29–32. Since
each user can only contact a tiny fraction of the whole item set,
known user-item pairs are far less than unknown ones. In other
words, the problem of personalized-recommendation features with
sparsity, and CF-based approaches have proven to be very effective in
dealing with it29–32.

Through careful investigations of these two problems, i.e., BIM
and personalized-recommendation, we find that their solution
spaces are very similar: the key to both problems is to model the
relationship among involved entities based on incomplete informa-
tion. Motivated by this intuition, we propose a novel CF-based
approach to the BIM problem, thereby resulting in a new class of
methods for such problems. According to our best knowledge, such
efforts have been never seen in any previous work. The main con-
tributions of this work include:

a) A CF framework for the BIM problem, which is a novel com-
putational paradigm for such kind of problems;

b) A novel approach to the BIM problem in context of binary HTS-
PPI data based on the CF framework;

c) Rescaled cosine coefficient (RCC), a novel metric able to accur-
ately model the protein-protein relationship corresponding to
the given HTS-PPI data; and

d) Empirical validations of the proposed concepts and framework
via two public large, real datasets.

Results
Methods for Comparison. This work considers the cases where only
binary HTS-PPI data are available. The proposed RCC-based CF
(RCF) approach to BIM is highly flexible, and is able to work
depending on binary HTS-PPI data solely. Therefore, it is fair and
reasonable to compare the proposed RCF against sophisticated

topology-based methods, which are well known for their efficiency
and dependence on HTS-PPI data only. Three topology-based
algorithms, which respectively employ IG, CD and FW as the
indexing metric, are implemented and compared against RCF.

Datasets. Three public large, real datasets are the Homo sapiens
protein interaction data from the IntAct database28, the BioGrid
database33, and the human signaling dataset by Wang’s Lab34–37.
Their details are listed below.

I) D1: the IntAct dataset consisting of 4,486 proteins and 13,807
Homo sapiens HTS-PPIs28, where the average degree on each
protein is about 3.08, and the density of the corresponding
HTS-PPI network is 0.14% only; and

II) D2: the Homo sapiens HTS-PPI dataset from the BioGrid
database33. D2 contains 7,493 proteins and 27,045 HTS-PPIs.
Its average degree on each protein is about 3.61, and the density
of the corresponding HTS-PPI network is 0.10% only.

II) Note that both the datasets correspond to very sparse HTS-PPI
networks. About 99.9% entries in the corresponding IW mat-
rices are unknown.

III) D3: the physical links from the human signaling network that
is manually curated by Wang’s Lab34–37. This is the largest
manually curated human signaling network, which contains
more than 6,000 proteins and 63,000 relations. In this work, we
employ its 21,579 physical links on 2,767 proteins, which form
a network with the density of 0.28%. Note that different from
D1 and D2, the PPIs in D3 are manually curated with high
accuracy34–37. Hence, by using it we expect to examine different
performance aspects of the proposed and other concerned
methods.

Evaluation Settings. Our experiments employ Gene Ontology (GO)
based annotations to evaluate involved methods. GO is one of the
most important ontologies inside the bioinformatics community38.
Its organizing principles are cellular component, biological process,
and molecular function. During our experiments, we employ them as
the ground-truth to validate the performance of tested methods; such
experimental designs are based on the strategy of ‘guilt by
association’39 which provides the evidence that interactive proteins
probably possess functional similarity and cellular co-localization,
and are commonly accepted by related works23–27,40,41. All tested
algorithms share the following experimental process:

a) Assessment. On either dataset, we firstly apply each tested algo-
rithm to evaluate the likelihood of given HTS-PPIs. Thereafter,
we evaluate the functional homogeneity and localization coher-
ence of the assessment by computing the rate of interacting
protein pairs with functional roles or cellular localization in
common. This rate should be high on HTS-PPIs corresponding
to high likelihood.

b) Prediction. On either dataset, we select the 20,000 missing inter-
actomes corresponding to the highest likelihoods provided by
each test algorithm, and then evaluate the functional homogen-
eity and localization coherence of the prediction by computing
the rate of interacting protein pairs with functional roles or
cellular localization in common. This rate should also be high
on missing interactomes corresponding to high likelihood. Note
that IG suffers from low efficiency when dealing with the pre-
diction task since it assigns identically high values on missing
interactomes; besides, it is also rarely employed to predict miss-
ing interactomes in23–27. Therefore, we did not test the perform-
ance of IG in predicting missing interactomes, either.

In each test, we employ the first ontology of GO terms to iden-
tify the co-localization, and the other two ontologies of GO terms
to identify the functional similarity, among involved proteins
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respectively. This setting was also widely employed by previous
works23–27,40,41. Note that their validation protocols based on the gene
expression correlations42, or the GO semantic analysis43,44, are also
efficient to examine the performance of computational approaches to
BIM. However, in this work we intend to keep consistent with the
existing studies regarding the same issue in terms of validation pro-
tocols, to check whether the proposed method can achieve better
performance than them.

Note that GO terms are organized hierarchically into functional
subfamilies, i.e., two different GO terms may have a common parent
or a common child in the hierarchy. Hence, GO terms at high levels
correspond to many proteins, while those at low levels correspond to
rather few. To obtain objective results, we choose GO terms at middle
levels in our experiments. More specifically, we remove the top 1%
annotations corresponding to most proteins from the annotation
data, to validate whether each tested method can correlate with the
left annotations. Note that we download the GO annotation data sets
from http://www.geneontology.org.

Result Analysis. Note that the performance of RCF relies on the
hyper parameters CY and d as described in the Method Section. On
both datasets, we set d 5 5 and CY 5 30 for all testing cases, which are
chosen based on the parameter-sensitive tests presented in the
Supplementary Section.

Figure 1 depicts the performance of all compared algorithms in
HTS-PPI assessment on D1. From these results, we see that RCF
obviously outperforms the tested topology-based algorithms. As
shown in Figure 1(a), 51.7% of the top 50% of the HTS-PPIs ranked
by RCF have a common cellular role; in contrast, topology-based
algorithms can achieve 49.5% with CD, and 48.8% with FW. The
proportion of interacting proteins with a common functional role
hardly increases in HTS-PPI data filtered by the algorithm employ-
ing IG.

Similarly, although topology-based algorithms show high correla-
tions with cellular co-localization on D1, RCF exhibits much better
localization coherence than them. More specifically, as depicted in
Figure 1(b), RCF identifies more HTS-PPIs having common cellular
localization than any other algorithms do. When considering the top
50% of the filtered HTS-PPIs, 69.7% of those by RCF are supported
by cellular coherence; with topology-based algorithms, this ratio
drops to 65.4% by CD, and 65.2% by FW.

Figure 2 depicts the accuracy of all tested algorithms in predicting
missing interactomes on D1. From these results, we see that the
prediction accuracy of RCF is clearly higher than that of the rival
algorithms. For example, 42.5% of the 20,000 interactomes pre-
dicted by RCF are supported by functional similarity; with FW
and CD, this ratio drops to 32.9% and 22.1%, respectively, as shown
in Figure 2(a). Meanwhile, 64.3% of the 20,000 potential interac-

Figure 1 | Comparison in assessing the reliability of given HTS-PPI on D1.

Figure 2 | Comparison in predicting missing interactomes on D1.
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tomes predicted by RCF are supported by cellular co-localizations,
compared to that at 53.4% by FW, and 39.1% by CD, as shown in
Fig. 2(b). During the whole comparison on D1, involved topology-
based algorithms are always outperformed by RCF in terms of pre-
diction accuracy.

Figure 3 depicts the performance of involved algorithms in asses-
sing the reliability of HTS-PPIs on D2. From these results, we see that
all tested algorithms have strong correlation with functional similar-
ity and localization coherence on D2; however, RCF performs the
best. For instance, as shown in Figure 3(a), for the top 50% HTS-PPIs
selected by each algorithm, 70.0% of those by RCF are supported by
common functional roles; this ratio is at 61.6% by FW, 62.9% by CD,
and 57.1% by IG, respectively. Meanwhile, as shown in Figure 3(b),
65.2% of the top 50% HTS-PPIs selected by RCF are supported by
common cellular localizations; with FW, CD and IG, this ratio drops
to 60.1%, 60.4% and 56.4%, respectively. To summarize, RCF has a
clear advantage in providing steadily high efficiency when addressing
the task of assessment on D2, which can be clearly observed from
Figure 3.

Figure 4 depicts the performance of compared algorithms in pre-
dicting the missing interactomes on D2. From these results, we see
that RCF is able to achieve steadily high prediction accuracy on D2.
As shown in Figure 4(a), 62.1% of the 20,000 interactome predictions
generated by RCF are supported by functional homogeneity; with
CD and FW, this ratio is at 33.1% and 46.3%, respectively. Similar
situation can be found when evaluating their correlation with cellular

co-localization, as shown in Figure 4(b). When dealing with the task
of prediction on D2, topology-based algorithms cannot catch up with
RCF during all the tests.

However, on D3, the situation is slightly different. Fig. 5 depicts
the performance of involved algorithms in assessing the reliability of
PPIs on D3. From this figure, we see that although RCF generally
outperforms the other tested methods, it has close performance with
CD and FW. For instance, as shown in Fig. 5(a), for the top 40%
PPIs selected by each algorithm, 77.4% of those by RCF are sup-
ported by common functional roles; this ratio is at 75.1% by FW,
75.7% by CD, and 76.4% by IG, respectively. Meanwhile, IG can
sometimes outperform the other three algorithms; e.g., for the top
30% selected PPIs, 76.9% by IG are supported by functional homo-
geneity in GO annotations, while RCF, FW and CD can achieve
76.5%, 73.7% and 74.5%, respectively. Similar salutations can also be
found when assessing the reliability of involved PPIs with local-
ization-coherence. As shown in Fig. 5(b), although IG cannot per-
form well, the performance of RCF, CD and FW are very close. For
instance, 95.1% of the top 30% HTS-PPIs selected by RCF are sup-
ported by common cellular localizations; while, with FW or CD, this
ratio comes to 93.9%.

Figure 6 depicts the performance of the compared algorithms in
predicting the missing interactomes based on the manually curated
links in D3. First of all, we notice that on this highly-accurate dataset,
each tested algorithm can make good predictions sufficiently sup-
ported by GO annotations. For instance, for the 20,000 protein pairs

Figure 3 | Comparison in assessing the reliability of given HTS-PPI on D2.

Figure 4 | Comparison in predicting missing interactomes on D2.
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selected by each algorithm, 78.3%, 75.5% and 76.2% of those by RCF,
CD and FW are supported by functional homogeneity, respectively,
as shown in Fig. 5(a). However, we also find that in terms of predict-
ing missing interactomes, RCF can still obtain its consistent advant-
age in prediction accuracy when compared with the tested topology-
based methods.

Based on the results on D3, we see that on highly accurate dataset
like D3, RCF outperforms the rival algorithms; yet the advantage is
not as obvious as that on D1 and D2. A probable reason for this
phenomenon is because of the high accuracy of the manually curated
PPIs in D3. After removing the top 1% of the GO annotations from
the corresponding GO data, 75.9% and 86.2% of the PPIs in D3 are
still supported by functional homogeneity and localization coher-
ence, respectively. This ratio is much higher than that on D1 and
D2, and suggests that few false-positive noises exist in D3. Note that
as described in the last section, RCF works by controlling the impact
of noises contained in the given HTS-PPI data. Hence, on dataset
containing noises like D1 and D2, it can outperform the tested topo-
logy-based methods significantly. However, when the given data are
highly accurate, the impact of noise data is small, and its gain is
shrunk.

Significance Tests. Based on the experimental results, we draw
significance tests to validate the improvement by RCF over the
state-of-the-art topology-based methods statistically. We choose to
conduct the Friedman test45, which is effective for validating the

performance of multiple methods on multiple datasets. Let rj
i be

the rank of the jth one of k algorithms on the ith one of N testing
cases. The Friedman test compares the average ranks of the

algorithms, Rj~
X

i

rj
i

,
N . Under the null-hypothesis, which

states that all the algorithms are equivalent and so their ranks Rj

should be equal, the Friedman value is computed as45:

x2
F~

12N
k kz1ð Þ

X
j

R2
j {

k kz1ð Þ2

4

" #
: ð1Þ

With (1), the test score is given by

FF~
N{1ð Þx2

F

N k{1ð Þ{x2
F
: ð2Þ

Note that (2) is distributed according to the F-distribution with k-1
and (k-1)(N-1) degrees of freedom45. Hence, we can reject the null
hypothesis with the critical level a if FF is greater than the
corresponding critical value.

Three datasets are employed in our experiments; however, since
the performance of each tested method is validated with GO annota-
tions on both functional similarity and cellular co-localizations, each
dataset yields two testing cases. Hence, we have four models, and six
testing cases. For each testing case, we compute the average rank of
each tested method based on their performance at each testing point.

Figure 5 | Comparison in assessing the reliability of given HTS-PPI on D3.

Figure 6 | Comparison in predicting missing interactomes on D3.
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Note that the assessment and prediction are two different tasks.
Hence, we conduct the corresponding tests separately.

Hence, in our experiments, k and N in (1) and (2) are 4 and 6,
respectively. Hence, FF is distributed according to the F-distribution
with 4-1 5 3 and (4-1)(6-1) 5 15 degrees of freedom. The critical
value of F(3, 15) for a 5 0.05 is 3.29. Therefore, if the test scores of our
experiments are greater than 3.29, we can reject the null hypothesis.

According to the performance of each tested algorithm in addres-
sing the tasks of assessment and prediction as depicted in Figs. 1–6,
we summarize their performance ranks in Tables I and II. Note that
in each table, F.H. and C.C. stand for validating the performance of a
tested algorithm with GO annotations of functional homogeneity
and cellular co-localizations, respectively. Since IG cannot predict
missing interactomes, we rank it behind the other algorithms that
can do so. Then with the average rank of each algorithm, we compute
the test scores as follows,

x2
F Assessment~

12|6
4|5

1:192z2:792z2:542z3:452{
4|52

4

� �

<9:20[FF Assessment~
5|9:20

6|3{9:20
<5:23;

x2
F Assessment~

12|6
4|5

1:022z2:862z2:132z4:002{
4|52

4

� �

<17:12[FF Assessment~
5|17:12

6|3{17:12
<97:27:

Both test scores are greater than 3.29. Hence, we conclude that the
tested algorithms in our experiments are significantly different in
performance with a confidence of 95%.

For further identifying the performance of tested algorithms, we
employ the Nemenyi analysis45. In the test, two models are signifi-
cantly different if the difference between their performance ranks is
greater than the critical difference value45, which is given by

CD~qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k kz1ð Þ

6N

r
, ð3Þ

where qa is based on the Studentized range statistic40. With four
models in the experiment, in our case the critical value qa 5 2.291
with the critical level a 5 0.145. By substituting k 5 4 and N 5 6 along
with qa into (3), we obtain that CD 5 1.71, which indicates that any
pair of models with a rank difference higher than 1.71 have signifi-
cant difference in recommendation accuracy with a confidence of
90%.

Fig. 7 depicts the results of the Nemenyi analysis. From Fig. 7, we
see that from the statistical aspect, RCF outperforms CD and IG
significantly. Although we cannot conclude that RCF significantly
outperforms FW, the difference in their performance is still clear.
Hence, based on the experimental results and significance analysis,
we summarize that in comparison with three well-known and soph-
isticated topology-based algorithms, the proposed RCF achieved sig-
nificantly higher performance in addressing the BIM problem on
large, sparse HTS-PPI datasets.

Discussion
From the Results Section, we see that the efficiency of the proposed
RCF in addressing the BIM problem is supported by the experi-
mental results. In this section, we discuss several related points.

Basic assumption. Like the topology-based methods, the proposed
CF-based framework also works based on the assumption that
potential interactomes probably exist among proteins sharing
many common interactive neighbors23–27,40,41. However, counter
examples against this assumption can be found as concerned by
pioneering researchers. Therefore, it is interesting to further study
the cases where interactomes are supported by the common
neighbors or not, to design some specific strategies. This will be
our future work.

Connections between CF-based and topology-based approaches.
The main connection between these two kinds of approaches is their
ability of addressing the BIM problem purely relying on HTS-PPI
data, without the need of any additional information. However, they
use different principles. Topology-based approaches explore of the
neighborhood topology structures, based on which the connections
among involved proteins are modeled23–27,40,41. For instance, CD
works by solving the normalized difference between the direct
neighbor sets of two proteins; FW further include the indirect
associations among the neighborhoods of involved proteins for
higher efficiency.

The proposed RCF, on the other hand, does not rely on such an
exploration process. Its fundamental data source, i.e., the IW matrix,
is built relying on the HTS-PPI data. Once obtaining this matrix, we
treat it as the input data describing certain characteristics of involved
proteins, without considering any topology information. The sub-
sequent steps, i.e., feature extraction and mapping-indicator model-
ing, are carried out by manipulating the IW matrix. Its performance
relies heavily on a mapping-indicator representing the relationship

Table I | The rank of tested methods by their performance in assessment

Method

D1 D2 D3

Avg.F.H. C.C. F.H. C.C. F.H. C.C.

RCF 1.07 1.02 1.02 1.07 1.11 1.27 1.09
CD 2.42 3.11 2.97 2.73 2.80 2.87 2.82
FW 2.76 2.6 2.11 2.36 3.27 2.20 2.55
IG 3.71 3.24 3.89 3.84 2.78 3.47 3.49

Table II | The rank of tested methods by their performance in prediction

Method

D1 D2 D3

Avg.F.H. C.C. F.H. C.C. F.H. C.C.

RCF 1.00 1.00 1.00 1.00 1.00 1.10 1.02
CD 3.00 3.00 3.00 3.00 2.85 2.30 2.86
FW 2.00 2.00 2.00 2.00 2.15 2.60 2.13
IG 4.00 4.00 4.00 4.00 4.00 4.00 4.00
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among involved proteins built on feature-vectors extracted from the
IW matrix. As proven by the experimental results, a carefully
designed mapping-indicator such as the I-Sim of RCC enables RCF
to provide excellent performance in addressing the BIM problem.

Possible extensions. In this work, we initialize the CF-based frame-
work for the problem of BIM. The obtained RCF is a protein
relationship-based model, which works by modeling the relation-
ship among involved proteins based on given PPI data. However,
as indicated by recent works in the area of recommender systems,
such latent connections can also be obtained through optimization-
based techniques like the EM-based methods or latent factor
analysis31,32. These techniques can be also integrated into our
framework to achieve highly efficient extensions. Meanwhile, in
this work we only employ the HTS-PPI data as the input data. It
will be interesting to see whether the better model can be achieved

with the integration of more biological evidence. Such extensions will
also be included in our future work.

Methods
A. The CF-based Framework for the BIM Problem. Firstly, we present our CF
framework for the BIM problem in Figure 8. As depicted in Figure 5, the proposed
framework contains four steps, which are data preprocessing, feature extraction,
mapping-indicator modeling and assessment/prediction, respectively. Next, we
illustrate each step of our approach under this framework.

Data Preprocessing. When employing CF-based approaches to personalized-recom-
mendation, we model the given data into a matrix that contains numerous missing
entries. Its known entries are built based on their corresponding user-item usage
history. With such a matrix, we build the patterns reflecting the relationship among
involved users and items, thereby making reliable recommendations29–32. As men-
tioned before, BIM and personalized-recommendation have very similar solution
spaces, where the key is to identify the connections among involved entities based on
incomplete data. From this point of view, we adopt the idea of CF to transform the

Figure 7 | The results of Nemenyi analysis.

Figure 8 | Framework of the CF-based approach to BIM.
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given HTS-PPI data along with other available information into an incomplete matrix
as the data source. We define this matrix as follows,

Definition 1. Given a protein set P, an interactome weight matrix Y is a jPj3jPjmatrix
where each entry yi,j corresponds to the interactome weight between proteins i and j.

Naturally, as the input data source, the construction of the interactome weight
(IW) matrix has direct effect on the final output; therefore, it is vital to define its
entries. In this work, we consider the following two factors regarding this issue,

a) We focus on cases where only binary HTS-PPI data are available; hence, the IW
value corresponding to each protein pair is set equal to the given HTS-PPI data,
i.e., an IW value is equal to one if the corresponding HTS-PPI is given, and zero
otherwise. Nonetheless, more specific IW settings can be employed when addi-
tional information, e.g., protein attributes26,27,46,47, is available; and

b) Most interactomes are unknown in a sparse HTS-PPI network, and thus the
corresponding IW matrix is very sparse with numerous zeroes. To decrease the
distance among interacting proteins, a strategy commonly adopted by topo-
logy-based methods is to define the interactive neighbor set of a specified
protein to include itself21,25–27. Here we set the diagonal entries of the IW matrix
at one to achieve the same effect.

Based on the above inference, we set each yi,j in Y according to the given HTS-PPI
network G 5 (V, E) as follows,

yi,j
i,j[P

~
1, if i,jð Þ [ E or i~j;

0, otherwise:

�
ð4Þ

Note that binary HTS-PPI data are undirected; therefore, with (4) we obtain a sym-
metric IW matrix where each row/column represents the neighborhood of a specified
protein in the given HTS-PPI network. The illustrative example of a simple network
and the corresponding IW matrix is given in Figure 9.

Feature Extraction. Obviously, although an IW matrix Y is usually very sparse, it still
contains rich information about the interactive neighborhood of those proteins
involved in the HTS experiments. As indicated by research in the CF area29–32, given a
sparse target matrix, it is feasible to model the relationship among involved entities,
i.e., users/items, based on it. A straightforward but efficient way29–31 to do so is by
treating each row/column vector as the feature-vector describing a specified user/
item, and solving the corresponding vector similarity to model the desired
relationship.

With the same principle, here we extract each row vector from an IW matrix as the
feature-vector of the corresponding protein as depicted in Figure 6(b), to model the
protein-protein relationship. In the BIM context, this straightforward strategy is also
reasonable, since each row vector in the IW matrix describes information about the
neighborhood of a specified protein directly. Nevertheless, more specific strategies
regarding this issue need investigations.

Mapping-indicator Modeling. With the extracted IW feature vectors, we model the
interactome mapping-indicator, which measures the likelihood of each interactome
inferred from the HTS-PPI data. In this work, we build the mapping indicator with
the inter-neighborhood similarity, which is defined as follows,

Definition 2. Given an interactome weight matrix Y, the inter-neighborhood similarity
between proteins i and j is given by simi,j :5 f(yi,yj), where yi and yj denote the
interactome weight feature-vectors for proteins i and j extracted from Y, and f(yi,yj)
denotes a function of yi and yj to compute the vector-similarity between yi and yj.

Note that f (yi, yj) in the above definition can be defined differently and will be
discussed later. With Y built on (4), the inter-neighborhood similarity (I-Sim) unveils
how a given HTS-PPI is collaboratively supported by the interactive neighbors
attached to the corresponding pair of proteins, and plays a critical role in our

approach. In the next section, we will present a novel I-Sim metric which is especially
designed for binary HTS-PPI data corresponding to sparse networks.

HTS-PPI Assessment/Prediction. Once we obtain the mapping-indicator matrix
consisting of available mapping-indicators on each protein pair, we address the BIM
problem as follows,

a) Assessment. HTS-PPIs with high mapping-indicators are regarded as highly
reliable, and vice versa; and

b) Prediction. Missing interactomes corresponding to highest mapping-indica-
tors are regarded to possess the highest probability to appear in nature.

In this work, the mapping-indicators are modeled by I-Sim among IW feature
vectors. The intuition behind such a design is that the feature-vectors extracted from
the IW matrix demonstrate the interactome characteristics of involved protein pairs,
which reflect the process of the corresponding HTS experiments. Hence, I-Sim
measuring the closeness of IW feature-vectors is able describe the likelihood of
interactions among corresponding proteins.

B. I-Sim Design. Benchmark. In this work, I-Sim directly decides the values of the
mapping-indicators which represent the likelihoods of corresponding HTS-PPIs.
Therefore, it is vital to design an efficient I-Sim metric, which is able to model the
protein-protein relationship based on binary HTS-PPI data precisely, for achieving
high performance. According to pioneering research29–31, a simple and basic choice is
the cosine similarity. With it, we build the I-Sim between proteins i and j as follows,

simi,j :~f yi,yj
� �

~
yi,yj
� 	
yik k: yj



 

 ð5Þ

where Æ.,.æ denotes the inner product between two vectors, and :k k denotes the Euclid
norm of the given vector. Note that based on (5), simi,j increases if proteins i and j have
more common neighbors, i.e., the numerator Æyi,yjæ becomes larger; and decreases if
either involved protein has many neighbors, i.e., the denominator yik k: yj



 

 becomes
larger.

Rescaled cosine coefficient. The cosine similarity (5) provides us with a benchmark to
model the I-Sim among involved proteins. However, it suffers from instability,
thereby resulting in low accuracy29-31. For instance, consider the I-Sim values cor-
responding to HTS-PPIs (a, b) and (a, c) in Figure 6(a); according to (5), we solve ca,b

and ca,c with ya, yb and yc shown in Figure 6(b) as follows,

sima,b~ ya,ybh i= yak k: ybk kð Þ~2
. ffiffiffi

3
p

:
ffiffiffi
2
p� �

<0:82,

sima,c~ ya,ych i= yak k: ybk kð Þ~2
. ffiffiffi

3
p

:
ffiffiffi
6
p� �

<0:47:

Note that judging from the network depicted in Figure 6(a), HTS-PPIs (a, b) and (a, c)
are very close. However, with the cosine similarity, we arrive at the conclusion that the
HTS-PPI (a, b) is far more reliable than (a, c). Hence, the HTS-PPI (a, c) may be
identified as noise due to the dense neighborhood of protein c. As mentioned before,
HTS-PPI data usually contain false-positive noises10–14. When dealing with the BIM
problem on such noisy data, the instability of cosine similarity can result in both
problems of false-negative and false-positive, i.e., actually reliable HTS-PPIs are
assessed as unreliable, and impossible interactomes are predicted to exist. To alleviate
such inefficiency, we propose the rescaled cosine coefficient (RCC), which integrates
saturation-based strategies into the cosine similarity (5) for achieving more precise
protein-protein relationship.

First, we integrate saturation factors into the denominator of (5) for controlling the
impact of vector norms. As depicted in Figure 6, the norm of the IW feature-vector on
a specified protein actually demonstrates the size of its neighborhood. With the
integration of saturation factors, we intend to shrink the numerical gap among

Figure 9 | Illustrative example of an HTS-PPI network and corresponding IW matrix.
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obtained I-Sim on extreme cases, as well as maintaining the relative order of I-Sim
values supported by an equal number of common neighbors. Hence, we consider
incorporating a constant saturation parameter CY into the denominator of (5), to
obtain:

simi,j :~f ’ yi,yj
� �

~
yi,yj
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yik k2

CY
z1

� �r
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yjk k2

CY
z1

 �s ð6Þ

With (6), the denominator is transformed into a saturation function of yik k and yj



 


which possesses the following characteristics,

a) The same as the denominator of the cosine similarity, it is monotonously non-
decreasing with yik k and yj



 

; hence, the relative order of I-Sim values sup-

ported by an equal number of common neighbors remains; and
b) The numerical differences caused by extremely large/small norms of IW fea-

ture-vectors are shrunk; hence, the impact by noise data is controlled.

For instance, by setting CY 5 20, we solve the I-Sim values sima,b and sima,c in the
previous case according to (6) as follows,

sima,b~
ya,ybh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yak k2

20
z1

s
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ybk k2

20
z1

s ~
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

3
20

z1

r
:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

20
z1

r <1:79,

sima,c~
ya,ych iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yak k2

20
z1

s
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yck k2

20
z1

s ~
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

3
20

z1

r
:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6

20
z1

r <1:64;

where we see that the numerical gap between sima,b and sima,c is greatly shrunk, and
their relative order remains. Note that with the incorporation of CY, the value of each
I-Sim is enlarged. Nonetheless, since we mainly care about the ranking of interac-
tomes by I-Sim, such numerical value changes will not affect the process of accurate
assessment/prediction.

Meanwhile, the inner product Æyi,yjæ in (5) and (6) actually describes how the I-Sim
between proteins i and j is collaboratively supported by their common neighbors.
Note that when addressing the BIM problem, extreme cases, i.e., HTS-PPIs supported
by many or few common neighbors, are easy to distinguish. However, it is relatively
hard to distinguish those supported by close numbers of common neighbors due to
the possible existence of noise data. To well handle them, we further introduce a
saturation factor into the numerator of (6) to

a) Improve the sensitivity of I-Sim in distinguishing HTS-PPIs supported by
frequent numbers of common neighbors; and

b) Reduce the impact of noises by integrating the prior knowledge describing the
global distribution of the given data.

We first introduce the inter-neighborhood similarity support defined next.

Definition 3. Given an interactome weight matrix Y, the inter-neighborhood similarity
support on protein pair (i, j) is the number of common neighbors supporting the
inter-neighborhood similarity between i and j, and given by ni,j 5 Æyi,yjæ.

Actually, ni,j supports the I-Sim between proteins i and j just like interpersonal
relationship; people cannot judge the relationship between each other based on few
contacts only, and vice versa. From this point of view, it is reasonable to enlarge I-Sim
values with a rescaling coefficient relying on the corresponding I-Sim supports for
demonstrating their strong confidence, and the main concern turns to the design of
this rescaling coefficient.

A straightforward solution to this problem is the max-min normalization, i.e., set
the rescaling coefficient ri,j corresponding to ni,j as ri,j 5 ni,j/nmax. However, as
mentioned before, HTS-PPI data usually contains noise data, which impacts the
performance of this strategy. Nonetheless, with the given dataset large enough, it is
reasonable to fit all observed I-Sim supports with a normal distribution, of which the
average and variation are estimated as follows,

m̂n~

P
ni,j

NY
,ŝ2

n~

P
n2

i,j

NY
{m̂2

n ð7Þ

Note that NY in (7) denotes the number of non-zero neighborhood similarity-sup-
ports from the IW matrix Y. With m̂n and ŝ2

n we estimate the probability that ni,j is
greater than or equal to the others as the rescaling coefficient for each neighborhood
similarity:

ri,j~G(ni,jjm̂n,ŝ2
n)~

ðni,j

{?
g(njm̂n,ŝ2

n)dn, ð8Þ

where g(njm̂n,ŝ2
n)dn denotes the density function of the normal distribution with m̂n

and ŝ2
n . With this strategy, we actually introduce the prior knowledge describing the

distribution of I-Sim supports on the whole HTS-PPI dataset, into the rescaling
coefficient supporting the confidence of each single I-Sim. With such a design we can
reduce the impact of noise data, thereby improving the performance.

One concern with (8) is the high complexity to solve the integral. However, this can
be addressed through the Taylor approximation. Note that the cumulative distri-
bution function (8) also possesses the characteristic of saturation, i.e., the generated
rescaling coefficients are sensitive in distinguishing I-Sim with close I-Sim supports.
By incorporating (8) into (6), we obtain

simi,j :~f ’’ yi,yj
� �

~
yi,yj
� 	: ri,j

� �d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yik k2

CY
z1

� �r
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yjk k2

CY
z1

 �s , ð9Þ

where d decides the rescaling effect brought by the rescaling coefficient ri,j. Note that
according to (8), all rescaling coefficients lie in the scale of (0, 1); therefore, the value of
simi,j decreases as d increases. However, as d increases, the relative gap among I-Sim
values depending on rescaling coefficients also increases, thereby enlarging their
effect. If d 5 0, the obtained I-Sim values are not affected by rescaling coefficients.

Based on the above analysis, let rcci,j :5 simi,j :5 f0(yi,yj), we propose RCC as
follows,

rcci,j~
yi ,yjh i: ri,jð Þdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yik k2

CY
z1

� �r
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yjk k2

CY
z1

 �s ,

ri,j~G(ni,jjm̂n,ŝ2
n)~

Ð ni,j

{? g(njm̂n,ŝ2
n)dn,

m̂n~

P
ni,j

NY
,

ŝ2
n~

P
n2

i,j

NY
{m̂2

n:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ
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