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Dissipative two-level systems (TLS) have been a long-standing problem in glassy solids over the last fifty
years, and have recently gained new relevance as sources of decoherence in quantum computing. Resonant
absorption by TLSs in the dielectric poses a serious limitation to the performance of superconducting qubits;
however, the microscopic nature of these systems has yet to be established. Based on first-principles
calculations, we propose that hydrogen impurities in Al2O3 are the main source of TLS resonant absorption.
Hydrogen is an ubiquitous impurity and can easily incorporate in Al2O3. We find that interstitial H in Al2O3
forms a hydrogen bond (O-H…O). At specific O-O distances, consistent with bond lengths found in
amorphous Al2O3 or near Al2O3 surfaces or interfaces, the H atom feels a double well. Tunneling between
two symmetric positions gives rise to resonant absorption in the range of 10 GHz, explaining the
experimental observations. We also calculate the expected qubit-TLS coupling and find it to lie between 16
and 20 MHz, consistent with experimental measurements.

T
he existence of dissipative two-level systems (TLSs), typically observed in amorphous solids, is a long-
standing problem in solid-state physics1,2, but specific microscopic models have been lacking. A new impetus
for uncovering their origins has emerged with the advance of qubits based on superconducting Josephson

tunnel junctions3,4. Dissipation in the qubit causes the excited j1 . state to decay to the j0 . ground state, leading
to decoherence5,6. Two-level systems (TLS) in the insulating layer have been reported to be a major source of
energy loss7; this mechanism seems to dominate other sources of decoherence.

Dielectric loss from TLS can be large in amorphous materials (see Pohl et al.8 for a detailed survey), and is
thought to arise from random bonding of atoms. In superconducting qubits, TLSs are a source of decoherence in
the tunnel barrier of the Josephson junction. Loss arises from absorption of microwave radiation by TLSs with an
electric dipole moment. It can be modeled as atoms tunneling between two distinct positions7, and has been
shown to be important even for the surface oxide of superconducting metals (Al2O3)9. The effect of decoherence
can be mitigated by the use of single-crystal Al2O3; a reduction in the density of spectral splittings of up to 80% has
been observed10. The defects have resonance frequencies on the order of 10 GHz7, comparable to the qubit circuit;
the coupling strengths and decoherence times are sufficiently large for coherent oscillations between the qubit and
TLS. Despite extensive studies on the physics and effects of TLSs1,2,12, their microscopic origin has remained
unsettled.

Here we show that TLSs in Al2O3 can be attributed to hydrogen impurities that incorporate on interstitial sites.
Hydrogen is an ubiquitous impurity, present in many growth and processing environments, and able to unin-
tentionally incorporate in most materials13, including the Al2O3 dielectric used in superconducting qubits. The
specific characteristics of hydrogen that give rise to the TLS are related to its propensity for hydrogen bonding; by
definition it is the only element that exhibits this type of chemical bond. Interstitial hydrogen in oxides exhibits a
strong, mainly covalent bond with a primary O atom, with a typical O-H bond length of ,1 Å, but can also
interact with a next-nearest-neighbor (nnn) O atom, resulting in an O-H…O configuration14,15. For suitable O-O
distances, the interaction with the nnn O atom leads to quantum-mechanical tunneling between these neighbor-
ing sites. Tunneling of interstitial hydrogen between adjacent O sites has been observed in oxides such as KTaO3,
for which Spahr et al.16 reported tunneling rates in the 7–40 GHz range. We will demonstrate, based on first-
principles theory, that hydrogen in Al2O3 can give rise to TLSs with tunneling frequencies that explain the
dielectric loss observed in superconducting qubits.

The process of quantum-mechanical tunneling of interstitial hydrogen is complicated by the strong interac-
tions of hydrogen with the lattice, which lead to relaxations of the host17. In its most stable configuration, the
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interstitial H is primarily bonded to one O atom, with a larger dis-
tance to the nnn O (Fig. 1a). In this atomic configuration, the meta-
stable minimum at the nnn O is significantly higher in energy, or
even nonexistent, when compared to the ground-state minimum. To
enable tunneling, the lattice must be brought into a symmetric coin-
cidence configuration17,18 (Fig. 1b) where a double-well potential
occurs and tunneling can take place (Fig. 1c). The three-dimensional
(3D) potential energy surface corresponding to the coincidence con-
figuration determines the energy levels and tunnel splittings for the
quantum-mechanical motion of the H atom. These energy levels and
tunneling frequencies can be calculated by numerically solving
Schrödinger’s equation. The determination of the coincidence con-
figuration and the corresponding potential energy surface is an
important aspect of the present work, discussed in detail below.
We note that considering a purely adiabatic process, in which the
host atoms assume their lowest-energy positions for each location of
the H atom, is unrealistic due to the large mass difference between H
and the other atoms. On the other hand, fixing the host atoms to
positions corresponding to an unrelaxed lattice, or to those for the
ground-state configuration of interstitial H, is unrealistic as well. We
address this by employing a novel interpolation scheme between the
ground state-minima at two adjacent O atoms, and we repeat this for
different O-O distances in order to explore the properties of H in a
wide range of possible coincidence configurations.

Results
Interstitial H in a-Al2O3 can assume three different charge states:
positive (Hz

i ), neutral (H0
i ), and negative (H{

i ). These configura-
tions are calculated within density functional theory (DFT) using a
screened hybrid functional (see Methods). The use of a hybrid func-
tional is absolutely essential for properly describing the interaction
between H and the nnn O atom, and thus the tunneling frequencies
of the associated TLS. DFT within the standard generalized gradient
approximation (GGA) overestimates the strength of the interaction
between H and the nnn O atom so that the calculated O-H frequency
is too low19. For the neutral and negative charge states, the interstitial
hydrogen occupies a position in between two Al atoms, as shown in
Fig. 2a,b. Hz

i , on the other hand, bonds to an O atom with a bond

length of 1.01 Å, and a distance of 1.70 Å to the nnn O (Fig. 1c, 3b).
The relative stability of the different charge states depends on the
Fermi-level position. The formation energy of an interstitial H in
charge state q Ef Hq

i

� �� �
is calculated as20

Ef Hq
i

� �
~Etot Hq

i

� �
{Etot Al2O3ð Þ{mHzqEF , ð1Þ

where Etot Hq
i

� �
is the total energy of the supercell containing an

interstitial H atom in charge state q, Etot(Al2O3) is the total energy
of the bulk supercell, mH is the hydrogen chemical potential, and EF is
the Fermi level, referenced to the valence-band maximum (VBM).
The value of mH does not affect the relative stability of the different
configurations, and we can set mH equal to half the total energy of an
isolated H2 molecule.

The calculated formation energies as a function of EF are shown in
Fig. 3. We find that the donor state, Hz

i , is the stable charge state for
Fermi levels up to 5.9 eV above the VBM; above that, the acceptor
state, H{

i , is most stable. The neutral charge state, H0
i , is always

higher in energy than both the Hz
i and H{

i , reflecting a negative-
U character, as observed for Hi in many other semiconductors and
insulators13. The position of the Fermi level is determined by charge
neutrality; in an undoped a-Al2O3 crystal, native defects lead to a
Fermi-level position around the middle of the gap21. Under these
conditions, Fig. 3 shows that interstitial hydrogen is most stable in
the positive charge state, Hz

i .
The relaxed geometry of the Hz

i configuration in Al2O3 at its
equilibrium volume is asymmetric, with significant relaxations of
the host atoms, particularly of the O atom to which it is bonded
(Fig. 2c). The energy difference between the unrelaxed Al2O3 lattice
containing an Hz

i and the relaxed lattice with Hz
i in its most stable

configuration is defined as the self-trapping energy18,22, and is
approximately 1.5 eV. One would expect this large energy difference
to prohibit H from tunneling. In order to enable tunneling, a con-
figuration must be created in which the hydrogen is equally likely to
be bonded to either of the two neighboring O atoms. The lowest
energy required to take a self-trapped configuration into a symmetric
structure, i.e., the coincidence configuration, is the ‘‘coincidence
energy’’ Ec. The formation of a coincidence geometry may be assisted
by lattice vibrations, or may occur in regions where the atomic
arrangement deviates from that in the bulk crystal, such as near
surfaces or interfaces, or in an amorphous phase, in which a range
of O-O distances from around 2.4 Å to 2.8 Å are observed23–25.

An exact determination of the coincidence geometry would in
principle require a self-consistent treatment of the quantum-mech-
anical hydrogen motion coupled to the host-atom relaxation26,
something that is too computationally demanding to be performed
in conjunction with a first-principles treatment of the electronic
structure. Approximate methodologies for obtaining the coincidence
geometry have therefore been developed. Here we determine the
coincidence configuration by averaging the positions of the host
atoms for two self-trapped configurations, corresponding to H
bonded to adjacent O sites. This procedure produces a symmetric
double well potential for the tunneling hydrogen atom. We then
place a H atom Hz

i

� �
in the structure formed by the host atoms in

the coincidence geometry and allow the hydrogen to relax (keeping
the host atoms fixed). The energy difference between the relaxed Hz

i
in the coincidence geometry and the Hz

i in the most stable, self-
trapped configuration is the coincidence energy Ec.

We determined the coincidence configurations and coincidence
energies for a range of different volumes of a-Al2O3, from equilib-
rium to 6% isotropic (linear) strain. This variation in lattice para-
meters corresponds to O-O distances between 2.715 to 2.59 Å in the
perfect crystal, a range which includes the O-O distances found in
amorphous Al2O3

23–25. The corresponding O-O distance in the coin-
cidence configuration varies in the range of 2.56 to 2.45 Å. The results
are listed in Table 1 and shown in Fig. 4. The coincidence energies
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Figure 1 | Self-trapped and coincidence configurations. (a) Geometry of

the self-trapped configuration for a hydrogen interstitial in Al2O3. H is

bonded primarily to a specific O atom, but could alternatively be bonded

to a nnn O atom. Al atoms are represented by large (grey) spheres, O atoms

by smaller (red) spheres, and H atoms by the smallest (pink) spheres. (b)

Geometry of a coincidence configuration, obtained by averaging over two

adjacent self-trapped configurations. The two symmetric hydrogen sites

are indicated by semi-transparent bonds. (c) Schematic potential-energy

curve for the self-trapped (black) versus the coincidence (red)

configurations. The latter corresponds to a double-well system with energy

barrier Eb.
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vary from 0.36 to 0.25 eV, with a minimum at 4% compression,
corresponding to an O-O distance (in the coincidence geometry)
of 2.49 Å.

The solution of Schrödinger’s equation for the H atom in the 3D
potential energy surface corresponding to the coincidence geometry
produces wave functions and energies characteristic of a double-well
potential. The tunnel splitting is calculated from the energy differ-
ence between the ground state and the first excited state, and leads to
the tunneling frequencies listed in Table 1. In order to enable direct
comparison to experiments, we have also calculated the qubit-TLS
coupling strength for each possible configuration. The measured
signal of a TLS in a phase qubit reflects the resonance between the
splitting energy E01 and the tunnel splitting of the TLS, expressed as
the qubit-TLS coupling strength SMax. As described in the Methods
section, SMax is a function of the splitting E01 and the dipole moment
p. We have calculated this quantity using experimental values for the
qubit frequency (5.4 GHz, ref. 27) and for the capacitance and gate
width, resulting in values between 16 and 20 MHz (Table 1).

Discussion
The results in Table 1 indicate that the tunneling frequencies are
sensitive to the O-O distance, albeit not in a straightforward manner.
Compression of the lattice initially makes little difference to the
tunneling frequency, which remains around the value of 50 GHz

calculated for the equilibrium volume (see Fig. 4). The higher values
of Ec (compared to those calculated at compressed volumes) suppress
the possibility of tunneling in this regime. At 4.5% compression,
corresponding to an O-O distance of 2.59 Å in the impurity-free
crystal, the O-O distance in the coincidence configuration is 2.48
Å and the tunneling frequency is 16 GHz. Further compression of
the lattice leads to a decrease in the potential barrier between the
wells in the double well potential, and thus an increase in the tunnel-
ing frequency, away from the range observed in experiment. Such
small O-O distances also have a decreased probability of occurring in
actual samples.

Experimentally, a range of TLS tunneling frequencies have been
reported, centered around 10 GHz7,28. To further corroborate our
model, we can also compare our calculated qubit-TLS coupling con-
stants SMax to experiment. Reported values range from 25 MHz to
45 MHz28,29. The agreement with our calculated values (16–20 MHz,
Table 1) further validates our claim that hydrogen is responsible for
TLS decoherence in the dielectric layer.

The presence of hydrogen in dielectrics is highly plausible, par-
ticularly when they are deposited or grown using hydrogen-contain-
ing precursors. Hydrogen has been observed with secondary ion
mass spectrometry (SIMS) in atomic-layer-deposited oxides30.
Unfortunately, accurate experimental detection of hydrogen is
fraught with difficulty, at least at the low concentrations and in the
small volumes that are relevant for qubits. A decrease in loss has been
reported in the case of crystalline dielectrics10. This is consistent with
our results for crystalline a-Al2O3 at equilibrium volume, in which
the tunneling frequencies are well outside the range that is relevant
for the qubits. However, even in devices that use crystalline dielec-
trics, there is still a range of O-O distances at surfaces and inter-
faces11, so TLS losses are never completely eliminated.

The results reported here are distinct from recent work by Holder
et al.12, also based on hybrid density functional theory, which con-
sidered the rotor motion of a H atom in a-Al2O3, either as an inter-
stitial or in the Al vacancy. They concluded that interstitial hydrogen
could not be responsible for TLSs, based on a value for the calculated
tunneling frequency that was much higher than experiment. They
did find one defect displaying frequencies in the GHz range, namely a
complex of H with an Al vacancy in the 11 charge state. However,
this complex is stable only if the Fermi level is within 1.2 eV of the
VBM, which is highly unlikely (essentially impossible) in a-Al2O3, a
wide-band-gap insulator. The frequency calculated for Hz

i in Ref. 12
(,240 GHz) is significantly higher than the values reported here,
likely stemming from their highly simplified 1D model. Our own
tests have indicated that a full mapping of the 3D potential energy
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Figure 2 | Geometry of self-trapped hydrogen configuration in Al2O3. Relaxed ‘‘self-trapped’’ geometry of interstitial H in the (a) neutral, (b) negative,

and (c) positive charge states. Al atoms are represented by large (grey) spheres, O atoms by smaller (red) spheres, and H atoms by the smallest
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surface is essential in Al2O3, and that 1D models do not match the full
results. In addition, the sixfold or threefold degeneracies assumed in
the rotor model of Ref. 12 are extremely unlikely to occur in real
materials—even in crystalline solids. In contrast, the two-fold degen-
eracy inherent in our hydrogen-related double-well systems is highly
plausible and fits within the general framework of two-level systems.

In summary, we have proposed a microscopic model for TLSs in
Al2O3 based on interstitial hydrogen in an O-H…O hydrogen-bond-
ing configuration. Hybrid DFT calculations produce frequencies that
are in the range reported for TLSs known to be responsible for the
main loss in superconducting qubits, and calculated qubit-TLS coup-
ling paramaters are close to experimental values. We suggest that
hydrogen could be responsible for TLSs in other materials as well,
given its ubiquity. As the only element to exhibit ‘‘hydrogen bond-
ing’’, it stands out as a candidate for TLSs in oxides, in which a range
of suitable O-O distances occur. The low migration barriers observed
(and calculated) for interstitial H1 suggest that barriers between
equivalent sites can be low enough to lead to significant tunneling
and hence double-well systems.

Methods
Our calculations are based on density functional theory (DFT)31,32 and the screened
hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE)33,34 as implemented in the
VASP code35. In the HSE functional the exchange potential is split into short- and
long-range parts, with the range separation determined through an error function

with a characteristic screening length of 10 Å. In the short-range region, the exchange
potential of Perdew, Burke and Ernzerhof (PBE)36 is mixed with the non-local
Hartree-Fock exchange potential. The long-range region is described by the PBE
functional, and so is the correlation potential. We use a Hartree-Fock mixing para-
meter of 32%, chosen to correctly describe the band gap of a-Al2O3

38. The impurity
calculations were performed using a supercell containing 120 atoms; this is a 2 3 2 3

1 multiplier of the 30-atom unit cell of a-Al2O3. We used a 2 3 2 3 1 Monkhorst-Pack
k-point mesh for the integrations over the Brillouin zone, and a cutoff of 500 eV for
the plane-wave basis set. Our HSE calculations for a-Al2O3 produce lattice para-
meters a 5 b 5 4.74 Å and c 5 12.95 Å, in very good agreement with the experimental
values, a 5 b 5 4.76 Å and c 5 12.99 Å37.

We study a variety of O-O interatomic distances (representative of those occurring
in the amorphous phase or near surfaces or interfaces) by varying the volume of the
crystalline solid, up to a total volumetric compression of 6%. The physics of the TLS
studied here is determined by the local environment of the hydrogen atom, for which
the presence (or absence) of long-range order is irrelevant. Our results for crystalline
a-Al2O3 therefore also apply to amorphous Al2O3, in which the relevant O-O
interatomic distances occur, as evidenced by pair-correlation distributions23–25.

The 3D potential energy surface for the H atom in the host lattice (fixed to the
coincidence configuration) was determined by calculating the total energy for each
point on a grid with a spacing of 0.24 Å in the three spatial directions. This grid was
then interpolated using the energy gradients obtained from the forces acting on the H
atom, leading to a smooth function. To numerically solve the Schroödinger’s equation
for the quantum-mechanical motion of H, the wave functions were expanded in a
plane-wave basis set with a cutoff energy of 800 eV; this cutoff was determined based
on convergence tests for the tunnel splittings.

The qubit-TLS coupling SMax can be calculated as7, 39

SMax~
2p
x

ffiffiffiffiffiffiffiffiffiffiffi
e2E01

p
2C, ð2Þ

Table 1 | Calculated TLS parameters for H in Al2O3. Coincidence energies Ec, tunnel splittings D, tunneling frequencies n, and coupling
constants SMax for two-level systems associated with interstitial hydrogen in a-Al2O3. Values are listed for various O-O distances dO2O

ranging from 2.56 Å to 2.45 Å, corresponding to volume compression by the specified amounts

compression dO2O (Å) Ec (eV) D (eV) n (GHz) SMax (MHz)

0% 2.56 0.36 2.20 3 1024 53 19.8
1% 2.55 0.35 2.09 3 1024 50 18.3
2% 2.53 0.33 2.48 3 1024 59 19.2
3% 2.51 0.32 2.17 3 1024 53 17.1
3.5% 2.50 0.29 1.38 3 1024 33 16.7
4% 2.49 0.25 1.07 3 1024 26 16.4
4.5% 2.48 0.28 6.7 3 1025 16 16.4
5% 2.47 0.28 4.12 3 1024 90 16.3
6% 2.45 0.26 1.57 3 1023 360 16.0

Figure 4 | Tunneling frequency as a function of O-O distance. Calculated tunneling frequencies and coincidence energies are shown for O-O distances

ranging from 2.45 to 2.56 Å in the coincidence geometry. Tunneling frequencies are shown in red, coincidence energies in blue.
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where x is the barrier thickness, p is the effective dipole moment of the charge in the
double-well system, C is the capacitance, and E01 is the qubit splitting energy. We
assume a junction width x 5 2 nm, a capacitance C 5 850 fF, and a qubit splitting
energy 5.4 GHz, corresponding to representative experimental values27,28. The dipole
moment is calculated as the product of the effective charge around the hydrogen atom
in the coincidence configuration and the distance between the symmetric potential
wells, determined from first-principles calculations.
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