
Scaling in complex systems: a link
between the dynamics of networks and
growing interfaces
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We consider growing interfaces as dynamical networks whose nodes are the discrete points of the interface
and the edges the physical interactions among them. We map the points of the interface formed at each time
into a graph by means of a visibility algorithm. As the corresponding interfaces grow, their visibility graphs
change over time. We show that the visibility graphs are all scale free for each time. We use the variance of
the node degrees as a measure of the dynamical properties of these graphs. This magnitude reveals an
unexpected scaling behaviour of these graphs in both the number of nodes and time. This enables to define
three robust exponents that characterize any type of dynamics with more detail than the classical scaling
analysis applied directly to the physical interfaces. To check the feasibility of this approach we study and
classify six different dynamical processes and estimate their critical exponents. We conclude that the
dynamics of physical systems far from equilibrium can be determined by its corresponding visibility
network. Indeed, this methodology is able to discern among dynamical processes that hitherto have been
classified in the same universality class according to the scaling analysis of their interfaces.

M
any different real systems and physical phenomena have been successfully described by considering
them as complex networks composed by a large number of interacting items. In this long list we can find,
for instance, the World Wide Web, social networks, coupled biological and chemical systems, neural

networks, social interacting species, the Internet, cell metabolism2–4. Although most of the real networks are
dynamical, i.e. either the number of edges and nodes vary over time or there are certain attributes of the nodes and
edges that change over time, the major achievements of complex networks theory have to do with their static
properties, i.e. their topology5–7,33.

In comparison with this broad research line and, in spite of the important advances attained in the first decade
of the XXI century8–11, the study of network dynamics could be considered still in its infancy. Precisely, one of the
main achievements of this paper is to establish a link between the evolution of complex networks and those
dynamical processes that evolve under the action of randomness and develop rough interfaces. Indeed, this outer
envelope of the border can be considered as a fingerprint of the underlying dynamical processes responsible for
the growth of the system. Most of the activity is carried out at the interface or ‘‘active perimeter’’1 and its
geometrical properties are conserved during their evolution. Consequently, these systems possess quantities that
are invariant both in time and space12–15. Furthermore, despite particular details that make them different, these
systems can be classified into universality classes to get a global understanding of their properties. Strikingly, all
well studied systems in nature belong to one of a comparatively small number of such universality classes.

In this paper, we show that the interfaces of dynamical processes can be understood as complex networks that
capture the physical interactions among the different points of their contour. To construct these networks, we
take into account the geometrical form of the interface and apply an algorithm of visibility to their points in order
to establish their connectivity. The networks constructed from the interfaces change over time as do the interfaces.
We prove that these visibility graphs exhibit scaling properties like the interfaces from which they are mapped.
Importantly, the visibility algorithm is able to extract the dynamics of the processes from the invariant properties
of the interfaces with greater detail than the scaling analysis of the physical processes. As a consequence, a
complete characterization of the dynamical growth models is provided by the estimation of a set of critical
exponents of their corresponding visibility graphs.

OPEN

SUBJECT AREAS:
NONLINEAR

PHENOMENA

COMPLEX NETWORKS

Received
14 July 2014

Accepted
1 December 2014

Published
18 December 2014

Correspondence and
requests for materials

should be addressed to
A.B. (antonio.bru@

mat.ucm.es)

SCIENTIFIC REPORTS | 4 : 7550 | DOI: 10.1038/srep07550 1

mailto:antonio.bru@mat.ucm.es
mailto:antonio.bru@mat.ucm.es


Dynamical growth processes
Growing surfaces and one-dimensional interfaces are formed in a
wide variety of natural and artificial processes. Experimental and
theoretical studies carried out in the last decade of the last century
showed that most of these interfaces are rough and display a fractal
nature12,14. Specific techniques to study critical phenomena contrib-
uted to developing this theory. In particular, the scaling hypothesis
turns out to be very fruitful to obtain a qualitative description of
global character. Indeed, it was proven that most of the systems
belong to a short number of universality classes. Nevertheless, this
analysis still left relevant questions unanswered16.

To go further in this research, we apply the visibility network
approach to studying growing interfaces that correspond to six dif-
ferent growth processes. Three of these models are described by
continuous equations, the so called Edwards-Wilkinson (EW)17,
Kardar-Parisi-Zhang (KPZ)18 and Molecular Beam Epitaxy
(MBE)19 and the other three are discrete models: Random
Deposition (RD)20, Random Deposition with Surface Relaxation
(RDSR)21 and the Eden model22. They describe a wide variety of
non-equilibrium phenomena such as for example, among many
others, the snow deposition on a window (RD), paper burning
(EW), fluid invasion in porous media or bacterial growth (KPZ),
semiconductor devices or crystal growth (MBE).

According to their dynamics and basic mechanisms, these models
are characterized by the values of a set of critical exponents. Two
dynamical processes with the same values of critical exponents are
said to belong to the same universality class. These exponents arise
from the power law behaviour of the interface local width, a measure
of the local fluctuations of the height of the interface around its local
average value, that is defined as follows:
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where h(i; t) is the height of site i at time t. Here l is the number of sites
of the subsystem, in general, less than the whole length of the inter-
face L. ,.l represents the spatial average over the size l and { }
denotes the average over the realizations of the noise. The width of
these rough interfaces shows the scaling behavior

w l,tð Þ~ tb if t=ts
la if t?ts

�
ð2Þ

with a the roughness exponent, b the growth exponent, and ts a
saturation time which depends on the window size. These two critical

exponents are related through the scaling ansatz z~
a

b
, where z is the

dynamical exponent, which characterizes the time scaling behaviour
of the lateral correlation length, lc , t1/z. In general, a coincides with
the Hurst exponent H that describes self-affine fractals14.

Although this description is valid for a great variety of physical
processes, there exist some cases for which it is not. When the local
width w(l; t) differs from the global width w(L; t), we can define a ; aloc

and ag, the local and global roughness exponents, respectively, as23,24:

w l,tð Þ*laloc , w L,tð Þ*Lag , t?ts ð3Þ

This global interface roughness exponent, ag, can be obtained from the
scaling of the power spectrum given by the interface Fourier transform:

S q; tð Þ~q{2 ag {1s qt
1
z

� �
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where s is a structure factor which shows the scaling behavior:

s uð Þ~
const if u >>> 1

u2agz1 if u vvv 1

�
ð5Þ

Any type of dynamical process evolving under the action of noise may

be described by a stochastic growth equation, based on the conser-
vation laws of the underlying dynamics, which reflects the main sym-
metries of the dynamics both in space and time. The simplest surface
growth process is Random Deposition (RD) since no correlations exist
between the points of the interface. The width of the surface grows as

w*t
1
2. Therefore, b~

1
2

(in all dimensions). In the limit of large but

finite length, the continuous height-field variable h(x; t) satisfies the
master equation:

Lh x; tð Þ
L t

~g x; tð Þ ð6Þ

where g(x; t) is a zero-average Gaussian noise with variance Æg(x; t)
g(x9; t9)æ 5 2Dd(x2x9) d(t2t9).

The EW represents a process where correlations spread due to
diffusion only and give rise to one dimensional dynamics described

by the roughness exponent a~
1
2

and the growth exponent b~
1
4

. As

before, in the limit of large system sizes L the EW satisfies the stoch-
astic diffusion equation:

Lh x; tð Þ
L t

~s+2h x; tð Þzg x; tð Þ ð7Þ

Here, the parameter s denotes the interface tension.
The KPZ describes those processes where the spread of correla-

tions is nonlinear. The continuous KPZ stochastic equation includes
a term that breaks the up-down symmetry:

Lh x; tð Þ
L t
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As s, the parameter l is non-universal. In one dimensional problems

the critical exponents are known exactly12: b~
1
3

, a~
1
2

and z~
3
2

.

The anomalous MBE process is adequately described in the mean
field approach by the master equation25:
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L t
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where k is the interface diffusion coefficient, which is independent of
the critical exponents. For the one-dimensional MBE, the critical

exponents are: ag~
3
2

, b~
3
8

, z 5 4 and a 5 1.

The discrete growth models have been proven a very valuable
alternative to understanding the microscopic laws that are operating
in the formation of the interfaces of the dynamical processes. In the
simulation of Random Deposition (RD), particles are added to a
randomly chosen site of the surface that, consequently, increases
its height by a unit. The Random Deposition with Surface
Relaxation (RDSR) includes also surface diffusion that allows part-
icles just deposited on the interface to move to a neighbouring site
with lower height. This diffusion step tends to smooth the interface
and limits its maximum width w. In the so called Eden model, part-
icles become stuck randomly to any point of the perimeter of the
adjacent occupied sites (e.g. a vertex). The scaling of the growing
interfaces obtained from these discrete models has been studied
extensively12,14. It has been proven that RD, as well as its continuous
counterpart, constitutes a universality dynamical class whereas
RDSR and Eden models belong to the EW and KPZ universality
classes, respectively.

Visibility graphs
The data set formed by the height of each point of the substrate that
constitutes the interface at a given time can be transformed into a
graph by applying the visibility algorithm as defined by Lacasa et al.26.
Essentially, the algorithm seeks to capture the geometrical correlations
that exist among the discrete points that form the one-dimensional
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contour. This algorithm has been successfully applied to studying time
series and it has enabled to characterize the intrinsic properties of the
process that generates this data28–31. In particular, the visibility graph
associated to fractal time series has provided an alternative way of
computing their Hurst exponent27. Specifically, given a discrete inter-
face at time t, where the height of each point of a one-dimensional
substrate is given by h(k; t), the natural visibility graph at time t is
created as follows: (i) a node in the graph is associated to each point k,
(ii) two nodes are connected if visibility exists, i. e. if a visibility line is
not intersected by any intermediate data height. Formally, two differ-
ent nodes i and j of the graph are connected at time t if for the
corresponding points in the interface (i; h(i; t)) and (j, h(j; t)) no other
points i , k , j with heights h(k; t) verify:

h k; tð Þvh j; tð Þz h i; tð Þ{h j; tð Þð Þ j{k
j{i

ð10Þ

Figure 1 depicts schematically how the algorithm works to obtain the
natural visibility graph from the interface at various times. By defini-
tion, these visibility graphs have the same number of nodes as the
number of points in the discrete substrate, i.e. their size is N 5 L, for
all times. Moreover, since each node sees at least its nearest neighbors
and the links have no direction, the visibility graphs are connected and
undirected. It is worth to noting that the graph is invariant under
affine transformation of the interface data. For each realization, the
interfaces of the continuous processes EW, KPZ and MBE are
obtained from the numerical integration using the classical finite dif-
ference method32 of the corresponding master equation. The size of
the substrate is always taken as L 5 4096 and the final time for each
simulation is T 5 104. The simulations of the discrete growth models
RD, RDSR and Eden are performed following the standard proce-
dures12. In these cases, we carry out the simulations with 107 particles

and take an arbitrary time scale that corresponds to the deposition of
103 particles. Thus, the total number of time steps is T 5 104.

A first measure to characterize the visibility graph is given by the
connectivity of the network. The total number of connections of
node i with other nodes, denoted by ki, is its connectivity degree.
The probability distribution of connectivity degrees of a network is
referred to as the degree distribution, P(k). It gives the probability
that a randomly selected node has exactly k nodes. Figure 2 shows the
degree distributions of the natural visibility graphs that correspond
to the interfaces for the six dynamical processes at different times. As
it can be seen, all the distributions converge for long times.
Importantly, all curves depict a power law dependence that proves
the scale-free character of the visibility graphs39. Besides, the expo-
nents of the power law differ among the dynamical processes: cEW <
2.1 for the Edwards-Wilkinson and cKPZ < 2.07 for the Kardar-
Parisi-Zhang. The degree distributions for the discrete models are:
cRD < 3.14 for the Random Deposition, cRDSR < 2.46 for the Random
Deposition with Surface Relaxation and cEden < 2.25 for the Eden
model. The degree distribution for the anomalous MBE exhibits two
regimes with different exponents: for low values of k cMBE1 < 0.9,
whereas for larger values of the connectivity degree k, cMBE2 < 3.0.

As it was proven in27, the exponents of these power laws provide a
rigorous estimation of the Hurst (a) exponent of the fractal interfaces
through the relation: 2a 5 32c. The validity of this expression is
restricted to those processes that yield a value of a g [0, 1]. This is the
case for EW and KPZ: aEW < 0.45 and aKPZ < 0.47 and for RDSR and
Eden: aRDSR < 0.27 and aEden < 0.38. These estimations are close to
their theoretical values for EW and KPZ (a 5 0.5 for both processes).
On the contrary, the estimations do not coincide for the discrete
models RDSR and Eden that, theoretically, ought to have the same
a-value. For the other two classes their power law exponents yield a
null value for both aRD and aMBE for RD and for the second regime
(large k values) that appear for MBE, respectively. Nonetheless, for
lower values of k (first k-regime), the exponent of the MBE degree
distribution is c < 1 which gives a Hurst exponent a 5 1 that equals
the theoretical value of a for this process.

Network scaling
In order to obtain a deeper characterization of these dynamical pro-
cesses we require a dynamical magnitude associated to the network
evolution. We find it in the classical network theory where it is
already defined as the analogue to the interface local width: the
variance of the vertex degree35. If we take a node subset n # N we
define the local variance of the vertex degree as:

W n; tð Þ~
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where the averages are defined as in Equation (1) but over a subset of
nodes. Note that, by construction, the total number of nodes N
coincides with the interface total length L. A similar definition can
be applied for the global variance of the degree vertex if we replace n
by N. The global variance of a random graph was originally related to
the ‘‘irregularity’’ or heterogeneity of the network34,36 and, in agree-
ment with the geometrical interpretation of the visibility graph, it is
going to reproduce the scaling behaviour of the interface width w.
Indeed, as Figures 3 and 4 show, the variance of the vertex degrees
follows the scaling law:

W n; tð Þ<tb ð12Þ

for early times, and

W n; tð Þ<na ð13Þ

for long enough times. Here, a and b represent the local variance and
dynamical variance of the visibility graph, which are analogous to the

Figure 1 | Illustration of the visibility algorithm that converts for each
time step a growing interface into a complex network. Left: A growing

interface on a substrate of size L at four times. It can be described by a

continuous function, h(x, t) which represents the height of point or angle x

at time t. Middle: An interface is represented at any time of its evolution by

a corresponding complex network by applying the visibility algorithm and

which is formed with the same number of nodes N as the interface length L.

A point of the interface is considered as a node in the visibility graph which

is connected to those nodes that are visible from its heights h. Right: Based

on the connectivity of each node, ki, we present an schematic visualization

of the networks corresponding to the interfaces of the MBE dynamics at

four different times under the k-core representation, which enables to

disentangle the hierarchical structure of the networks by progressively

focusing on their central cores.
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roughness and growth exponents of the interface width. These
exponents can be estimated from the representation of W as a
function of the network size and time, respectively. Figure 3
depicts how W depends on the network size for 0 , n # N for
the six dynamical processes. As it can be observed, W shows a
similar dependence as the interface width w: it increases linearly
for low values of n and it saturates when n approaches the total
network size N. This behaviour is characteristic of the scaling
properties of W and it allows to calculate the scaling exponent a
from the slope of the straight line that fits the data for initial
times. In order to estimate the growth exponent b for each of
the dynamical processes, we determine the visibility graphs for
the interfaces formed at 100 time-steps equally elapsed from 0
to 104 and we perform over 10 system realizations to reduce the
noise effects. As it can be appreciated in Fig. 4, for initial times the
variance W behaves linearly with a slope whose value depends on
the type of dynamical growth process from which the visibility
graph is built. This slope corresponds to the scaling exponent b in
equation (12). As expected, the lowest value of b corresponds to
the Random Deposition, i.e. bRD < 0, whereas the largest value
corresponds to MBE, bMBE < 0.25. The processes EW and KPZ
have an exponent bEW < 0.11 and bKPZ < 0.17, respectively. The
critical exponents for the other discrete models are: bRDSR < 0.15
and bEden < 0.23. Theses results are summarized in Table 1. Note
that the critical exponents obtained for RDSR and Eden models
differ significantly from those that correspond to EW and KPZ,
which are the universality classes that classical analysis assigns
respectively to these discrete models12,14. This result stresses the
relevance of this network approach to discover unknown prop-
erties of the kind of dynamical processes that have not been dis-
covered using classical methods.

A third critical exponent can be obtained from the power spec-
trum of the connectivity of the nodes of the visibility graph to deter-
mine its global scaling properties. Fig. 5 shows the log-log
representation of the discrete power spectrum S for the correspond-
ing visibility graphs of each of the models at a given time. As it can be
seen, the power spectrum behaves according to a scaling law for the
six dynamical processes. Concretely, if the discrete power spectrum
scales as:

S q; tð Þ*q{c ð14Þ

then, the global exponents of each of the process are given by:
cRD 5< 0.07 for Random Deposition, both EW and KPZ have sim-
ilar values: cEW < 0.70 and cKPZ < 0.76. The MBE growth process has
cMBE < 2.15. The corresponding exponents of two discrete models
are: cRDSR < 0.63 and cEden < 0.87.

The representation of the visibility graph constructed from the
growing interfaces yields other perspective about the universality
classes. In particular, the k-core decomposition splits the network
into components with distinct connectivity and, quite likely, with
specific functionality40,41. This technique consists of identifying par-
ticular subsets of the network, called k-cores, each one obtained by a
recursive pruning strategy. A k-core of a network can therefore be
obtained by recursively removing all the vertices of degree less than k,
until all vertices in the remaining graph have degree at least k.
Consequently, more central cores are more strongly connected, with
large number of distinct paths between vertices. Figure 2 shows the k-
cores decomposition for each of the models addressed in this paper
for at time t 5 5000. Note that all vertices in a shell are drawn with the
same colour. A graduate colour scale is used to represent and to
distinguish different k-cores, from the kmin to the kmax. Each shell
has a certain radial width that depends on the correlations properties
of the vertices in the shell.

At first glance, notable differences are appreciated among them
showing the distinct mechanisms of formation behind each of the
visibility graphs. A closer inspection reveals the differences in the
density of connections that is larger in the MBE-visibility graph and
lower in the corresponding to Random Deposition. It is also worth
mentioning the propensity to form clusters in inner k-cores in EW
and KPZ visibility graphs. Besides, it is in these two networks where
the width of the k-cores is larger. These two properties show up an
internal structure that is less notorious in RD and MBE visibility
graphs. We can observe a correlation between the core index and
the connectivity degree meaning that more central nodes are likely
high-degree hubs of the visibility graph. Lastly, it is interesting to
note the presence of a nucleus, with all nodes in the kmax-shell, in all
the graphs except the RD-visibility graph. Nonetheless, this nucleus
is not exactly located at the center of the decomposition as occurs for
EW, KPZ and Eden visibility graphs. All the decompositions have an
external structure formed mainly by isolated nodes that are con-
nected to the rest of the network basically through the immediately
larger k-shells.

Figure 2 | Degree distributions of the natural visibility graphs built from the interfaces at time t 5 5000 for the six types of dynamical processes, as
obtained by numerical integration of the corresponding continuous master equation for: (EW) Edwards-Wilkinson, (KPZ) Kardar-Parisi-Zhang and
(MBE) Molecular Beam Epitaxy and from the simulation of the discrete models: Random Deposition (RD), Random Deposition with Surface
Relaxation (RDSR) and Eden model. As it can be seen, the six degree distributions exhibit a power law dependence but with different exponents. An

estimation of the Hurst (a) exponents of each process can be obtained from the exponent of their power law distributions by means of the relation27: 2a 5

3 2 c. Concretely, aEW < 0.45, aRDSR < 0.27 aKPZ < 0.47 and aEden < 0.38. The estimation for RD is aRD < 0. Note that the degree distribution of the

visibility graph corresponding to MBE presents two regimes for low and large values of k. The first part of the distribution provides aMBE < 1.032, a value

that is compatible with the theoretical prediction. The second part of the distribution yields a�MBE<0:04, similar to RD. Below each figure the

corresponding k-core decomposition of the visibility graph is depicted (see main text).
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Figure 3 | Log-Log representation of the variance of the node degrees W as a function of the network size n of the visibility graph corresponding to
interfaces at time t 5 5000. At this time, the interfaces of all the processes, except RD, are already saturated and, therefore, the slope at the origin

determines the scaling exponent a. According with the classical scaling theory of growing interfaces KPZ and Eden belong to the same universality class

defined by the roughness exponent a 5 0.5. On the contrary, the value of the exponent a for Eden and KPZ differs appreciably, aKPZ < 0.48 and aEden <
0.33. The exponent for RD is aRD < 0.14 which contrasts with the corresponding roughness exponent equal to 0. The value of the MBE exponent is aMBE <
0.47. The results are obtained after averaging over 10 realizations.

Figure 4 | Log-log representation of the variance of the vertex degrees W as a function of time for the visibility graphs obtained from interfaces for the
six growth processes studied. The initial slope of the curves determines the scaling exponent b. One hundred visibility graphs, each one obtained

from the corresponding interface at this time step, are analyzed. As it can be seen, a clear power law dependence appear for the six models. As it occurs with

the critical exponent a, this exponent allows to discriminate between process that, according with the classical theory should have the same exponent.
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Concluding remarks
In this paper we have shown that the interfaces of growing dynamical
processes can be described as complex networks whose nodes are
points of the interface and the links correspond to physical interac-
tions (visibility) among them. The number of connections among the
nodes change over time as a consequence of the evolution of the
contours. A mapping from the data set provided by the interface into
a graph can be done at each time step using the natural visibility
algorithm26. The application of this network methodology enables to
uncover hidden properties, both geometrical and temporal, of the
interface that remain invariant as the interface grows. In analogy with
the classical scaling theory, this invariance has been detected in the

analysis of the variance of the vertex degrees of the visibility graphs.
This variance was already used as a measure of the irregularity of
complex networks34–36. In reference to this magnitude, the dynamics
of the visibility graph can be classified as a function of the two critical
exponents: a and b. The third exponent c is directly computed from
the power spectrum of the connectivity of the nodes of the corres-
ponding visibility graph.

To check whether this methodology is able to distinguish among
different dynamics that, in principle, can belong to the same univer-
sality class, we have studied six different growth models, both dis-
crete (Random Deposition, Random Deposition with Surface
Diffusion and Eden model) and continuous (Edwards-Wilkinson,

Table 1 | Critical exponents obtained from the scaling of the width of the growing interfaces (Classical exponents) and from the scaling of the
variance of the node degrees of the corresponding visibility graph (Network exponents) for each of the dynamical processes studied in this
paper

dynamical Process Network exponents Classical exponents

RD a 5 0.14, b 5 0.004, c 5 0.07
a not defined b~

1
2

EW a 5 0.12, b 5 0.28, c 5 0.79
a~

1
2

b~ 1
4

KPZ a 5 0.29, b 5 0.14, c 5 0.76
a~

1
2

b~
1
3

MBE a 5 0.48, b 5 0.25, c 5 2.12
ag~

3
2
, a 5 1 b~

3
8

b�~b{
aloc

z
~

1
8

RDSR a 5 0.28, b 5 0.15, c 5 0.63
a~

1
2

b~
1
4

Eden a 5 0.33, b 5 0.23, c 5 0.87
a~

1
2

b~
1
3

Figure 5 | Log-log representation of the power spectrum of the variance of the node degrees of the six processes studied in this paper. We can estimate

the ‘‘global variance’’ of the vertex degrees from the global behaviour of the power spectrum of the visibility graphs, obtained in a similar way as

in (4), distinguishes clearly among the six dynamical processes. While RD has got cRD < 0.07, both EW and KPZ have a scaling exponents cEW < 0.70 and

cKPZ < 0.76. The process MBE has cMBE < 2.15. The other two discrete models yield: cRDSR < 0.63 and cEden < 0.87. The interfaces used for the calculations

were taken at time t 5 104.
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Kardar-Parisi-Zhang and Molecular Beam Epitaxy). Indeed, this
approach is able to discriminate between dynamics that are consid-
ered in the same universality class, e.g. Eden and KPZ and RDSR and
EW, as can be seen in Table 1. The discrepancies that have been
detected from the scaling analysis of the visibility graph reveal that
the classical classification of dynamical growth processes needs to be
reconsidered37,38. To conclude, we would like to stress the feasibility
of this methodology for studying the dynamical properties of real
systems: with a set of experimental data we can carry out a straight-
forward construction of the corresponding visibility graphs and then,
to get its dynamical properties and classification in a universality
class. Further investigations are required to find out whether there
exists a new relationship among the critical exponents that describe
the dynamical characteristics of the visibility graphs. We trust that
the application of this network approach to other non-equilibrium
systems can discover these compelling theoretical questions.
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tumour growth. Phys. Rev. Lett. 81, 4008–4011 (1998).
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