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Allostery is an essential regulatory mechanism of biological function. Allosteric sites are also
pharmacologically relevant as they are often targeted with higher selectivity than orthosteric sites. However,
a comprehensive map of allosteric sites poses experimental challenges because allostery is driven not only by
structural changes, but also by modulations in dynamics that typically remain elusive to classical structure
determination methods. An avenue to overcome these challenges is provided by the NMR chemical shift
covariance analysis (CHESCA), as chemical shifts are exquisitely sensitive to redistributions in dynamic
conformational ensembles. Here, we propose a set of complementary CHESCA algorithms designed to
reliably detect allosteric networks with minimal occurrences of false positives or negatives. The proposed
CHESCA toolset was tested for two allosteric proteins (PKA and EPAC) and is expected to complement
traditional comparative structural analyses in the comprehensive identification of functionally relevant
allosteric sites, including those in otherwise elusive partially unstructured regions.

P
hysiological function and homeostasis are tightly regulated by allostery. Allosteric regulation is also often
exploited pharmacologically for enhancing target selectivity1–11. One of the most common mechanisms of
allosteric regulation relies on the coupling of binding and conformational equilibria, which is modeled by a

four-state thermodynamic cycle (Figure 1A). For example, in one of the prototypical allosteric systems, i.e. the
regulatory subunit of Protein Kinase A (PKA R), activation is controlled by a dynamic equilibrium between
inactive and active conformations that differ not only at the binding site of the allosteric effector, i.e. cAMP, but
also at remote loci essential for inhibition of the catalytic subunit (Figure 1A)7,8,12,13. The allosteric effector cAMP
binds with higher affinity to the active vs. the inactive conformation of PKA R. Because of the active vs. inactive
state selectivity of cAMP, binding of cAMP to the regulatory subunit shifts the conformational equilibrium
towards the active state (Figure 1A), weakening the association of the regulatory and catalytic subunits and
releasing kinase inhibition. Allosteric cycles (Figure 1A) provide therefore a simple but effective thermodynamic
model of how ligands allosterically regulate remote inhibitory sites.

In order to manipulate the thermodynamics of allostery for therapeutic purposes, it is essential to fully map at
atomic resolution the active vs. inactive state differences, which will be collectively referred to here as ‘allosteric
networks’. When each discrete functional state (e.g. inactive and active) is structurally homogeneous, i.e. adopts a
well-defined and distinct structure as determined through classical structure determination methods14–16, com-
parative structural analyses effectively map allosteric networks of interactions that link distal protein sites. For
example, in the cAMP binding domain (CBD) of PKA R, which is composed of an a- and a b-subdomain, active
vs. inactive conformational differences are observed primarily in the a-subdomain and in the cAMP binding
motif known as the phosphate binding cassette (PBC) (Figure S1)17,18. Upon cAMP binding, the PBC and the C-
terminal helices shift inwards towards the b-subdomain, while the N-terminal helical bundle (NTHB) moves
away from theb-subdomain (Figure S1B). In this case, the comparative structural analysis of R bound to either the
kinase subunit (C) or to cAMP is effective in revealing the cAMP-dependent allosteric networks within the
globular CBDs of PKA.

While comparative structural analyses are an invaluable approach for the elucidation of allosteric networks, a
growing body of evidence indicates that allostery relies not only on structural changes, but also on modulations of
dynamics19–24. In addition, critical inhibitory sites under allosteric control are often found in partially unstruc-
tured regions, such as flexible linkers that remain elusive to classical structure determination methods12–14,19,25.
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Two examples that illustrate the importance of dynamics and flex-
ible linkers in allostery are provided by the Exchange Protein
directly activated by cAMP (EPAC) and PKA R. In EPAC1, a region
known to mediate multiple inhibitory cAMP-dependent interac-
tions with the catalytic domain was found to be subject to only
minimal cAMP-dependent structural changes24,26–28. However,
cAMP binding to EPAC1 causes an enhancement of dynamics in
this region, weakening the underlying auto-inhibitory interactions
by imposing an entropic penalty24,26. In PKA R, the comparative
analysis of crystal structures could not reliably identify allosteric
sites in a dynamic linker critical for kinase inhibition, because elec-
tron density was either missing or affected by crystal packing12,17,18.
However, the linker was later found to elicit state selective interac-
tions that allosterically couple it to cAMP12. For both EPAC and
PKA R, these otherwise elusive dynamic allosteric sites were
detected using an alternative approach known as the CHEmical
Shift Covariance Analysis (CHESCA)12,25. In addition, CHESCA
has been applied to other systems, revealing amino acid networks
underlying enzyme catalysis and inhibition, which have been con-
firmed by independent mutational analyses, and shows promise for
in vivo applications12,25,29–35.

The CHESCA method is particularly effective in mapping func-
tionally relevant allosteric sites within dynamic and partially
unstructured regions, which are common in signalling systems but
often escape detection through classical structure determination
methods3,9,12,23,25,29–32. CHESCA relies on the covariance analysis of
NMR chemical shifts to identify and functionally categorize allosteric
networks of residues eliciting concerted responses to a small library
of analogs of the allosteric effector ligand. The analogs feature cova-
lent modifications that perturb the non-covalent interactions
anchoring the endogenous allosteric effector (i.e. cAMP) to its recep-
tor (i.e. PKA RIa) and typically include reverse-agonists (i.e. Rp-

cAMPS, Figure 1B), antagonists, partial (i.e. 29-OMe-cAMP,
Figure 1B) and full agonists (i.e. Sp-cAMPS, Figure 1B). These func-
tionally diverse ligands are utilized under fully saturating conditions
to effectively lock the inactive vs. active equilibrium at different
degrees of activation. {15N, 1H}-HSQC spectra are then acquired
for the allosteric protein under investigation either in the apo form
or saturated by each selected ligand (Figure 1C). To reduce the
dimensionality of the HSQC chemical shifts, the nitrogen and proton
chemical shifts of each residue (dN and dH, respectively) are linearly
combined as:

CCS~0:2dNzdH ð1Þ

where CCS is the compounded chemical shift. When the inactive vs.
active exchange is fast in the NMR chemical shift time scale, as often
the case12,25, the chemical shifts observed for residues sensing exclu-
sively the allosteric conformational equilibrium are linear weighed
averages between those of the pure active and inactive states. Under
these conditions, the modulation of the inactive vs. active equilib-
rium by the ligands in the CHESCA library results in residue-specific
CCS changes that are linearly correlated (Figure 1D)18,25 Hence, lin-
ear inter-residue pairwise CCS correlations (IPCs, Figure 1D) serve
as effective signatures for residue pairs exhibiting a concerted res-
ponse to the perturbations implemented by the CHESCA library. In
this respect, IPCs provide the foundation for the systematic elucida-
tion of allosteric networks25.

Another critical feature of the CHESCA method is that the point-
distribution in the IPCs provides a means to assign a function to the
residue networks identified through CHESCA. For instance, net-
works defined by IPCs similar to the one shown in Figure 1D, in
which inhibited forms (i.e. apo or bound to reverse-agonists and
antagonists) are segregated from the active forms (i.e. bound to ago-
nists), are assigned an allosteric function. Whereas networks featur-

Figure 1 | Allosteric thermodynamic cycle and the CHESCA experimental design. (A) Allosteric thermodynamic cycle of PKA RIa based on the

coupling of auto-inhibitory and cAMP-binding equilibria. (B) Chemical library selection for the CHEmical Shift Covariance Analysis (CHESCA). The

blue circles mark cAMP sites that interact directly with the CBD and are modified in the CHESCA library (e.g. Sp-cAMPS, Rp-cAMPS and 29-OMe-

cAMP). (C) Representative HSQC peaks of two residues, i and j, subject to the CHESCA perturbations outlined in (B). (D) The corresponding pairwise

inter-residue correlation plot for the compounded chemical shifts (CCS) of residues i and j.
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ing IPCs in which the separation is between apo and bound forms,
irrespective of the degree of activation, are assigned a primarily bind-
ing function12,25. An exhaustive map of allosteric and binding net-
works requires therefore the identification of all possible IPCs
defined by a given library of perturbations (i.e. ligand analogs and/
or mutations).

In order to systematically identify all possible residue pairs
involved in linear IPCs, the correlation matrix (R) is computed. R
is the correlation matrix of M transpose, where M is a matrix
obtained by compiling the observed CCS values, in which rows corre-
spond to residues and columns to ligands in the CHESCA library. In
the original implementation of CHESCA, denoted here as CHESCA-
SL, the R matrix was utilized to identify residue clusters based on
single linkage hierarchical clustering12,25,31, an agglomerative algo-
rithm in which a single linear IPC is sufficient for assigning a residue
to a cluster, i.e. cluster growth relies on local criteria12,25,31. Single
linkage hierarchical clustering is effective in exhaustively recon-
structing allosteric networks, minimizing false negatives even when
all possible linear IPCs are not experimentally observed. However,
single linkage methods are also known to be biased by chaining
effects that lead to false positives36–39.

Here, we show how false positives arising from the use of single
linkage clustering in CHESCA-SL are identified and minimized. The
identification of false positives relies on cross- checking the CHESCA
results through an independent method to analyse chemical shifts,
i.e. the chemical shift projection analysis (CHESPA)40. The CHESPA
is a simple vector analysis of the (1H, 15N) chemical shifts for three
states, typically the apo, the allosteric effector-bound and an analog-
bound form (Figure S2). Hence, CHESPA, unlike CHESCA, alone is
not suitable to identify allosteric networks, but it is useful to monitor
at residue-resolution the response to selected ligands in the CHESCA
library and cross-check the CHESCA-derived clusters for false posi-
tives, i.e. residues with analog-responses differing from the majority
of the remaining residues in the same cluster. We also show that once
false positives are identified through CHESPA, they can be mini-
mized through the use of a clustering algorithm complementary to
single linkage, i.e. complete linkage agglomerative clustering
(CHESCA-CL).

Our results indicate that CHESCA-CL significantly reduces the
number of false positives, but does not completely eliminate them.
We show that the residual false-positives arise from the degeneracy
intrinsic to the combination of (1H, 15N) chemical shifts into a single
CCS, as defined in equation (1). The residual false-positives are
eliminated by a modified CHESCA scheme based on the covariance
analysis of separate 1H and 15N chemical shifts. The combination of
complete-linkage and separate 1H and 15N chemical shifts results in a
robust algorithm (CHESCA-I) for the reliable identification of allos-
teric networks. The robustness of CHESCA-I was confirmed by the
overall agreement with the allosteric networks independently
mapped through the inactive vs. active comparative structural ana-
lysis of well-folded globular domains. Furthermore, for less struc-
tured and dynamic regions, CHESCA-I preserves the ability to
identify otherwise elusive functional allosteric sites. Overall, the pro-
posed algorithms (CHESCA -SL, -CL and -I) define a CHESCA tool
set for reliably mapping allosteric networks and we provide a ‘user
guide’ flow chart for the effective implementation of this CHESCA
tool set, through which potential false positives and false negatives
are detected and minimized.

Results and Discussion
The Chemical Shift Projection Analysis (CHESPA) Reveals False
Positives in CHESCA-SL. The CHESPA analysis of Rp-cAMPS (or
Rp in short) was used to identify false positives in the allosteric
clusters defined through CHESCA-SL as applied to RIa 91-244,
which spans the critical CBD of PKA. Rp was chosen over the
other analogs in the CHESCA library since it is a reverse

agonist41–43. Therefore, residues sampling primarily the allosteric
inactive vs. active equilibrium are expected to exhibit ppm changes
reflecting an opposite shift in the activation equilibrium relative to
cAMP (fractional activation X , 0; Figure S2), whereas residues
affected by Rp binding but not allosteric conformational changes
would experience chemical shift changes similar to cAMP (X . 0)
as well as unique ppm shifts influenced by the replacement of the
equatorial phosphate oxygen with a bulkier sulphur atom in Rp (i.e.
NNEs). The residue-specific X values observed for Rp in PKA RIa
91-244 are shown in Figure 2. As expected, the CHESPA analysis of
Rp results in a splitting of chemical shift changes between those that
shift in a direction similar to cAMP (X . 0) and those that shift in the
opposite direction (X , 0; Figure 2). The negative X values are
observed primarily for residues in the a-subdomain, which was
previously predicted to play an integral role in the allosteric
activation of PKA, while the positive X values are mainly localized
in the b-subdomain, a region that contains two important cAMP
binding elements, the base binding region (BBR) and the
phosphate binding cassette (PBC) (Figure S1).

Residues from the CHESCA-SL allosteric network are highlighted
in Figure 2 as solid vertical lines to cross-check whether the
CHESCA-SL analysis could distinguish reliably between allosteric
and binding elements. Allosteric residues are expected to sense the
same conformational equilibrium and hence to share similar frac-
tional activations (X). While this is proved true for the majority of the
residues in the allosteric cluster identified through CHESCA-SL
(Figure 2C), a subset of residues within the same cluster (e.g. b-core
residues 162–165, 178, 213, 216) exhibit positive fractional activa-
tions (Figure 2C). Among these, some correspond to marginal X
values close to zero, suggesting that they are within the noise of the
CHESPA analysis, but other residues, such as I163, Q164 and K216,
feature significant fractional activations (Figure 2C) and clearly cap-
ture false positives of the CHESCA-SL analysis, which is based on
single linkage clustering, a method notorious for the presence of
chaining effects.

One Source of False Positives in CHESCA-SL is the Single-Linkage
‘‘Chaining’’ of Weakly Correlated Residues. We hypothesized that
residues with opposite fractional activations (X) are clustered
together by CHESCA-SL because of an inherent chaining property
of the single linkage hierarchical agglomerative clustering method
utilized in CHESCA-SL. Single-linkage clustering links two clusters
together if there is a high correlation between any of the residues
within either of the clusters36,37. Even if the majority of correlations
for residues between those two clusters are poor, a single high
correlation will still cause the two clusters to be linked together.
For example, residues K216 and L221 belong to the same allosteric
cluster as defined by CHESCA-SL, but exhibit fractional activations
with opposite signs (Figure 2C) and hence are very poorly correlated,
as shown in the IPC of Figure 3A. The correlation coefficient between
K216 and L221 is 0.83, which is significantly lower than the 0.98
cutoff typically used in CHESCA-SL12,25. Furthermore, Figure 3A
shows that along the K216 axis the Rp state is positioned roughly
midway between the apo state (inactive) and the three other holo
states cAMP, Sp and OMe (active), whereas along the L221 axis it is
the apo state that is found between the Rp and the three active states.
Hence, the example illustrated in Figure 3A reveals that single-
linkage may cluster together two residues, such as K216 and L221,
with markedly different responses to the ligands in the CHESCA
perturbation library.

We hypothesized that the partitioning of two functionally distinct
residues, such as K216 and L221, to the same cluster arose from a
chain of strong correlations that links together residues for which the
direct correlation is very weak. We further expected to see in this
chain of correlations very subtle, but consistently incremental shifts
in the distributions of states that would explain the large net differ-
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ence in distributions that are observed between K216 and L221. As
expected, a chain of strong pairwise correlations linking the weakly
correlated K216 and L221 residues was identified (Figure 3B–G).
This chain begins with the K216-Q164 pair (Figure 3B), then con-
tinues with the Q164-V213, V213-Y205 and Y205-V115 sequential
correlations (Figure 3C–E) and eventually ends with the V115-L221
IPC (Figure 3F,G). At each step in this chain, the Rp state is subject to
a subtle progressive shift towards the apo state, until it eventually
crosses it (Figure 3B–F). The distribution of states at the beginning of
the chain, with Rp midway between the apo and holo states, is remin-
iscent of a correlation between residues affected by binding and
nearest neighbour perturbations unique to the interactions with
Rp. In contrast, the distribution of states at the end of the chain more
closely reflects the expected positions for allosteric residues. It is
notable that a similar shift is observed for the partial agonist 29-
OMe-cAMP (or OMe in short) bound state41,44,45. Near the beginning
of the chain, its position is close to the other bound states, such as
cAMP and the full agonist Sp-cAMPS (Sp), but as the chain pro-
gresses, it slowly shifts towards the apo state. This observation cor-
roborates that residues at the beginning of the chain play a role in
binding, while those near the end report primarily on the allosteric
equilibrium. Overall, the example in Figure 3A illustrates the pos-
sibility that single linkage clustering chains together within a single
cluster residues with divergent responses to the CHESCA library (i.e.
chaining effect). Hence, the chaining effect results in false positives
within the allosteric cluster identified by CHESCA-SL.

Complete-Linkage Clustering Overcomes the Chaining Effect. To
overcome the chaining effect caused by single-linkage clustering, we

considered other types of clustering methods, such as complete
linkage clustering. Complete linkage clustering examines the
correlations of every pair of residues between groups and, unlike
single linkage, will only link groups together if the lowest
correlation coefficient among all pairs is above a designated
cutoff46,47. This ensures that all residues within a given cluster
are highly correlated with each other. Due to the high
stringency of this method, the number of false positives in the
correlations is expected to be considerably reduced relative to
single linkage. Hence, we re-analyzed using complete linkage
clustering the chemical shift data of PKA RIa previously utilized
for CHESCA-SL12. Figure S3 shows the dendrogram representing
the complete-linkage agglomerative clustering of PKA RIa (91-
244). Figure S3 shows that the stringency of complete linkage
fragments the single linkage clusters into sub-clusters with
reduced size due to the sparse nature of the R matrix. For
instance, using a correlation coefficient cutoff of 0.98, as for the
single-linkage of CHESCA-SL12,25, the maximum cluster size is
nine residues, almost one order of magnitude less than the
maximum cluster size obtained through single-linkage (i.e. ,60
residues; Figure 3G)12. However, complete linkage generates
multiple clusters with more than three residues (clusters I-VII,
Figure S3 and S4A), which share similar distributions of their
functional states (i.e. active vs. inactive), as proven by the
corresponding state dendrograms (Figure S4B). Furthermore, all
the residues included in the smallest dendrogram branch that
spans clusters I-VII (blue box in Figure S3) exhibit singular
value decomposition (SVD) scores aligned along the same
principal component (PC), as shown in Figure 4B.

Figure 2 | The chemical shift projection analysis (CHESPA) of Rp-cAMPS (Rp) bound PKA RIa CBD-A. (A) The DdNHcomb vs. residue plot for Rp-

cAMPS bound vs. apo PKA RIa (91-244). Solid black lines represent residues belonging to the allosteric cluster identified from the CHESCA-SL analysis,

while the DdNHcomb values of other residues are reported as dotted vertical bars. The secondary structure of PKA is shown as dashed lines at the top

of the plot. (B) The cosh vs. residue plot. The h angle is defined in Figure S2. (C) Plot of fractional activations (X) vs. residue. Fractional activations are

defined in Figure S2. The solid horizontal line represents the average of all the negative X values with adjacent horizontal dashed lines corresponding to the

average 1/- one standard deviation. Selected residues are highlighted.
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The SVD analysis offers an independent approach to separate
residues that contribute to each of the major equilibria (i.e. binding
and allosteric)25. The positions of the loadings in the PC plot reveal
the functional role of residues spaced along a given axis. For example,
in Figure 4B the loadings progress along PC1 from Sp, cAMP and
29OMe to apo and Rp. This is the pattern expected for the allosteric
equilibrium, thereby assigning to PC1 and to all residues with scores
spaced along it a role in allosteric activation. In this respect, it is
remarkable that all the amino acids within the selected branch of
the complete-linkage dendrogram (blue box in Figure S3) corre-
spond to scores that are aligned along PC1 with minimal variation
along PC2 (Figure 4B), suggesting they are all associated to a similar
allosteric function.

Based on the combined SVD (Figure 4B) and state dendrogram
analyses (Figure S4B), the fragmented sub-clusters generated by
complete-linkage were reassembled into a single allosteric cluster
(Figure S3, blue box), which will be referred to here as the
CHESCA-CL allosteric cluster. The protocol for reconstructing the
CHESCA-CL allosteric cluster is summarized in Figure S5 and the
corresponding allosteric network is depicted in Figure 4C as a grid of
blue lines overlaid to the correlation matrix R. Figure 4C also illus-
trates that despite the added stringency of complete-linkage cluster-
ing, the previously identified critical allosteric sites in the flexible

linker region spanning residues 100–120 are still captured. Finally,
the allosteric residues from complete-linkage clustering were
mapped on the fractional activation plot of Rp-bound PKA to verify
that there is a significant reduction in the number of false positives
(blue lines in Figure 4D).

Figure 4D shows that, as expected, the number of residues with
positive fractional activations was greatly reduced. For instance,
Q164 and K216, which exhibit positive fractional activations and
were classified as allosteric by single linkage clustering (Figure 2C),
are now correctly excluded from the allosteric cluster defined
through complete linkage (Figure 4D). However, there are still a
few residues with positive fractional activations that are assigned to
the allosteric cluster by CHESCA-CL (Figure 4D). The most signifi-
cant of these is residue I163, with a positive fractional activation of
,0.9. To determine why this correlation remained, its IPCs were
examined (Figure 5A), but surprisingly the IPCs for this residue
matched the expected pattern that was observed for the majority of
other complete-linkage allosteric residues, with both the inactive
states (i.e. apo and Rp) well separated from the active ones (i.e.
cAMP, 29OMe, Sp) (Figure 5A). To understand this discrepancy
between the CHESPA and CHESCA analyses, we turned to the other
CHESPA parameter, the cosh value (Figure 2B). Interestingly, for
I163 the cosh value is close to 0.5, revealing that the chemical shifts of

Figure 3 | Analysis of inter-residue CCS pairwise correlations reveals the ‘‘chaining effect’’ of single-linkage agglomerative clustering. (A) Inter-residue

pairwise correlation between L221 and K216. Despite the poor K216 vs. L221 correlation, single-linkage clustering assigns L221 and K216 to the

same cluster because of a chain of strong correlations that links these two residues together, as shown in panels (B–F). (G) The single-linkage dendrogram

for the allosteric residue cluster reveals the branch locations of residues in panels (A–F) (red residues). The black arrows outline the chain of correlations

connecting K216 and L221 (dashed rectangles).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7306 | DOI: 10.1038/srep07306 5



these states were non-linear in the HSQC spectra (Figure 5B) and
suggesting that the CHESPA vs. CHESCA discrepancy observed at
the level of I163 arises from the use of the CCS (defined in equation 1)
as opposed to the separate 1H and 15N ppm values in the covariance
analysis.

Another Source of False Positives Is the Combined Chemical Shift
Projection Compression. Chemical shifts from different nuclei
belonging to the same residue are often combined into a single
linearly weighed average, in order to reduce the dimensionality of
the chemical shift analysis and provide a single residue-specific
descriptor utilized to map interactions at residue-resolution. Hence
in our original CHESCA-SL implementation, we had calculated the
combined 1H and 15N chemical shift using equation (1). In
geometrical terms, the linear combination of equation (1) closely
resembles a projection of the nitrogen and proton chemical shifts
onto an axis rotated by an angle b relative to the original 1H axis of the
1H, 15N HSQC plane. This is appreciated by rewriting equation (1) as:

CCS~a(dH
:cosbzdN

:sinb) ð2Þ

where a:

a~H 1zSF2
� �

ð3Þ

and:

b~tan-1 SFð Þ ð4Þ

with SF being the scaling factor for the nitrogen chemical shifts, i.e.
0.2 in the case of equation (1), which results in b 5 11.3u and a 5

1.02. Interpreting the CCS equation (1) in terms of a projection onto
a rotated axis visually illustrates how HSQC peaks that fall on the
same projection line result in the same CCS (Figure 5C). In other
words, it is possible that HSQC peaks with distinct chemical shifts
lead to identical CCS values. We will refer to this type of CCS
degeneracy as ‘‘projection compression’’.

The CCS projection compression provides an explanation as to
why I163, which exhibits positive fractional activations in the
CHESPA analysis, was assigned by the CHESCA-SL and -CL
schemes to the allosteric cluster populated primarily by residues with
negative fractional activations (Figures 2C and 4D). The CHESPA
relies on a vectorial analysis in a two-dimensional Cartesian coord-
inate system, thereby removing any effects from the CCS projection
compression. On the contrary, the previous CHESCA implementa-

Figure 4 | Complete-linkage agglomerative clustering maps allosteric networks without ‘‘chaining effects’’. (A) Schematic comparison of single vs.

complete linkage clustering. The shapes (triangle, circle and square) represent residues within existing clusters (large ovals) and the dashed line depicts the

method by which the two clusters are linked. (B) Singular value decomposition (SVD) analysis of the combined chemical shifts of PKA RIa (91-244).

Loadings are shown as black dashed diamonds and scores are shown as circles. Blue scores represent residues from the reconstructed allosteric cluster

determined by complete-linkage clustering (Figures S3 and S4). The dashed ovals correspond to the standard deviations of PC1 and PC2. (C) The

correlation matrix for PKA RIa (91-244) with complete-linkage clusters shown as blue lines. Only correlations with | rij | $ 0.98 are shown (black dots).

The secondary structure is displayed as dashed lines along the top and side of the plot. (D) A plot of Rp-bound fractional activations similar to Figure 2C,

but with residues from the complete-linkage cluster shown as blue lines. Selected residues are labelled, including I164 and V213 that exhibit positive X

values unlike the majority of the residues in the allosteric cluster identified through complete linkage.
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tions rely on a mono-dimensional CCS scale and thereby projection
compression is a potential concern. For example, the HSQC peaks
corresponding to the Rp and apo states of residue I163 are clearly well
separated (Figure 5B), but they exhibit similar CCS values due to the
projection compression (Figure 5B, insert). This results in a linear
CCS distribution that fits the pattern expected for the allosteric clus-
ter (Figure 5A).

To overcome the effect of the CCS projection compression, two
independent CHESCA analyses were performed on separate 15N and
1H chemical shift matrices. Allosteric clusters were determined for
each CHESCA analysis using complete-linkage similarly to the pro-

tocol discussed above and residues conserved in both the 15N and 1H–
based allosteric clusters were selected (Figure 5D). The Rp fractional
activations for these residues, defined as CHESCA-I allosteric
ensemble, are displayed in Figure 5E as solid blue lines, showing that
the residues with the largest positive fractional activations, such as
I163 and V213, are now completely eliminated from the allosteric
cluster (Figure 5E). However, there was also a significant reduction in
the number of residues with negative fractional activations
(Figure 5E) relative to the previous implementation of complete
linkage using CCS (Figure 4D). One possible explanation is that
inter-residue correlations were lost for those residues exhibiting lin-

Figure 5 | Potential artefacts arising from the use of the combined chemical shift (CCS) projection and an alternative CHESCA algorithm to account
for them. (A) Selected inter-residue pairwise CCS correlation between two residues, I163 and Q177, with different fractional activations for the Rp-bound

state. (B) HSQC cross-peak positions for residue I163. The CCS values of the five states are displayed in the insert. (C) Illustration of the similarity between

the use of CCS and the projection of 2D (1H, 15N) cross-peaks into a single axis rotated by an angle b (equation 2). Different 2D (H,N) cross-peaks

(black filled and red open diamonds) may result in similar CCS values (circles). (D) Scheme for a CHESCA approach designed to circumvent the

projection compression effect (‘‘CHESCA-I’’). Two independent CHESCA-CL implementations are applied to the nitrogen and proton chemical shifts

using a 0.95 | rij | cutoff value (H- and N-CHESCAs) and only the residues that are conserved between the two complete-linkage clusters generated by the

H- and N-CHESCAs are included in the functional network. (E) Rp-bound fractional activations for PKA RIa (91-244) with residues from the CHESCA-I

method shown as blue lines. Solid and dashed horizontal lines are defined as in Figure 2C.

www.nature.com/scientificreports
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ear HSQC variations largely along a single axis, either 15N or 1H, but
not both. Thereby, these residues are detected by only the proton or
nitrogen analysis and are consequently removed when collecting the
residues conserved between the two analyses. It is therefore clear that,
while the added value of this method is the stringent determination of
pairwise correlations and the drastic reduction in the number of false
positives, it also results in an increased number of false negatives and
it should be used in conjunction with less stringent and complement-
ary methods such as those relying on the combined chemical shifts
(i.e. CHESCA-SL and -CL).

Comparison of Structure-Based and CHESCA-Based Allosteric
Networks within Folded Domains. In order to further gauge the
reliability of the different CHESCA options outlined here, we sought
to compare the allosteric networks derived through CHESCA with
those established through traditional structural comparisons.
Although CHESCA offers the additional advantage of accurately
mapping allosteric networks for partially unstructured regions, the
comparative structural analyses of the inactive vs. active states for
well-structured globular regions, such as the CBDs of PKA, provide a
reliable CHESCA-independent map of allosteric networks, which is
useful to cross-validate the CHESCA results13,48,49. For this purpose,
residue-specific RMSD values were measured between the active (i.e.
cAMP-bound) and inactive (i.e. C-subunit bound) structures of PKA
RIaCBD-A17,18 and residues with RMSDs greater than or equal to 1 Å
(i.e. 10% of the maximum RMSD) were mapped onto the cAMP-
bound crystal structure8,18 to highlight the regions that undergo
major structural changes during activation (Figure 6A). The
majority of these residues occur in the a-subdomain, spanning the
NTHB and hinge helices as well as the PBC region (Figure 6A).

The RMSD-based allosteric cluster of Figure 6A was compared to
that obtained through the traditional CHESCA-SL analysis
(Figure 6B), which relies on single linkage clustering. The two allos-
teric clusters are comparable at the level of the a-subdomain
(Figure 6A,B), but in the case of the single-linkage CHESCA-SL
cluster (Figure 6B) there are also several residues identified in the
b-subdomain. Although the b-subdomain structure is to a large
extent invariant upon cAMP-binding, selected residues from the
b-core are indeed expected if they are in the vicinity of the a-sub-
domain and experience local changes in their spatial environment
upon transition from the inactive to the active state. Additional
correlations involving the b-core may also be anticipated if they play
a significant role in the activation of PKA, but arise from structural
and/or dynamical perturbations that fall below the resolution of
changes detectable by crystallography. For example, several loops
in the b-core play important roles in ligand binding and activa-
tion5,50, but due to their dynamic nature they are poorly structurally
defined. Nonetheless, these explanations cannot account for all b-
core residues observed in Figure 6B. For instance, single-linkage
clustering detects several residues far from the a-subdomain and
in rigid b-strand regions (Figure 6B). Such residues are clearly false
positives caused by the chaining effects intrinsic to the single linkage
clustering of CHESCA-SL.

The b-core residues identified as false positives in the single link-
age CHESCA-SL are partially removed by the complete-linkage
CHESCA-CL (Figure 6C). As shown in Figure 6C, CHESCA-CL still
captures the a-subdomain and the b-core residues that are either in
loops or adjacent to the a-subdomain, as anticipated. Very few resi-
dues from the PBC were captured, but this is expected since unique
PBC perturbations from each of the different cAMP analogs induce

Figure 6 | Summary maps of CHESCA-based allosteric ensembles identified for PKA RIa CBD-A. (A) Structure-based allosteric residues for the folded

CBD-A. Residues with a local RMSD between the C-bound and cAMP-bound crystal structures of PKA R (PDB IDs: 3FHI and 3PNA) greater than 1 Å are

shown as a blue surface. (B–D) Allosteric residues from the CHESCA-SL, -CL and -I analyses of PKA CBD-A, respectively, mapped onto its crystal

structure. cAMP is shown as black spheres.
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ligand specific nearest-neighbour chemical shift changes, which
compromise the linearity in at least some of the chemical shift cor-
relations. Finally, the b-core residues identified as false positives in
the CHESCA-SL are almost completely removed by the CHESCA-I
(Figure 6D). Most of the a-subdomain is still captured as well as
adjacent b-core residues (Figure 6D), but the allosteric cluster is
now significantly sparser and some regions that were expected to
generate CHESCA correlations were absent altogether (i.e. residues
148–151 in the NTHB and residues 168,169 and 171–174 in the b2-
b3 loop). As a further validation, the proposed CHESCA methods
were also applied to EPAC (Figure S6 and supplementary text).
Overall, in both PKA R and EPAC the allosteric networks mapped
by CHESCA-CL are consistent with those independently defined
through comparative structural and/or mutational analyses of the
well folded globular domains, while at the same time also capturing
dynamic inhibitory sites that would have otherwise remained elusive.

Concluding Remarks. The CHEmical Shift Covariance Analysis
(CHESCA) relies on a library of perturbations with known
functional profiles to comprehensively map at residue resolution
allosteric networks. The CHESCA method is especially useful for
identifying allosteric residues belonging to dynamic regions, such
as linkers and loops, which may remain elusive to traditional
structure determination methods. Here, we have identified two
sources of false positives in the detection of allosteric residues
through the original CHESCA algorithm (i.e. CHESCA-SL). One

source of false positive is single linkage clustering, which tends to
cluster together poorly correlated residues exhibiting different
responses to the CHESCA library (‘chaining effects’). Another
cause of false positives is the use of combined 1H and 15N chemical
shifts, as residues with different 1H and 15N chemical shifts may result
in similar combined ppm values (‘projection compression’). We have
shown that both types of false positives are effectively identified using
the CHEmical Shift Projection Analysis (CHESPA). The CHESPA
signature that reveals false positives from the CHESCA analysis, is
the presence of outlier residues with fractional activations that differ
markedly from the majority of other residues in the allosteric cluster.

We have proposed two new CHESCA methods to minimize the
presence of false positives. One method (i.e. CHESCA-CL) is based
on complete rather than single linkage clustering, while the other (i.e.
CHESCA-I) relies also on the use of separate rather than combined
1H and 15N chemical shifts. Both CHESCA-CL and -I complement
the original CHESCA-SL scheme. CHESCA-SL provides an effective
approach for the comprehensive detection of networks of residues
involved in conformational equilibria underlying allostery. Although
CHESCA-SL may lead to false positives due to chaining effects, it
reduces the chances of false negatives especially for systems in which
the chemical shift correlation matrix R is sparse. As the stringency of
the analysis is increased by imposing complete linkage clustering
(CHESCA-CL), the number of false positives arising from chaining
effects is drastically reduced and the correlations appear to be more
directed towards the core groups of residues involved in allostery. If

Figure 7 | A flow chart ‘user guide’ for the implementation of the proposed CHESCA tool set. Initially, the chart starts with CHESCA-CL, since it

provides an optimal balance between the minimization of false positives and false negatives. If residual false positives are detected through CHESPA, the

application of the CHESCA-I approach is recommended to minimize those arising from the CCS compression. If false negatives are revealed through

CHESPA, the implementation of the CHESCA-SL algorithm is also advised. It is sufficient to implement each type of CHESCA analysis only once.

However, multiple types of CHESCA analyses (i.e. SL, CL, I) are often needed for a single chemical shift data set.
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the allosteric residues identified by CHESCA-CL still include resid-
ual false positives, as revealed by markedly different residue-specific
fractional activations measured through CHESPA, the CHESCA-I is
available to minimize the risk of projection compression.

CHESCA-I offers the highest level of stringency, which is advant-
ageous as it not only reduces false positive artefacts, but it also ‘zooms
in’ on core allosteric residues in the protein assisting the prioritization
of sites to be tested by mutagenesis. However, the added stringency of
CHESCA-I also results in increased false negatives. In this respect, a
balanced application of the CHESCA method is likely to be the
CHESCA-CL. However, it is important to consider that CHESCA-
CL is part of a larger tool set of complementary chemical shift analyses
(i.e. CHESCA–SL, -CL and -I as well as CHESPA) and it is advised
that multiple analyses from this tool set be implemented for a single
chemical shift data set in order to obtain a reliable reconstruction of
the underlying allosteric networks. A ‘user guide’ for the proposed
CHESCA tool set is summarized by the flow chart shown in Figure 7.

Methods
The { 15N, 1H}-HSQC datasets and chemical shifts used for PKA RIa CBD-A (91-244)
were acquired at a protein concentration of 10 mM and a ligand concentration of
3 mM12. The error bars were derived from the standard deviation of chemical shifts at
saturation, i.e. ligand concentrations of 1-3 mM. The EPAC1h (149-318) chemical
shifts were as in Selvaratnam et. al.25. The protocol for CHESCA-SL and CHESPA
have been described elsewhere40. Further details on the methods are available as
Supplementary Material.
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